
Dynamic Mitigation of RESTful Service Failures Using LLMs

Sébastien Salva1 and Jarod Sue1

1LIMOS - UMR CNRS 6158, Clermont Auvergne University, UCA, France
sebastien.salva@uca.fr, jarod.sue@uca.fr

Keywords: RESTful APIs; Security; Software Healing; LLM

Abstract: This paper presents a novel self-healing approach for RESTful services, leveraging the capabilities of large
language models (LLMs) to generate source code that implement fine-grained mitigations. The proposed
solution introduces 18 healing operators tailored for RESTful services, accommodating both grey-box and
black-box perspectives. These operators implement a dual-mitigation strategy. The first mitigation employs
encapsulation techniques, enabling dynamic service adaptation by generating supplementary source code with-
out modifying the original implementation. If the primary mitigation fails, a fallback mitigation is applied to
maintain service continuity. We investigate the potential of LLMs to perform the first mitigation of these
healing operators by means of chains of prompts we specifically designed for these tasks. Furthermore, we
introduce a novel metric that integrates test-passing correctness and LLM confidence, providing a rigorous
evaluation framework for the effectiveness of the mitigations performed by LLMs. Preliminary experiments
using four healing operators on 15 RESTful services with various and multiple vulnerabilities demonstrate the
approach feasibility and adaptability across both grey-box and black-box perspectives.

1 INTRODUCTION

The rise of service-oriented architectures and the
widespread adoption of RESTful services have rev-
olutionised modern software system design, offering
scalability, modularity, and ease of integration. How-
ever, ensuring the reliability and security of these ser-
vices remains a persistent challenge, as the complex-
ity of service compositions increases. This challenge
is exacerbated by the growing reliance on large lan-
guage models (LLMs) for generating and maintaining
service code, which introduces new risks of vulnera-
bilities and unpredictable behaviours. In such envi-
ronments, the need for robust techniques to address
failures dynamically is more critical than ever. To
address this need, (self) dynamic repairing or heal-
ing approaches may be considered: repairing localises
and patches bugs in the source code, while healing
applies mitigations to maintain software availability
whenever possible. Repairing approaches are promis-
ing, but at the moment, they are not always accurate,
as they may generate code that contains bugs (Jesse
et al., 2023) or code with vulnerabilities (Schuster
et al., 2021).

Existing software healing approaches (Tosi et al.,
2007; Dinkel et al., 2007; Subramanian et al., 2008;
Vizcarrondo et al., 2012; Wang, 2019; Rajagopalan

and Jamjoom, 2015a; Magableh and Almiani, 2020)
offer valuable strategies to mitigate the impact of bugs
or vulnerabilities by maintaining the availability and
functionality of services during failures. These tech-
niques, however, often rely on relatively basic solu-
tions, such as service restarts, rollbacks (Subramanian
et al., 2008; Wang, 2019; Rajagopalan and Jamjoom,
2015b), or manual interventions (Tosi et al., 2007;
Dinkel et al., 2007; Subramanian et al., 2008; Vizcar-
rondo et al., 2012; Rajagopalan and Jamjoom, 2015a),
which can be labour-intensive and are not always scal-
able in dynamic and highly interconnected systems.
Given the increasing complexity of RESTful service
architectures, there is a pressing need for innovative,
fine-grained healing methods that can dynamically
adapt to diverse failure scenarios while minimising
service disruptions.

This paper proposes a healing approach to quickly
enhance the reliability and security of RESTful ser-
vices deployed in production environments. Com-
pared to previous healing approaches, we propose al-
gorithms and healing operators aimed to perform fine-
grained mitigations. To this end, our healing opera-
tors rely on two kinds of mitigations. The first aims
to heal a faulty service precisely using encapsulation
techniques and source code generation. The first mit-
igation generates source code, but unlike repair ap-



proaches that change original source code to fix an
error, this mitigation produces additional source code
that implements an encapsulation technique to dy-
namically adapt the service behaviour with precision
either considering a grey or black-box perspective. If
the first mitigation fails, a simpler fallback mitiga-
tion, as one of those listed previously, is applied. The
choice between black-box and grey-box perspectives
is primarily driven by the availability of source code.
With the black-box perspective, the service is treated
as an opaque entity, enabling mitigation without re-
quiring access to internal structures, making it suit-
able for proprietary or legacy systems. In contrast, a
grey-box perspective leverages partial knowledge of
the system, allowing for more precise mitigations that
may also be more resource-efficient.

Depending on the nature of the observed errors
and the structure of the original service source code,
implementing mitigations using encapsulation tech-
niques can be complex and time-consuming. In this
paper, we also explore the potential of leveraging gen-
erative AI, specifically LLMs, to simplify and gener-
ate source codes that implement mitigations. Recent
studies indeed show that LLMs are effective at gen-
erating source code for tasks of easy to medium diffi-
culty (Austin et al., 2021; Helander et al., 2024). The
first mitigation of a healing operator, is hence per-
formed by an LLM called with chains of prompts,
which break down a healing process into successive
tasks. These prompt chains were developed follow-
ing a strict protocol to ensure that healing operators
are both reproducible and effective. We also provide
a metric to evaluate the success of a mitigation, which
is based upon two main concepts: test passing cor-
rectness and LLM confidence. The former assesses
how test suites capture defects, the latter quantifies
the model internal reliability in the correctness of its
output. It helps detect hallucinations. Furthermore,
this paper presents extensive experiments on 4 REST-
ful service compositions (15 services) to demonstrate
the practical benefits and limitations of this approach.
The results show that our approach achieves a 85%
success rate in healing services with LLM based mit-
igations. In summary, the major contributions of this
paper are:

• the definition of 18 healing operators specialised
for RESTful services and composed of two miti-
gations. The first one denoted m1 uses an encap-
sulation technique considering either a black-box
or a grey-box perspective. The second mitigation
m2 based upon older techniques is considered as a
fallback solution;

• the design of two algorithms that materialise the
testing and healing processes of RESTful ser-

vices;

• the study of the capabilities of LLMs, regarded as
general generators of source code, to perform m1.
We provide generic chains of prompts to perform
the mitigations, i.e. prompts composed of vari-
ables;

• the definition of a metric to evaluate the successful
application of m1. This metric is based upon test
passing correctness and LLM confidence;

• the evaluation of 4 healing operators on 4 REST-
ful service compositions having 4 different vul-
nerabilities, using two LLMs, by considering both
grey and black-box perspectives. We evaluate
the effectiveness of our operators to heal ser-
vice methods having one vulnerability, and ser-
vice methods having several vulnerabilities at the
same time. We also investigate how LLM confi-
dence aligns with test passing correctness.

The paper is organised as follows: Section 2 re-
views the related work. In Section 3, we present the
context of this study and introduce key definitions.
Section 4 details the algorithms for vulnerability de-
tection and service healing. The design of mitigations
using LLMs, along with the evaluation metric, are
covered in Section 5. Section 6 presents our evalu-
ation results. Finally, Section 7 summarises our con-
tributions and outlines some perspectives for future
work.

2 RELATED WORK

Several surveys were proposed in the literature to
classify the features, evaluate the performances and
list the limitations of self healing systems. Frei et
al. proposed a terminology and taxonomy for self-
healing and self-repair, considering all areas of en-
gineering (Frei et al., 2013). Schneider et al. fo-
cused on healing systems and proposed a comprehen-
sive overview materialised as a tabular showing some
properties of healing systems such as the detection
criteria, or the recovery techniques (Schneider et al.,
2015). Ghahremani et al. evaluated the performances
of self-healing systems and provided another classi-
fication of different input types for such systems and
analysed the limitations of each input type (Ghahre-
mani and Giese, 2020).

A significant portion of healing systems, such as
those in (Tosi et al., 2007; Dinkel et al., 2007; Subra-
manian et al., 2008; Vizcarrondo et al., 2012), focuses
on web services and service compositions, which are
ubiquitous in the industry. Given their prevalence and
the critical need for resilience, it is unsurprising that



numerous software healing solutions specifically tar-
geting web services have been proposed in the litera-
ture. In the previous surveys, the techniques listed to
heal services are limited in number and mostly cor-
respond to: reconfigure the available resources (iso-
lation, reroute messages to another instance, service
restart, data restoration), replace it with an older ver-
sion, add Quality of Service (QOS) metadata, limit
access to some URLs with rule policies, reorganise
the service composition if the service descriptions are
provided or perform manual intervention. The sur-
veys concluded that the characteristics of the recovery
techniques are not sophisticated, and thus the validity
of the outcome is often not clear. This is mostly due
to the limitations of the healing approaches, which
do not change the system source code. Some more
recent papers about service or micro-service heal-
ing presented more sophisticated techniques, such as
machine learning to detect anomalies. But the cho-
sen recovery techniques yet correspond to manag-
ing the versions of services without human interven-
tion (Wang, 2019; Rajagopalan and Jamjoom, 2015a;
Magableh and Almiani, 2020).

Compared to the previous approaches, we study
the possibility of using LLMs for improving the heal-
ing process. Overall, AI has been used in various
software engineering activities for decades. Allama-
nis et al. proposed a survey of machine learning
methods applied to source code in (Allamanis et al.,
2018). Many learning methods have been proposed
for program repair, e.g.,(Fan et al., 2023; Jiang et al.,
2023; Yasunaga and Liang, 2020; Chen et al., 2021;
Maniatis and Tarlow, 2023) These approaches offer
promising results but they still may generate code that
contains bugs (Jesse et al., 2023) or code with known
and risky vulnerabilities (Schuster et al., 2021). Re-
cently, LLMs have been more and more used for pro-
gramming. For example, Kanade et al. proposed
CuBERT, a specialised transformer model for code
understanding (Kanade et al., 2020). Other papers
showed that LLMs such as ChatGPT can solve easy
and medium programming problems (Austin et al.,
2021; Helander et al., 2024). They can also correctly
audit applications to detect vulnerabilities and explain
the results (Ma et al., 2024).

This paper studies and leverages the ability of
LLMs called with specialised chains of prompts to
generate source code for healing services with fine
granularity i.e. at the method level instead of the ser-
vice level as the previous healing approaches. But
if the result provided by the LLM is unsuccessful to
mitigate a vulnerability, our algorithms apply one of
the classical recovery techniques cited previously as a
failing mitigation.

3 CONTEXT AND ASSUMPTIONS

Let S be a countable set of RESTful services, and
T be a countable set of test cases. A service s ∈ S
is deployed in an environment that supports testing
from two perspectives: black-box and grey-box test-
ing. With the former, the service s is accessible exclu-
sively through HTTP requests and responses, referred
to as communication events. To determine the success
or failure of a test, these events can be read (assum-
ing no encryption). The events also include parame-
ter assignments, which allow for the identification of
their source and destination. In the case of grey-box
testing, the service s can still be experimented using
events, but the project’s source files are also accessi-
ble.

To simplify fault localisation, which is not the pri-
mary focus of this paper, we assume that a service
s∈ S can be tested in isolation. This assumption offers
several practical benefits. First, fewer resources are
required, as each test case is executed on a single ser-
vice instance at a time. Testing s in isolation removes
dependencies, preventing test execution from being
blocked by faults in dependent services and speeding
up the process. Additionally, testing in isolation re-
duces verdict inconsistencies caused by environmen-
tal factors, such as network traffic or container man-
agement. Finally, isolation testing explicitly simpli-
fies fault localisation.

We consider having a test suite denoted T (s)⊂ T
for each service s ∈ S. T (s) contains test cases en-
coding functional scenarios, which will be used here
for regression testing. A service s passes a test case
t ∈ T (s), denoted s passes t if and only if all possible
test executions result in a pass verdict. This implies
that the service may need to be tested multiple times
to cover all possible scenarios encoded in a single test
case and to explore any nondeterministic behaviours
of the service. The notation s fails t indicates that s
does not pass the test case.

We also assume the existence of additional test
suites to assess non-functional aspects of the services.
In this work, we focus on security and robustness, al-
though other aspects, such as performance, could be
explored in future research. We denote V as the set
of countable vulnerabilities, and Tv(s)⊂ T as the test
suite used to detect whether the service s has the vul-
nerability v ∈ V . Tv(s) includes test cases that sim-
ulate various attack scenarios, or experiment s with
unexpected events for robustness. Given a test case
t ∈ Tv(s) , if s fails t, then we say that s has the vul-



nerability v. At this point, we consider having the
test suites Tv1(s), . . . ,Tvm(s) to check whether s has
the vulnerabilities v1, . . . ,vm.

However, testing services in isolation requires
writing specific test cases that interact with mocks,
which simulate the real requisite services called by s.
Additionally, writing test cases and mocks that simu-
late attacks is often considered as a challenging task.
To alleviate this difficulty, we proposed test case and
mock generation algorithms, along with supporting
tools in (Salva and Blot, 2020; Salva and Sue, 2023;
Salva and Sue, 2024).

4 VULNERABILITY DETECTION
AND SERVICE HEALING

We propose in this paper a proactive solution for
detecting and subsequently healing vulnerabilities in
services. This approach involves periodically evalu-
ating a Quality of service (QoS), and when QoS is
low, healing services. The QoS can be measured at
each service deployment, at specific time intervals, or
when server errors are detected (e.g., receipt of events
with an HTTP status 500). We propose to define the
QoS measurement as the ratio of passing tests. We
present a first algorithm, Algorithm 1, to experiment
each service, detect vulnerabilities and localise them
on the service interfaces. If vulnerabilities are de-
tected, a second healing algorithm is then invoked.
Both algorithms are presented subsequently.

4.1 VULNERABILITY DETECTION
AND LOCALISATION

In our context of service healing, a vulnerability lo-
calisation refers to a URL (in black-box mode) or
a method (in grey-box mode) that invokes specific
source code containing a vulnerability. For a service s
and a test case t ∈ Tv(s) such that s fails t, Algorithm 1
infers the localisation, denoted l(s), of the vulnerabil-
ity v, which are then passed to the healing algorithm.

Definition 1 Let X be a variable set and V a value
set. We write x := ∗ the assignment of the variable x
with an arbitrary element of V .

A vulnerability localisation l(s) for the service
s ∈ S is the tuple (URL,Verb,Method,Package) com-
posed of variables in X , which may be assigned to
values in V . L stands for the set of vulnerability lo-
calisations.

The variables of a localisation refer to static infor-
mation extracted from the source code or the interface

of a RESTful service. Verb represents an HTTP verb
(e.g., GET), Method refers to a method name, and
Package is assigned to a string that defines a names-
pace organising classes. It is noteworthy that the vari-
ables of a localisation could be easily expanded to
support additional vulnerability types or faults. The
variables of l(s) should be assigned to values just af-
ter the failure of a test case, either directly (extrac-
tion from the test case of the URL and HTTP verb)
or collected from the source code of the service s if
the grey-box mode is used. This extraction from the
source code can be performed with automatic tools,
including LLMs. We also denote T (l(s)) ⊆ T (s) as
the test suite that exercises the service s at the locali-
sation l(s). For RESTful services, this subset can be
determined by scanning the URLs and verbs found in
the test cases of T (s).

Algorithm 1: Service Testing and Vulnerability Lo-
calisation

input : Service s, T (s), Tv1 (s), . . . ,Tvk (s),
p ∈ {black box,grey box}

output: V l
1 V l := /0;

2 foreach t ∈ T (s) do
3 if s fails t then
4 Alert ;

5 Replace s with an older and trusted version;

6 Deploy s;

7 foreach t ∈ Tvi (s) with 1≤ i≤ k do
8 if s fails t then
9 Locate the vulnerability vi and infer l(s);

10 {l1(s), . . . , ln(s)} := complete(l(s), p);
11 V l :=V l∪{(vi, l1(s)), . . . ,(vi, lk(s))};

Algorithm 1 takes a service s ∈ S, some test suites
T (s), Tv1(s), . . . ,Tvk(s) and a testing perspective p. It
returns a set V l composed of pairs of the form (vul-
nerability, localisation). The service s is firstly exper-
imented with T (s) to detect potential regressions. If
the service does not pass a test case of T (s), an alert
is raised, furthermore the service is directly healed by
replacing it with an older and trusted version. Other
actions might be possible, e.g., the service composi-
tion reorganisation (Subramanian et al., 2008), or a
manual intervention. If the service does not pass a
test case t ∈ Tvi(s), a localisation l(s) is inferred ei-
ther from t or from the source code project of the
service. Subsequently, the procedure complete is in-
voked to assign values to the variables of l(s). We
consider that the URL variable is always assigned to
a value as a failing test case always refers to a URL
called to experiment a RESTful service. If the VERB
variable is not assigned to a value, then 4 localisa-



tions are built for the HTTP verbs GET, POST, PUT,
DELETE. With the grey-box perspective only, the
procedure scans the project source files to get addi-
tional information (package, method names). A URL
and HTTP verb can only be linked to one method,
given in one package. The resulting pairs (vi, l j(s)),
expressing that s has the vulnerability vi tied to a fault
location l j(s), are added to the set V l.

4.2 SERVICE RECOVERY

A service s ∈ S, having a vulnerability v, is healed
with an operator denoted Hv. This healing operator is
composed of two mitigation functions m1 and m2 that
aim at returning a new service s′. The first mitigation
attempts to produce a new service s′ aiming to min-
imise the effects of the vulnerability v or by eliminat-
ing v from s at the localisation l(s). This mitigation,
which uses an encapsulation technique, is performed
by calling an LLM with a chain of prompts denoted
pv.

(a) black-box perspective

(b) grey-box perspective
Figure 1: Healing process by encapsulation: in black-box,
a new service s′ calls the faulty service s to modify its be-
haviours; in grey-box, new classes are included in the orig-
inal source code of s. With both perspectives, the original
source code remains unmodified.

Figure 1 illustrates the intuition behind the encap-
sulation techniques. With the black-box perspective,
m1 builds a new service s′ that calls/encapsulates the
original service s, filtering both incoming and out-
going messages. With the grey-box perspective, m1
enhances the service functionality without modifying
the original source code by introducing new classes.
These classes implement various encapsulation tech-
niques, such as introspection, HTTP filters, or aspect-
oriented programming, to heal the service s. This ap-
proach allows engineers or automated methods to re-
pair the service later by modifying the original source
code. If the mitigation function m1 fails to heal the
service s, then m2 is invoked. This function imple-
ments a fallback mitigation, which is simpler to apply.

Definition 2 (Healing Operator Hv) A healing op-

erator Hv for the vulnerability v is the tuple (m1,m2)
such that :

• m1 : S× L× p→ S is a mitigation function that
takes a service s, a localisation l(s), a perspective
p (black or grey-box) and produces a service s′ =
m1(s, l(s), p);

• m2: S→ S is an mitigation function that produces
a service s′ = m2(s).

We designed healing operators to heal 18 vulner-
abilities. The operator list is presented in (Sue and
Salva, 2025) with a tabular form that gives: the gen-
eral weakness, the vulnerability targeted by a given
CAPEC1 attack, the generic mitigations m1 and m2
for both testing perspectives. m1 is materialised by
prompt chains while m2 refers to a classical mitiga-
tion action.

As we wish the mitigation succeeds in healing
RESTful services, we applied the solutions proposed
and evaluated in the papers (Tosi et al., 2007; Dinkel
et al., 2007; Subramanian et al., 2008; Vizcarrondo
et al., 2012). As stated in Section 2, for most of the
healing operators, the mitigation m2 comes down to
”reverting back to a previous and trusted version”.
For some operators, m2 corresponds to ”sanitising the
data”, which applies an input validator on the input
data to filter out potential attacks.

To ensure that the mitigation m2 can effectively
heal the functionality of RESTful services, we applied
the solutions proposed and evaluated in the prior pa-
pers (Tosi et al., 2007; Dinkel et al., 2007; Subrama-
nian et al., 2008; Vizcarrondo et al., 2012). As dis-
cussed in Section 2, for most healing operators, the
mitigation m2 mostly comes down to ‘reverting to a
previous and trusted version’. For certain operators,
m2 corresponds to ‘sanitizing the data,’ which entails
applying an input validator to filter out potentially ma-
licious inputs. sFigure 3 illustrates an example for the
operator designed to heal a service vulnerable to the
attack CAPEC 274 (HTTP verb tampering). For read-
ability reasons, we only show the two generic prompt
chains used for the mitigation m1. The prompt chain
construction is detailed in the next section.

Algorithm 2 implements a simple iterative heal-
ing process. It takes the service s ∈ S, the two test
suites T (s) ∈ T and Tv(s) ∈ T along with the sub-
set {(v, l1(s)), . . . ,(v, ln(s))} returned by Algorithm 1.
Algorithm 2 covers each localisation and tries to heal
the service with the mitigation m1 of the healing op-
erator Hv. If the mitigation is applied with success,
it returns a new service s′, which replaces s. m1 is
made up of a generic chain of prompts specifically
written to mitigate v. m1 calls a prompt generator to

1https://capec.mitre.org/



Algorithm 2: Service Healing
input : Service s, T (s), Tv(s), {(v, l1(s)), . . . ,(v, ln(s))} ⊆V l,

perspective = greybox/blacbox
output: New Service s

1 i := 1;

2 while i <= n do
3 s′ := m1(s, li(s), perspective) with Hv = (m1,m2);

// m1 calls a prompt generator and build a

prompt chain pv

// m1 calls an LLM with pv to get source code

// m1 aggregate files, if several files with

the same name are available

4 if success(m1(s, li(s), perspective),T (l(s)),Tv(l(s))) then
5 Replace s by s′;

6 else
7 s′′ := m2(s) ;

8 Replace s by s′′;

9 Deploy s;

instantiate the generic prompts, i.e to assign every of
its variables to a concrete value. This instantiation
is performed by two ways. Either a variable also be-
longs to a localisation l(s) given as input to m1. In this
case, the assignment is directly performed. Or, in the
grey-box perspective, further information is collected
from the service source code project. Then an LLM
is called with the prompt chain pv to generate source
code and to build a new service. The success of the
mitigation is evaluated with the function success that
takes the new service, and test suites (line 4). If the
application of m1 at a localisation is unsuccessful, the
mitigation function m2 is then called (line 7). At the
end of this algorithm, the service s is replaced by an-
other service s′, which is finally deployed.

The design of prompt chains, the execution of the
mitigation function m1 and the concept of success are
detailed in the next section.

5 MITIGATION FUNCTIONS
WITH LLM

A mitigation function m1 generates source code by
means of an LLM queried with a chain of prompts.
This section describes how prompt chains have been
designed, the application of the mitigation function
and the evaluation of its success.

5.1 Writing of the Mitigation Function
m1

We have written prompt chains for the mitigations m1
of the healing operators by means of a strict proto-
col based upon prompt engineering techniques to op-

1) Act as an expert in software security
Service information
Task:

constraints 1
constraints 2

Format: Don’t include any explanations in your responses Give me
the code wrapped in <code> tags. Give me 3 different
responses :

2) Give me an agreement score on the 3 responses expressing that
the code is ” error free ” and ”meets the demand” between 0
and 100 with 0 the code is incorrect and 100 the code is
” error free ” and meets the demand

3) Give me all the modification required to make my project
working for the response X

Figure 2: Generic form of chain of prompts

timise the generation of correct healing corrections
in a reproducible manner. We followed these super-
vised and incremental steps to write prompt chains
specialised to mitigate security or robustness vulnera-
bilities:

1. construction of a first prompt defining a context, a
list of actions required to heal a service for a given
vulnerability v and asking 5 different solutions (no
generation of code here);

2. writing of a prompt chain for calling a LLM to
generate source code : we manually evaluated the
previous solutions to order them from correct to
incorrect using the CAPEC base; from the three
correct and best solutions, we wrote a first prompt
chain;

3. cycle of refinement on the prompt chain: we ap-
plied the prompt chain on case studies and incre-
mentally optimised it by manually evaluated the
correctness of the source codes;

4. cycle of refinement to increase reproducibility:
we applied multiple times the prompt chain on the
same case study and assessed reproducibility by
means of a source code similarity measure applied
on the generated source codes. The prompt chain
is kept when the similarity score exceeds 70%;

5. writing of the generic prompt chain pv made up
of variables to replace the specific information re-
lated to the case studies.

Figure 2 summarises the three initial generic
forms of prompts we use to write prompt chains at
step 2. Those are completed in accordance with a
vulnerability v and may be split into several prompts
while the refinement process. The reason of asking
three different responses is related to LLM confidence
assessment, which is discussed below.

A generic prompt, which contains variables, is
instantiated by assigning every of its variables to a



Figure 3: Prompt examples to heal the vulnerability targeted by CAPEC-274

value, by means of a prompt generator. This instanti-
ation can occur in two ways. If a variable also belongs
to a localisation l(s) provided as input to m1, the value
is directly retrieved from l(s). Alternatively, with the
grey-box perspective, additional information is ex-
tracted from the service’s source code project, such
as the project name, class names, and other relevant
metadata. In the example shown in Figure 3, variables
are represented by words in uppercase. The variables
VERB and ROUTE are assigned to values retrieved
from l(s). The variables TYPE and VERSION, which
indicate the framework type, are either hardcoded or
extracted from the source code project. Similarly,
the variable TECH, which denotes the encapsulation
approach (e.g., filter, aspect programming, etc.), is
also either hardcoded or determined based on project-
specific information.

5.2 Reliability Evaluation

Algorithm 2 uses the boolean expression success :
S× T × Tv×P→ {true, f alse} to evaluate whether
the mitigation function m1 has healed a service s cor-
rectly. This evaluation is performed using both test
passing correctness and LLM confidence to compute
a reliability score, denoted (corr1,corr2,con f ).

Test passing correctness, which exclusively relies
on test suites, is measured by two indicators corr1 and
corr2, the ratio of passing tests in T (l(s)) and the ratio
of passing tests in Tv(l(s)). Both are obtained after the
experimentation of the new service s′ generated by the
mitigation function m1. corr1 helps identify potential
regressions in the new service s′, and corr2 allows to
check whether the vulnerability v has been mitigated
at the localisation l(s).

The LLM confidence indicator con f measures
how much trust we should put into the source code
the LLM has generated. A higher confidence score

should mean a higher likelihood of being correct
(Austin et al., 2021). This indicator can be ob-
tained by using intrinsic measures based on condi-
tional probability, i.e. the probability derived from
the response generated by the LLM, or by using self-
reflective measures, i.e. metrics that evaluate the
LLM’s own confidence within its responses. Recent
works showed that the second approach often returns
better-calibrated confidence scores (Tian et al., 2023).

The LLM confidence evaluation (and the reduc-
tion of overconfidence) can be improved by using dif-
ferent kinds of techniques (Xiong et al., 2024), e.g.,
ask for several responses, ask to different LLMs, ask
for several explanations and evaluate them. This is
why we request the LLM for three source code gen-
erations in our prompt chains. Hence, every time we
apply a mitigation function m1, we obtain 3 responses
and 3 tuples (corr1,corr2,con f ).

Next, we apply Reciprocal Rank Fusion (RRF),
which is a rank aggregation approach that combines
rankings from multiple sources into a single ranking.
The results of our experimentations suggest to apply
RFF only on the test passing scores corr1 and corr2.
If the best tuple (corr1,corr2,con f ) has scores higher
than 90%, then success returns true else false. This
90% threshold will be analysed during the evaluation.

6 EXPERIMENTAL RESULTS

We investigated the capabilities of our algorithms
through the following questions:

• RQ1: What is the effectiveness of the mitigations
m1 with service methods having one vulnerabil-
ity?

• RQ2: How does effectiveness evolve when ser-
vice methods have several vulnerabilities?



• RQ3: How well LLM confidence aligns with test
passing correctness?

This study was conducted with 4 healing operators
denoted Hverb, Hxss, Hpath, Htoken, which aims at heal-
ing services vulnerable to Verb Tampering (CAPEC-
274), XSS injection (CAPEC-86), Path Traversal
(CAPEC-126) and Token Impersonation (CAPEC-
633). For readability, the vulnerabilities are denoted
vverb, vxss, vpath, vtoken. We considered the following
RESTful service compositions :

• C1: Piggy metric2 is a financial advisor appli-
cation composed of 3 micro-services specialised
in account management, statistics generation and
notification management;

• C2: eShopOnContainers3, implementing an e-
commerce web site using a services-based archi-
tecture (5 services);

• C3: a loan approval process implemented with 4
services developed by third year computer science
undergraduate students;

• C4: a composition of 3 services used to imple-
ment an online shop (stock and client manage-
ment, purchase, etc.) developed by students.

We wrote between 7 and 60 conformance test
cases per RESTful service. We checked that the ser-
vices pass the test cases. As all the services have
deterministic behaviours, we did need to experiment
them multiple times. For each RESTful service, we
developed between 7 and 60 conformance test cases.
We then checked that the services successfully passed
them. Since all services exhibit deterministic be-
haviour, repeated test execution was not required. We
then generated security tests with our approach pre-
sented in (Salva and Sue, 2024) that builds test cases
to try detect the fours vulnerabilities listed previously.
We obtained between 6 and 75 security test cases per
service. We then intentionally injected vulnerabilities
on the 15 RESTful services, as non-vulnerable ser-
vices cannot be healed and are therefore not relevant
for this evaluation. We generated mutants from the
RESTful service source codes by applying the tool
PITest 4 completed by our own source code mutations
injecting modifications. We kept the 200 mutants that
have at least one failing security test case.

To perform this evaluation, we implemented a
prototype tool that applies the mitigation m1 of the
4 healing operators on RESTful services by call-
ing LLMs. We considered two open-source LLMs,
Mistral’s Codestral-22B, which is an open-weight

2https://github.com/sqshq/piggymetrics
3https://github.com/dotnet/eShop
4https://github.com/hcoles/pitest

Table 1: Precision@1 detailed for both perspectives and
both LLMs

Perspective LLM Precision@1
Black-box Codestral-22B 0.87

Llama3.1-70B 0.87
Grey-box Codestral-22B 0.78

Llama3.1-70B 0.87

small language model explicitly designed for code
generation tasks, and Meta’s Llama3.1-70B, a larger
model capable of generating code, and natural lan-
guage about code, from both code and natural lan-
guage prompts. This prototype tool heals services
with our base of prompt chains, it compiles, rede-
ploys the healed services, and experiments them with
test suites. It also returns a reliability evaluation score
as presented in Section 5.2. All the services, tools,
prompt chains are available in (Sue and Salva, 2025).

6.1 RQ1: What is the effectiveness of
the mitigation m1 with service
methods having one vulnerability ?

Setup: to investigate RQ1, we applied the miti-
gation m1 of the healing operators on the mutants
and we computed the reliability evaluation scores
(corr1,corr2,con f ) for all healed services, with both
black-box and grey-box perspectives. In this analy-
sis, we considered the three source codes generated by
the LLMs for each vulnerability localisation, not just
the best one. From the tuples (corr1,corr2,con f ),
we also calculated Precision@1, which represents the
precision of the best solution returned by the LLMs.
Precision@1 reflects the proportion of corrections
that were truly effective in healing the mutants. To
determine Precision@1, we manually reviewed the
source codes of the best solutions provided by the
LLMs to verify whether the vulnerability was truly
fixed.

Results: Figure 4 depicts violin diagrams show-
ing for every vulnerability: the distributions, medi-
ans, quartiles along with densities of the scores corr1,
corr2 and con f obtained for all the healed services.
Additionally, Table 1 gives Precision@1 for each per-
spective and for each LLM.

The violin diagrams show that the ratios of pass-
ing tests corr1 and corr2 are most of the time at 100%
(distribution : 92% of ratios of passing tests above
90% for corr1, 82% of ratios of passing tests above
90% for corr2) for all the vulnerabilities and all the
obtained healed services (not only the best solution).
This shows that our approach is effective in repair-
ing these vulnerabilities with our prompt chains and



(a) (b)

(c) (d)
Figure 4: Violin diagrams showing the distributions, medians, quartiles along with densities of the scores corr1, corr2 and
con f obtained after having applied the healing operators Hverb (4a), Hxss (4b), Hpath (4c), Htoken (4d on all the mutants)

LLMs. The diagrams also indicate, through corr1,
that there are some differences among healing opera-
tors and vulnerabilities. For Hpath and Hverb, the ra-
tio of passing tests is sometimes below 100% and can
drop as low as 20%. These results suggest that the
healing process in these cases compromises the initial
functional behaviours of the RESTful services. This
highlights the importance of computing corr1 to as-
sess the impact of healing on service functionalities.
In contrast, the ratios of passing security tests, repre-
sented by corr2, are consistently either 100% or 0%,
which shows whether the targeted vulnerability has
been repaired or not.

The effectiveness of the approach is manually ver-
ified using Precision@1, which achieves an overall
value of 85%. This indicates that 85% of the top-
ranked healed services are really healed. Table 1
demonstrates that there is no significant difference
between the two perspectives when using Llama3.1-
70B, whereas Codestral shows reduced effectiveness
under the grey-box perspective. When comparing the
two LLMs, their effectiveness is comparable within
the black-box perspective and lower for Codestral
otherwise. This finding is noteworthy as it highlights

that a locally executable LLM can perform compet-
itively compared to a larger LLM. The observations
performed on the violin diagrams and with Preci-
sion@1 tend to suggest that the 90% threshold con-
sidered in the boolean expression success, to state
whether a healed service is truly healed, could be
slightly augmented to increase Precision@1. Further
experimentation may be needed to establish a general
threshold.

Figure 4 also highlights the high confidence lev-
els, with con f , provided by the LLMs on their gen-
erated source codes, with values predominantly rang-
ing between 80% and 100%. Confidence is slightly
higher for Hxss and Htoken. The violin diagrams show
that LLM confidence does not contradict test pass-
ing correctness. However, whether LLM confidence
alone can be reliably trusted by users will be ad-
dressed in RQ3.



6.2 RQ2: How does effectiveness evolve
when service methods have several
vulnerabilities?

Setup: RQ2 studies whether the healing operators
and their mitigations m1 can be effectively applied
several times on the same service method having
several vulnerabilities. We took back the compo-
sition C1, which includes 3 services and a total of
12 methods, and manually injected the 4 vulnerabil-
ities considered in this evaluation into each method.
We then considered the 1152 code projects gener-
ated by iteratively applying permutations of the four
healing operators, by querying two LLMs (Llama3.1
and Codestral), under either a black-box or grey-box
perspective. With the latter perspective, the gener-
ated source code of the same class was incremen-
tally pasted, without manual intervention. Following
the application of every mitigation of the healing op-
erators, we calculated the percentage of healed ser-
vices achieving a test-passing success rate above 90%
(corr1 > 90%∧ corr2 > 90% ).

Figure 5: Ratio of projects with a test-passing success rate
above 90% after the iterative application of mitigations

Results: Figure 5 illustrates two curves corre-
sponding to the effectiveness of the healing process
for both perspectives. In the black-box approach,
the healing process—defined as generating a new ser-
vice that encapsulates the vulnerable one—maintains
a consistent success ratio throughout. This result
aligns with our expectations since this healing ap-
proach does not introduce an iterative increase in dif-
ficulty for the LLMs. Each newly generated service
addresses a single vulnerability and calls a vulnerable
older service. However, this result masks a signifi-
cant limitation: this solution cannot be applied indefi-
nitely due to its reliance on creating and deploying an
increasing number of new services, which becomes
resource-intensive. With the grey-box perspective, we

Table 2: Spearman’s rank correlation coefficient between
corr1,corr2 and con f for each correction type

Codestral-22B Lllama3.1-70B
Black-box Grey-box Black-box Grey-box

corr1/conf -0.006 -0.171 -0.001 0.070
corr2/conf -0.033 -0.163 0.044 0.071

observe a noticeable decline in the ratio of healed ser-
vices achieving a test-passing success rate above 90%
as the number of mitigations increases. This ratio
drops by up to 30%. A key contributing factor is that
the resulting source codes often include overlapping
references to the same objects or filters. These re-
dundancies prevent seamless integration of multiple
mitigations, necessitating manual intervention. These
issues could potentially be resolved in the near future
with more efficient LLMs.

6.3 RQ3: How well the confidence
aligns with test passing correctness?

Setup: We investigated RQ3 by taking back the tu-
ples (corr1,corr2,con f ) for all the healed services
obtained after applying the healing operators on the
mutants with black-box and grey-box perspectives.
We calculated the Spearman’s rank correlation co-
efficients between test-passing correctness and LLM
confidence, segmented by vulnerability, LLM, and
testing perspective. The Spearman’s rank correlation
coefficient measures the strength and direction of a
monotonic relationship between two variables, and
returns a value between -1 and 1: the coefficient is
equal to 0 when both variables are uncorrelated, to
1 when there is a perfect positive monotonic correla-
tion (as one variable increases, the other always in-
creases), and to -1 when there is a perfect negative
monotonic correlation.

Results: Table 2 presents correlation computa-
tions between corr1 and con f , as well as corr2 and
con f , with both perspectives and both LLMs. In all
cases, the results indicate that the correlations are neg-
ligible, as the monotonic relationships are too weak.
We observed multiple times in our results that the
main reason of weak alignment is the tendency of
LLMs to assign overconfident scores to incorrect or
incomplete source code (which should be completed
by the user).

Consequently, LLM confidence cannot be used as
a reliable indicator of healing effectiveness. Testing
stages hence remain essential. Nevertheless, a low
confidence score can be a useful indicator for quickly
identifying potential issues in code generation. A low
score may indicate insufficient knowledge of the ap-



propriate mitigation to apply, an ambiguous prompt,
or the high complexity of the vulnerability being ad-
dressed. In any case, the resulting service should be
rejected.

6.4 Threats To Validity

We now address potential external and internal threats
to the validity of our evaluation. We identified 3 ex-
ternal and 2 internal threats.

Regarding external threats, the first one concerns
the choice of our case studies. To limit the impact of
this threat, we evaluated our tool on RESTful services
covering different domains, two of these case studies
were implemented by beginner developers, the other
two case studies involved microservice compositions
that have been extensively evaluated in previous re-
search. While the inclusion of varied case studies
strengthens our evaluation, these case studies do not
represent all possible types of service compositions.
As a result, we avoid drawing overly broad conclu-
sions from our results. Another external threat relates
to the test suites used during the evaluation. We gen-
erated conformance test cases to ensure that every ser-
vice method was tested by at least two test cases, and
we utilised the security testing approach from (Salva
and Sue, 2024) to create security-specific test cases.
The latter demonstrated an increase in branch cover-
age by 20% and consistently detected vulnerabilities
in the same services used in the experiments. How-
ever, the test suites may still lack comprehensive cov-
erage for all possible service behaviours or vulner-
abilities, limiting their general applicability to other
contexts. Additionally, we used mutation of service
methods to inject vulnerabilities. To mitigate the risk
that these mutations do not reflect realistic vulnerabil-
ities, we employed the well-known, open-source tool
Pitest, supplemented with custom mutations to ensure
every method contained at least one vulnerability. We
also conducted manual checks on the source code to
verify the accuracy of the mutations. Despite these
measures, the generated mutations may not capture
the full range of vulnerabilities encountered in real-
world scenarios.

Other factors that may threaten internal valid-
ity relate to the design and execution of the prompt
chains used in our experiments. We followed a strict
protocol when designing the prompt chains and ap-
plied them consistently across several services. How-
ever, a prompt chain may be interpreted differently
by another LLM. In our experiments, we queried
LLMs using chains of prompts while keeping addi-
tional model parameters, such as temperature, top k
top p to their default values. These parameters could

have been fine-tuned for each LLM to potentially im-
prove code generation performance.

7 CONCLUSION

This paper has proposed the design and evaluation
of a RESTful service healing approach, which in-
troduces fine-grained mitigation techniques to en-
hance reliability and security of RESTful services.
We propose 18 healing operators, each incorporat-
ing two mitigation strategies: m1 utilises encapsula-
tion techniques under grey-box or black-box perspec-
tives, generating additional source code for dynamic
service adaptation without altering the original source
code. If m1 fails, a fallback mitigation m2 is applied.
The study also explores the capabilities of LLMs as
general-purpose source code generators for m1, and
define a novel metric to evaluate their success. An
evaluation with 4 operators on RESTful services hav-
ing different vulnerabilities demonstrates the effec-
tiveness of m1 in both grey-box and black-box con-
texts, addressing single and multiple vulnerabilities.

This evaluation underscores the challenge of
aligning LLM confidence with test-passing success,
demonstrating that LLMs alone cannot be fully
trusted for automated healing of RESTful services.
However, when sufficiently large test suites are avail-
able, our test-passing-based metric proves effective
for assessing healing success, achieving an overall
Precision@1 of 85%, though there is room for im-
provement. A compelling research direction would
be to explore methods for evaluating healing success
with minimal or no test suites. This could involve
developing alternative metrics or leveraging LLMs to
generate test cases, which would then require their
own rigorous evaluation.

REFERENCES

Allamanis, M., Barr, E. T., Devanbu, P., and Sutton, C.
(2018). A survey of machine learning for big code
and naturalness. ACM Comput. Surv., 51(4).

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q.,
and Sutton, C. (2021). Program synthesis with large
language models.

Chen, Z., Kommrusch, S., Tufano, M., Pouchet, L., Poshy-
vanyk, D., and Monperrus, M. (2021). Sequencer:
Sequence-to-sequence learning for end-to-end pro-
gram repair. IEEE Transactions on Software Engi-
neering, 47(09):1943–1959.

Dinkel, M., Stesny, S., and Baumgarten, U. (2007). Inter-
active self-healing for black-box components in dis-



tributed embedded environments. In Communication
in Distributed Systems - 15. ITG/GI Symposium, pages
1–12.

Fan, Z., Gao, X., Mirchev, M., Roychoudhury, A., and Tan,
S. H. (2023). Automated repair of programs from
large language models.

Frei, R., McWilliam, R., Derrick, B., Purvis, A., Tiwari,
A., and Di Marzo Serugendo, G. (2013). Self-healing
and self-repairing technologies. International Journal
of Advanced Manufacturing Technology, 69(5):1033–
1061.

Ghahremani, S. and Giese, H. (2020). Evaluation of self-
healing systems: An analysis of the state-of-the-art
and required improvements. Computers, 9(1).

Helander, V., Ekedahl, H., Bucaioni, A., and Nguyen, T. P.
(2024). Programming with chatgpt: How far can we
go? Machine Learning with Applications, 1:1–34.

Jesse, K., Ahmed, T., Devanbu, P. T., and Morgan, E.
(2023). Large language models and simple, stupid
bugs. In 2023 IEEE/ACM 20th International Confer-
ence on Mining Software Repositories (MSR), pages
563–575.

Jiang, N., Liu, K., Lutellier, T., and Tan, L. (2023). Im-
pact of code language models on automated program
repair.

Kanade, A., Maniatis, P., Balakrishnan, G., and Shi, K.
(2020). Learning and evaluating contextual embed-
ding of source code. In III, H. D. and Singh, A.,
editors, Proceedings of the 37th International Con-
ference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pages 5110–
5121. PMLR.

Ma, W., Wu, D., Sun, Y., Wang, T., Liu, S., Zhang, J., Xue,
Y., and Liu, Y. (2024). Combining fine-tuning and
llm-based agents for intuitive smart contract auditing
with justifications.

Magableh, B. and Almiani, M. (2020). A self healing
microservices architecture: A case study in docker
swarm cluster. In Barolli, L., Takizawa, M., Xhafa,
F., and Enokido, T., editors, Advanced Information
Networking and Applications, pages 846–858, Cham.
Springer International Publishing.

Maniatis, P. and Tarlow, D. (2023). Large sequence models
for software development activities.

Rajagopalan, S. and Jamjoom, H. (2015a). App–Bisect:
Autonomous healing for Microservice-Based apps. In
7th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 15), Santa Clara, CA. USENIX As-
sociation.

Rajagopalan, S. and Jamjoom, H. (2015b). App–Bisect:
Autonomous healing for Microservice-Based apps. In
7th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 15), Santa Clara, CA. USENIX As-
sociation.

Salva, S. and Blot, E. (2020). Cktail: Model learn-
ing of communicating systems. In Proceedings of
the 15th International Conference on Evaluation of
Novel Approaches to Software Engineering - Volume
1: ENASE,, pages 27–38. INSTICC, SciTePress.

Salva, S. and Sue, J. (2023). Automated test case gen-
eration for service composition from event logs. In
38th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2023 - Workshops,
Luxembourg, September 11-15, 2023, pages 127–134.
IEEE.

Salva, S. and Sue, J. (2024). Security testing of restful
apis with test case mutation. In Kaindl, H., Mannion,
M., and Maciaszek, L. A., editors, Proceedings of the
19th International Conference on Evaluation of Novel
Approaches to Software Engineering, ENASE 2024,
Angers, France, April 28-29, 2024, pages 582–589.
SCITEPRESS.

Schneider, C., Barker, A., and Dobson, S. (2015). A survey
of self-healing systems frameworks. Software: Prac-
tice and Experience, 45(10):1375–1398.

Schuster, R., Song, C., Tromer, E., and Shmatikov, V.
(2021). You autocomplete me: Poisoning vulnerabili-
ties in neural code completion. In 30th USENIX Secu-
rity Symposium (USENIX Security 21), pages 1559–
1575. USENIX Association.

Subramanian, S., Thiran, P., Narendra, N. C., Mostefaoui,
G. K., and Maamar, Z. (2008). On the enhancement of
bpel engines for self-healing composite web services.
In 2008 International Symposium on Applications and
the Internet, pages 33–39.

Sue, J. and Salva, S. (2025). Dynamic mitigation
of restful service failures using llms, compan-
ion site. https://github.com/JarodSue/Fine-grained-
Restful-Service-Healing-using-LLMs.

Tian, K., Mitchell, E., Zhou, A., Sharma, A., Rafailov, R.,
Yao, H., Finn, C., and Manning, C. D. (2023). Just ask
for calibration: Strategies for eliciting calibrated con-
fidence scores from language models fine-tuned with
human feedback.

Tosi, D., Denaro, G., and Pezze, M. (2007). Shiws: A self-
healing integrator for web services. In 29th Interna-
tional Conference on Software Engineering (ICSE07
Companion), pages 55–56, Los Alamitos, CA, USA.
IEEE Computer Society.

Vizcarrondo, J., Aguilar, J., Exposito, E., and Subias, A.
(2012). Armiscom: Autonomic reflective middleware
for management service composition. In 2012 Global
Information Infrastructure and Networking Sympo-
sium (GIIS), pages 1–8.

Wang, Y. (2019). Towards service discovery and autonomic
version management in self-healing microservices ar-
chitecture. In Proceedings of the 13th European Con-
ference on Software Architecture - Volume 2, ECSA
’19, page 63–66, New York, NY, USA. Association
for Computing Machinery.

Xiong, M., Hu, Z., Lu, X., LI, Y., Fu, J., He, J., and Hooi, B.
(2024). Can LLMs express their uncertainty? an em-
pirical evaluation of confidence elicitation in LLMs.
In The Twelfth International Conference on Learning
Representations.

Yasunaga, M. and Liang, P. (2020). Graph-based, self-
supervised program repair from diagnostic feedback.
In Proceedings of the 37th International Conference
on Machine Learning, ICML’20. JMLR.org.


