
A methodology of security pattern classification and of
Attack-Defense Tree generation

Loukmen Regainia1, Sébastien Salva1
1LIMOS - UMR CNRS 6158, Auvergne University, France
{loukmen.regainia@udamail.fr, sebastien.salva@udamail.fr}

Keywords:
Security patterns, Classification, CAPEC attacks, CWE weaknesses, Attack-Defense Trees

Abstract:
Security at the design stage of the software life cycle can be performed by means of security
patterns, which are viable and reusable solutions to regular security problems. Their generic nature
and growing number make their choice difficult though, even for experts in system design. To guide
them through the appropriate choice of patterns, we present a methodology of security pattern
classification and the classification itself, which exposes relationships among attacks, weaknesses
and security patterns. Given an attack of the CAPEC (Common Attack Patterns Enumeration
and Classification) database , the classification expresses the security pattern combinations that
overcome the attack. The methodology, which generates the classification is composed of five steps,
which decompose patterns and attacks into sets of more precise sub-properties that are associated.
These steps provide the justifications of the classification and can be followed again to upgrade it.
From the classification, we also generate Attack-Defense Trees (ADTtrees), which depict an attack,
its sub-attacks and the related defenses in the form of security pattern combinations. Without loss
of generality, this classification has been established for Web applications and covers 215 attacks,
136 software weaknesses and 26 security patterns.

1 INTRODUCTION

Design patterns are recurrent solutions to soft-
ware design problems proposed and used by
skilled application or system designers. They are
more and more considered in the industry since
they may accelerate the design stage of the soft-
ware life cycle and help in the code readability
and maintenance. As the interest in software se-
curity continuously grows for a few years, spe-
cialised patterns were also proposed to improve
the security properties of models.

Security patterns are reusable (design) ele-
ments to design secure applications which will en-
able software architects and designers to produce
a system which meets their security requirements
and which is maintainable and extensible from the
smallest to the largest systems (Rodriguez, 2003).

Security patterns relates countermeasures
(stated in the solution) to threats and attacks in
a given context (Schumacher and Roedig, 2001).

Hence, these patterns are often presented with

UML (Unified Modelling Language) class and se-
quence diagrams.

Since 1997, the number of security patterns
is continuously growing and around 170 security
patterns are available at the moment (Slavin and
Niu, 2016). Security patterns are often presented
with a high level of abstraction to be reusable in
different kinds of context and are described with
textual documents. Because of this abstract na-
ture and because the documents are not struc-
tured in the same manner, the choice of the most
appropriate security pattern to mitigate a secu-
rity problem is sensitive and somehow perilous to
novice designers (Yskout et al., 2012; Alvi and
Zulkernine, 2011). As designers cannot be ex-
perts in all the fields of software engineering, they
clearly lack of guidance in the choice of patterns
during the design phase. As a consequence, se-
curity pattern taxonomies were proposed in the
literature to lead them towards good practices.

Several classifications were proposed to ar-
range security patterns in different kinds of cate-



gories, e.g., by security principles (Yskout et al.,
2006; Alvi and Zulkernine, 2012), by applica-
tion domains (Bunke et al., 2012) (software, net-
work, user, etc.)., by vulnerabilities (Anand et al.,
2014; Alvi and Zulkernine, 2011) or by attacks
(Wiesauer and Sametinger, 2009; Alvi and Zulk-
ernine, 2011). Despite the improvements in the
pattern choice brought by these classifications,
several issues still remain open. Among them,
we noticed that these classifications are all man-
ually devised by directly comparing the textual
descriptions of patterns with those of the other
security artifacts (vulnerabilities, attacks, etc.).
As these descriptions are generic and have differ-
ent levels of abstraction, the categorisation of a
pattern can be done only when there is an evi-
dent relation between it and a security property.
Furthermore, it is often delicate to upgrade these
classifications since no strict process to follow is
available. Finally, the navigability among a set
of patterns is rarely taken into consideration by
theses classifications (Alvi and Zulkernine, 2012).
This important quality criterion is defined as the
ability to guide the choice of designers among col-
laborative and related patterns. We believe that
this criterion must be examined and exposed in
security pattern classifications since we often ob-
served that several patterns may meet the same
security property.

From these observations, we propose to con-
tribute in the security pattern classification by
proposing a classification methodology, composed
of several successive steps, which lead to a pattern
classification based upon security attacks, since
the notion of attacks is usually well-known by de-
signers and developers. More precisely, the con-
tributions of this paper can be summarised by the
following points:

• we propose a classification, which is based
upon relationships among attacks, weak-
nesses, security principles and security pat-
terns, expressing the pattern combinations
that can be used to mitigate an attack. The
classification is composed of security proper-
ties found in well established security bases
i.e. the CAPEC (Mitre corporation, 2015a)
and CWE (Mitre corporation, 2015b) bases.
The classification is stored in a database avail-
able in (Regainia et al., 2016b). For read-
ability purposes and to illustrate the naviga-
bility among patterns, the classification is il-
lustrated by means of Attack-Defence Trees
(ADTrees (Kordy et al., 2012)), which illus-
trate for a given attack its (more concrete)

sub-attacks and the defenses, expressed here
with security patterns combined with logic op-
erations,

• our classification reveals the combinations of
patterns that should be chosen to block an at-
tack, and particularly it provides inter-pattern
relations. We indeed take advantage of the
studies about the inter-pattern relations (Ysk-
out et al., 2006; Fernandez et al., 2008) and in-
clude them in the classification. For instance,
these inter-pattern relations offer the advan-
tage to make apparent the conflicting or alter-
native patterns,

• we propose a methodology, built on five
steps, which infer relationships between at-
tacks, weaknesses, security principles and pat-
terns to generate the classification and At-
tack Defence Trees. The methodology takes
as inputs CAPEC attacks, builds a hierarchi-
cal tree of attacks showing the sub-attacks of a
given attack and links them with the targeted
weaknesses found in the CWE base. After-
wards, we reuse an earlier work, proposed in
(Regainia et al., 2016a), to build relationships
among weaknesses, security principles and se-
curity patterns. All these steps provide the
detailed justifications of the resulting classi-
fication. As most of the steps are automatic,
this methodology can be followed again to up-
date the classification.

We have limited our classification to the field
of Web applications, which means that our pat-
tern classification includes 215 CAPEC attacks,
136 CWE weaknesses, and 26 security patterns
covering varied security aspects.

The remainder of the paper is organised as fol-
lows: Section 2 presents some related work and
the motivations of the proposed approach. Sec-
tion 3 recalls some security notions used in the pa-
per. We introduce the methodology in Section 4
and illustrate its steps with the attack “CAPEC-
39: Manipulating Opaque Client-based Data To-
kens“. We give a short presentation of the clas-
sification and discuss about its advantages and
limitations in Section 5. We traditionally con-
clude and give some perspectives for future work
in Section 6.

2 RELATED WORK

Some taxonomies and classifications were pro-
posed in the literature to help designers in the



choice of the most appropriate security patterns
with regard to a given context.

Bunke et al. presented a systematic litera-
ture review of the papers dealing with security
patterns between 1997 and 2012. They finally
proposed a classification based upon the applica-
tion domains of patterns (software, network, user,
etc.)(Bunke et al., 2012), but the notions of at-
tacks or vulnerabilities are not mentioned. Vul-
nerabilities are taken into consideration for pat-
tern classification in (Anand et al., 2014; Alvi and
Zulkernine, 2011). This gives another point of
view helping designers in the choice of patterns
to fix software vulnerabilities. This vulnerability
based classification seems meaningful since vul-
nerabilities are the natural causes of attacks on
software systems, but the vulnerability concept
is not the most known by designers.

This is why other authors proposed security
pattern classifications, which refer to the attack
concept (Wiesauer and Sametinger, 2009; Tøndel
et al., 2010; Alvi and Zulkernine, 2011; Uzunov
and Fernandez, 2014). Wiesauer et al. ini-
tially presented in (Wiesauer and Sametinger,
2009) a short taxonomy of security design pat-
terns made from links found in the textual de-
scriptions of attacks and the purposes and in-
tents of security patterns. Tondel et al. pre-
sented in (Tøndel et al., 2010) the combination
of three formalisms of security modelling (misuse
cases, attack trees and security activity models)
in order to give a more complete security mod-
elling approach. In their methodology of build-
ing attack trees, they linked some activities of
attack trees with CAPEC attacks; they also con-
nected some activities of SAGs (security activ-
ity diagrams) with security patterns. The rela-
tionships among security activities and security
patterns are manually extracted from documen-
tation and are not explained. Shortly after, Alvi
et al. presented a natural classification scheme
for security patterns putting together CAPEC
attacks and security patterns for the implemen-
tation phase of the software life cycle (Alvi and
Zulkernine, 2011). They analysed some security
pattern templates available in the literature and
proposed a new template composed of the essen-
tial elements needed for designers. They manu-
ally augmented the CAPEC attack documenta-
tion with a section named “Relevant security pat-
terns“ composed of some patterns (Alvi and Zulk-
ernine, 2011). After inspecting the CAPEC base,
we observed that this section is seldom available,
which limits its use and interest. Finally, Uzunov

et al. proposed in (Uzunov and Fernandez, 2014)
a taxonomy of security threats and patterns spe-
cialised for distributed systems. They proposed
a library of threats and their relationships with
security patterns in order to reduce the expertise
level required for the design of secure applications
(Uzunov and Fernandez, 2014). They considered
that the use of the CAPEC base is cumbersome
and assumed that their threat patterns are ab-
stract enough to encompass security problems re-
lated to the specific context of distributed systems
(Uzunov and Fernandez, 2014).

Open issues and contributions

Alvi et al. outlined 24 of these classifications
in (Alvi and Zulkernine, 2012) and established
a comparative study to point out their positive
and negative aspects. They chose 29 classification
attributes (purpose, abstraction levels, life-cycle,
etc.) and compared the classifications against a
set of desirable quality criteria (navigability, com-
pleteness, usefulness, etc.). They observed that
several classifications were built in reference to a
unique classification attribute, which appears to
be insufficient. They indeed concluded that the
use of multiple attributes enables the pattern se-
lection in a faster and more accurate manner.

We also observed that the main issue of the
above works lies in the lack of a precise method-
ology to build the classification. All of them are
based upon the interpretation of different docu-
ments, which are converted to abstract relation-
ships. The first consequence is that understand-
ing the structure of categories and relationship is
sometimes tricky. In addition, it becomes very
difficult to extend these classifications.

Furthermore, we noticed that these classifica-
tions lack of navigability among patterns, which
is an important property defined as the ability
to guide the choice of designers among related
patterns (Alvi and Zulkernine, 2012). We be-
lieve that a security pattern classification must be
built from several security properties e.g., weak-
nesses, security principles, etc. to make the pat-
tern choice more precise. The inter-pattern rela-
tionships should also be given: for instance, the
conflicts among patterns, which may lead to in-
consistencies in an application, must be notice-
able.

In (Regainia et al., 2016a), we proposed a first
semi-automatic methodology of classification and
the classification itself, which exposes relation-
ships among 185 software weaknesses of the CWE



base (Mitre corporation, 2015b), security princi-
ples and 26 security patterns. It expresses which
patterns partially mitigate a given weakness with
respect to the security principles that have to be
addressed to fix the weakness. This methodol-
ogy is composed of some manual steps subdivid-
ing weaknesses and patterns into detailed security
properties. Then, these are automatically asso-
ciated together with respect to security princi-
ples. We organised the latter into a hierarchy to
precisely express the security objectives of these
properties.

In this paper, we continue the line of work
previously initiated and present a methodology
of classification to categorise the security pat-
terns that can be used to mitigate attack pat-
terns of the CAPEC base. Our classification
aims at proposing a precise and accurate map-
ping between security patterns and CAPEC at-
tacks: it is more accurate in the sense that we fo-
cus on the sub-properties of the security patterns
and attacks and establish relations among these
properties. In addition, the classification is com-
pleted with the inter-pattern relationships found
in (Yskout et al., 2006). This is why we claim
that the proposed classification is more precise.

But, the strong contribution of this paper
lies in the presentation of the methodology it-
self. This one is based on several automatic steps
that can be followed again to complete the clas-
sification. We also propose the generation of
Attack-Defense trees (ADTrees) putting CAPEC
attacks as attack nodes and security patterns as
defense nodes. These trees illustrate two points of
view: they show the choice of an attacker (choice
of attack, achieved with more concrete attacks)
and the available mitigations that a designer can
choose to devise its application. These are gen-
erated after the choice of an attack in the classi-
fication and are hence up-to-date w.r.t. the lat-
ter. Our ADTrees also express the relation among
patterns (dependence, conflicts, etc.).

3 BACKGROUND

The proposed classification methodology is
mainly based upon three security concepts: secu-
rity patterns, CAPEC attacks and CWE weak-
nesses. We recall basics on these concepts below.

3.1 Security patterns

A security pattern is a generic solution to a re-
current security problem, which is characterised
by a set of structural and behavioural properties
(Fernandez, 2007). It can be presented textu-
ally or with schema, e.g. UML diagrams. The
quality of a pattern and its classification can be
established with strong points, which correspond
to sub-properties of the pattern. These proper-
ties characterize the forces and the consequences
brought by the use of the pattern against a secu-
rity problem (Harb et al., 2009). Strong points
are manually extracted from the forces and con-
sequences of a security pattern.

In addition, a security pattern can be doc-
umented to express its relationships with other
patterns. Such annotations may noticeably help
combine patterns and not to devise unsound com-
posite patterns. Yskout et al. proposed the fol-
lowing annotations between two patterns p1 and
p2 (Yskout et al., 2006):

• “depend“means that the implementation of
p1 requires the implementation of p2 ,

• “benefit“ expresses that implementing p2

completes p1 with extra security functionali-
ties or decreases the development time. How-
ever, p1 can be correctly implemented despite
the absence of p2 ,

• “impair“ means that the functioning of p1 can
be obstructed by the implementation of p2 ,

• “alternative“ expresses that p2 is a different
pattern fulfilling the same functionality as p1 ,

• “conflict“ encodes the fact that if both p1 and
p2 are implemented together then it shall re-
sult in inconsistencies.

Figure 1: Application Firewall pattern

For example, Figure 1 portrays the UML class
diagram of the pattern “Application Firewall“



whose purpose is to filter requests and responses
to and from an application, based on access con-
trol policies. This security pattern structures an
application in such a way that the inputs filter-
ing logic is centralised and decoupled from the
functional logic of the application.

This pattern is related to two other security
patterns (Yskout et al., 2006): it is an alterna-
tive to the patterns “Input Guard“ and “Output
Guard“ since the application firewall is able to
filter input calls, and also output responses from
the application.

3.2 CWE weaknesses

The CWE base (Mitre corporation, 2015b) pro-
vides an open catalogue of software weaknesses,
which are software or design mistakes that can
lead to vulnerabilities. At the moment, this
database includes around 1000 software weak-
nesses but this number is still growing. A weak-
ness is documented with a panoply of informa-
tion, including a full description, its causes, detec-
tion methods, and relations with CAPEC attacks
or vulnerabilities. In addition, a set of potential
mitigations are often proposed.

3.3 Capec Attacks

The Common Attack Pattern Enumeration and
Classification (CAPEC) is an open database of-
fering a catalogue of attacks in a comprehensive
schema (Mitre corporation, 2015a). Attack pat-
terns are descriptions of common approaches that
attackers take to attack software. An attack pat-
tern, which we refer here as a document, con-
sists of several sections; among them, a section
describes the attack execution flow on vulnerable
systems, other sections give the prerequisites, the
severity, the impact, the required attacker skills,
etc.

In our context, three sections sound particu-
larly interesting for starting a classification: the
section “Related attack patterns“ shows some re-
lationships among attacks, the section “Related
Weaknesses“ lists the CWE weaknesses targeted
by the attack and the section “Relation security
principles“ catalogues some principles defined as
desirable properties targeted by the attacks.

The attacks of the section “Related attack
patterns“, are characterised by a type and a rela-
tion. The former expresses a level of abstraction
of the attacks. Different levels can be found, giv-
ing a hierarchical structure: We list them from

the more to less abstract as follows:

1. Category: at this level, an attack pattern ex-
presses the attack mechanisms/domains from
a high point of view (Injection, Target analy-
sis, Social engineering, etc.),

2. Meta pattern: as a refinement of Category,
meta patterns express the possible specialisa-
tions of attack mechanisms without giving de-
tails neither the steps of the attack, nor the
possible countermeasures,

3. Standard pattern: gathers more detailed
attacks, i.e. the attack steps, countermeasures
and the related CWE weaknesses of the at-
tacks,

4. Detailed attack pattern: this lowest level
of abstraction gathers the specialisations of
standard attacks in some specific contexts or
needs. For example, the “CAPEC-7 Blind
SQL Injection“ is a special case and therefore
a child of the standard attack “CAPEC-66:
SQL Injection“.

The section “Related attack patterns“ gives
binary relations between two attacks (a, b).
These relations can be:

• “a“ is member of/child of “b“: when the at-
tack “a“ is a refinement of the attack “b“,

• “a“ has member/parent of “b“: when the at-
tack “a“ is more abstract than the attack “b“,

• “a“ can precede/can follow “b“: when the at-
tack “a“ and “b“ are put in sequence.

4 CLASSIFICATION
METHODOLOGY

This methodology aims at inferring relationships
among security attacks and security patterns, ex-
pressing which set of patterns can mitigate a
given attack, completed with the relations among
the patterns. Without loss of generality, we ap-
plied the following methodology on Web applica-
tion attacks, but it can be applied on other kinds
of applications.

After having studied the CAPEC base, we ob-
served that attacks are described with a set of
CWE weaknesses, a set of security principles and
potential solutions and mitigations. These secu-
rity activities can also be found in our previous
classification (Regainia et al., 2016a), connecting
weaknesses with security patterns. However, we
noticed that the mitigations and security princi-
ples available in the attack documents often have



a high level of abstraction making their use dif-
ficult. Furthermore, these are seldom supplied
with attacks. As a consequence, to devise this
classification with precision, we chose to decom-
pose attacks into sub-properties, i.e. every at-
tack is associated to its targeted weaknesses. We
hence consider that a security pattern (or a set of
patterns) is a solution to protect an application
against a given attack if it is also the solution of
a weakness targeted by the attack.

Our methodology is divided into five auto-
matic steps, illustrated in Figure 2. In the first
one, we collect the attacks of the CAPEC base
and organise them into a hierarchy, from the more
to the less abstract ones. In Step 2, we collect
the relationships between every attack and CWE
weaknesses, reflecting which weakness is targeted
by an attack. In Step 3, we reuse our earlier
classification (Regainia et al., 2016a) to extract
for every CWE weakness, the security principles,
mitigations and security patterns which fix the
weakness. After the consolidation of the different
databases built in the previous steps, we obtain
a database DBf from which the classification is
automatically extracted in Step 4. Finally, for
a given attack, we depict with an ADTree the
attack associated with its sub-attacks and with
defenses in the form of security patterns, which
are themselves combined by means of logic oper-
ations.

Each step of our proposed methodology is
detailed below and illustrated with the attack
“CAPEC-39: Manipulating Opaque Client-based
Data Tokens“, which expresses a threat on ap-
plications using tokens, e.g. cookies, which hold
client data.

4.1 Step 1: CAPEC attack
extraction and organisation

In this step, we want to extract the attacks found
in the CAPEC base and organise them into a
single tree, which describes a hierarchy of at-
tacks from the most abstract to the most concrete
ones so that, we can have, for a given attack,
all its sub-attacks. To reach that goal, we rely
on the relationships among attack patterns found
in the CAPEC section “Related Attack Patterns“
(CAPEC base, Version 2.8). Figure 3 presents an
example for the attack CAPEC-39. The abstrac-
tion level of the attack is expressed in the column
“Type“ (C stands for Category, S for Standard
pattern), the links with other attacks by “Na-
ture“.

By scrutinising all the CAPEC documents, it
becomes possible to develop a hierarchical tree
whose root node is unlabelled and connected to
the attacks of the type “Category“. These nodes
may also be parent of attacks that belong to the
type “Meta Attack pattern“ and so on. The
leaves are the most concrete attacks of the type
“Detailed attack pattern“.

We implemented this step with the tool Tal-
end, 1 an ELT (Extraction, Load, Transform) tool
which allows an automated processing of data in-
dependently from the type of its source or des-
tination, by scanning the CAPEC attacks from
the more abstract (those of the type “Category“)
to the most concrete ones (in the type “Detailed
Attack Patterns“) and we stored the resulting hi-
erarchical tree into a database DB1 . This tree
is currently composed of 215 attacks. The tree is
composed of five levels w.r.t. the current CAPEC
structure. If new attacks are added, our imple-
mentation can automatically take them into ac-
count to generate another tree.

4.2 Step 2: CWE weakness
extraction from attacks

We automatically extract for every CAPEC at-
tack of the database DB1 the CWE weaknesses
targeted by the attack. These can be found in
the section “Related Weaknesses“ of the CAPEC
documents. Weaknesses are grouped into two cat-
egories, “Targeted“ and “Secondary“ ranking the
impact degree of the attack on a weakness. We
only focused on the type “Targeted“ even though
it could also be relevant to consider both types.

The outcome of this systematic extraction is
stored in a database DB2 , which encodes a map-
ping from the 215 attacks to 136 CWE weak-
nesses. Unsurprisingly, we observed that the at-
tacks having a high level of abstraction (those of
Category and Meta Pattern) are not related to
any CWE weakness.

The attack CAPEC-39, taken as example, tar-
gets six CWE weaknesses, which illustrates here
that the attack is indeed segmented into secu-
rity sub-properties. Among them, we have “Re-
liance on Cookies without Validation and In-
tegrity Checking“ or “Improper Authorization“,
which reflect more precise sub-properties than the
attack itself. These can be mitigated by several
security patterns, which are revealed by means of
the next step.

1https://talend.com/



Figure 2: Classification methodology

Figure 3: Hierarchical organisation of attacks for the
attack CAPEC 39

4.3 Step 3: connection between
CWE weaknesses and security
patterns

We proposed in (Regainia et al., 2016a) a classi-
fication, which exposes relationships among soft-
ware weaknesses, security principles and security
patterns. More precisely, for a given weakness,
it provides its mitigations, the security principles
that have to be followed to fix the weakness, the
strong points (sub-properties) of security patterns
that meet these principles and finally the security
patterns allowing to correct the weakness. From
this classification, we automatically extract, for
every weakness found in DB2 the following infor-
mation:

• the complete hierarchy of security principles
Sp related to a weakness, i.e. the arrange-
ments of principles from the most abstract
ones to the most concrete principles,

• for every principle sp in Sp, the set Psp of
security patterns associated with sp, the set
P2sp of patterns not in Psp that have rela-
tions with any pattern of Psp , and the nature
of these relations defined for couples of pat-
terns by the annotations in {depend, benefit,
impair, alternative, conflict}.

This automatic step produces the database
DB3 .

4.4 Step 4: data consolidation and
classification extraction

The databases obtained in the previous steps are
integrated with the tool Talend into a single one,
denoted DBf , which is available on-line in (Re-
gainia et al., 2016b). With DB1 , we have a hier-
archical representation of attacks, which are even-
tually related to a set of CWE weaknesses given
in DB2 . DB3 encodes the relations among these
weaknesses, the related security principles and se-
curity patterns. Hence, DBf includes all the re-
quired information to expose several kinds of rela-
tions and classifications. For example, for a given
attack, we can extract a hierarchical tree show-
ing its sub-attacks. From this kind of extraction,
attack trees (Schneier, 1999), could be generated.
These show how a generic attack can be realised
by more concrete attacks. Furthermore, the set
of weaknesses targeted by an attack as well as the
security principles that have to be followed to fix
the weaknesses can also be selected from DBf .

But, first and foremost, security patterns can
be classified against attacks. We have chosen to
catalogue the combinations of patterns that aim
to mitigate a given attack, i.e. all the patterns
that offer a mitigation for any weakness exploited
by the attack. This step also automatically col-
lects these combinations of patterns for every at-
tack found in DBf . More precisely, for a given
attack, we extract:

• the information about the attack (name, iden-
tifier, description, etc.),

• the set of patterns P that are related to all the
weaknesses targeted by the attack and the set
of patterns P2 not in P that have relations
with any pattern of P , and the nature of these
relations.

Figure 4 depicts an extraction example for the
attack CAPEC-39. The tabular gives the attack
name, the security pattern allowing to block the
attack (column 3), another alternative pattern



Figure 4: Data extraction for the attack CAPEC-39

(columns 4,5) and its sub-attack “CAPEC-31 Ac-
cessing/Intercepting/Modifying HTTP Cookies“.
The last columns give the security patterns allow-
ing to overcome the attack CAPEC-31 and their
relations with other patterns.

4.5 Step 5: Attack-Defense Tree
generation

We propose to greatly improve the readability of
the classification, given in tabular form, by gen-
erating ADTrees, organising the attacks and the
related security patterns. With ADTrees, attacks
are illustrated with red nodes, which can be in-
terconnected with the logic operations and , /or .
An attack node can be mitigated with one defense
node (in green squares) composed of sub defenses
or one attack themselves combined the operations
and/or .

In our context, an ADTree shall be rooted by
an attack chosen by a designer. This root node
can be connected to other attack nodes, express-
ing sub-attacks, which can be connected to de-
fense nodes, representing security patterns. Fig-
ure 5(a) illustrates a general example of ADTree.
The “OR“ operation is depicted with a group of
classical edges, whereas “AND“ is depicted with
a group of classical edges connected with an arc.

ADTrees are generated by the following steps:

1. every CAPEC attack found in DBf has its
own ADTree whose root node is labelled by
its identifier. This root node is linked to other
attack nodes if the attack has sub-attacks and
so on until there is no more sub-attack. We
obtain a sub-tree of the original hierarchical
tree extracted in Step 1. All the attack nodes
are here combined with the “OR“ operation
meaning that an attack can be accomplished
if one of its sub-attacks is successfully done,

2. for every attack node A, we collect the set P
of security patterns that mitigate the attack

(a) Generic example of
ADTree

(b) Conflicting pattern
representation with
ADTree

Figure 5

as well as the set P2 of security patterns hav-
ing relations with some patterns of P . Given
a couple of patterns (p1 , p2 ) ∈ P ∪ P2 , we il-
lustrate these relations with new nodes and
logic operations. If we have:

• (p1 depend p2 ) or (p1 benefit p2 ), we build
three defense nodes, one parent node la-
belled by p1 AND p2 and two nodes la-
belled by p1 , p2 combined with this parent
defense node by the AND operation,

• (p1 alternative p2 ), we build three nodes,
one parent node labelled by p1 OR p2 and
tw nodes labelled by p1 , p2 combined with
the parent defense node by the OR opera-
tion,

• (p1 impair p2 ) or (p1 conflict p2 ), we want
to use (p1 XOR p2 ) since the presence of
p2 decreases the efficiency or conflicts with
p1 . Unfortunately, the XOR operation is
not available with ADTrees. Therefore, we
replace the operator by the classical formula
(A xor B) −→ ((A or B) and not (A and B)).
The NOT operation is here replaced by an



attack node meaning that two conflicting
security patterns used together constitute
a kind of attack. The generic sub-tree is
depicted in Figure 5(b),

• p1 having no relation with any pattern p2

in P ∪ P2 , we add the parent defense node
labelled with p1 .

We may denote that “Depend“ and “Benifit“
relationships are presented two of them with
the same “and“and this is explained by the
fact that ADtrees do not allow to make con-
trast between these two types of relation-
ships. The parent defense nodes, resulting
from the above steps, are combined to a de-
fense node labelled by “Pattern Composition“
with AND. This last defense node is linked to
the attack node A.

Figure 6: ADTree of the attack CAPEC-39

If we take back our example of attack, we
obtain the ADTree of Figure 6, which shows
that the attack CAPEC-39 has 1 sub-attack
named “CAPEC-31 Accessing/Intercepting/Mod-
ifying HTTP Cookies“. Because of lack of room,
we presented in this example the security pat-
terns directly related to the attack. An ADtree
generated by our tool (Regainia, 2016) illustrates
the patterns of the set P but also the set P2 of
patterns having a relation with those of P . Both
of the two attacks target 17 weaknesses (6 for the
CAPEC-39 and 11 for the CAPEC-31, which is
more detailed). The attack and all its concrete
forms can be mitigated by several combinations
over 15 security patterns. For instance, the at-
tack CAPEC-39 can be mitigated by two pattern
combinations because the pattern “Application
Firewall“ can be replaced with “Input Guard“.
The number of security patterns related to both
attacks CAPEC-39 and CAPEC-31 is explained
here by the diversity of the targeted weaknesses.
We assume for the classification generation that
all of them have to be mitigated. As these ones
cover different security issues here, e.g., input val-

idation problems, privilege management, encryp-
tion problems, external control of the application
state, etc., several patterns are required to fix the
weaknesses and hence block the attacks.

This example illustrates that a designer can
follow the concrete materialisations of an attack
in an ADTree. He/she can choose the most ap-
propriate attack with respect to the context of
the application being designed. The ADTree pro-
vides the different security pattern combinations
that have to be used to mitigate this attack. In
the worst case, an attack node is not linked to a
defense node, which means that either the clas-
sification is incomplete or the attack is relatively
new and cannot be yet overcame by security pat-
terns.

5 CLASSIFICATION
DISCUSSION

Our current classification is an exemplary taxon-
omy built on a non exhaustive set of 215 CAPEC
attacks, 26 security patterns and 136 CWE weak-
nesses related to Web applications. The classifi-
cation and its complete list of elements is avail-
able in (Regainia et al., 2016b). Presented in
tabular form, as illustrated in Figure 4, it en-
ables multi-attribute based decisions insofar as
patterns can be classified according to security
principles, weaknesses and attacks.

The proposed classification complies with sev-
eral quality criteria defined in (Alvi and Zulker-
nine, 2012). Among them, we have noted Navi-
gability, Unambiguity and the Usefulness of the
classification:

• Navigability, which is defined as the ability
to direct designers among related patterns, is
satisfied since we illustrate the classification
with ADTrees. They indeed expose the hier-
archical refinements of attacks and a combi-
nation of defenses that have to be applied to
protect the application to design. The links
between nodes exhibit the relationships con-
sidered in each step of the methodology,

• Unambiguity is taken into account since the
classification is clearly defined by means of the
methodology steps, which provide relations
among attacks, weaknesses, security princi-
ples and security patterns. All these steps
and those given in (Regainia et al., 2016a)
justify the soundness of the classification. In
addition, the classification provides the rela-



tionships among patterns, which help choose
a correct combination of patterns, i.e. a con-
flicting combination can be avoided, the re-
quired patterns of another pattern are given,

• we believe the classification can be used in
practice since it is based upon the CAPEC
and CWE bases and of several security pat-
terns presented in (Fernandez, 2007; Slavin
and Niu, 2016). In addition, the ADTree for-
malism is one of the most prominent secu-
rity formalism for analysing threats, it is sup-
ported by tools (Kordy et al., 2013) for edit-
ing, analysing and transforming them. Our
ADTree generator actually generates XML
files taken as inputs by these tools.

Figure 7: Number of fixed attacks per pattern

Furthermore, a variety of statistical informa-
tion can be automatically extracted from our clas-
sification, e.g., the ratio of weaknesses to attacks,
of patterns to attacks, etc. For instance, Figure
7 also shows the number of attacks at least par-
tially mitigated per pattern. Keeping in mind,
that the set of patterns taken into consideration
is not exhaustive, we can observe that 2 pat-
terns seem to emerge for partly fixing a large
part of the 210 attacks covered by the classifica-
tion: “Input Guard“ and “Application firewall“,
can overcome 113 and 109 attacks respectively.
This kind of information shows that, from our
classification, some useful outcomes can be ex-
tracted to guide designers towards security anal-
ysis and good practices. For instance, with the
above chart and ADTrees, a designer can deduce
that the patterns “Input Guard“ and “Applica-
tion firewall“ are alternative security patterns and
that one of them should be used in software design
since they both partially block numerous attacks.

Our classification and methodology present
some limitations, which could lead to some re-

search future work. We did not envisaged the no-
tion of attack combination. Such a combination
could be seen as several attacks or as one partic-
ular attack. In the first case, an attack combi-
nation can be represented in the CAPEC base as
a sequence, which is given in a specific CAPEC
section called “Attack execution Flow“. Our clas-
sification does not yet store and use the notion of
ordered events. In the second case, if the attack
has its own identification in the CAPEC base, it
can be used with our methodology.

The classification is not exhaustive: it includes
215 attacks out of 569 (for any kind of applica-
tion), 210 CWE weaknesses out of around 1000
and 26 security patterns out of around 176. It
can be completed with new attacks automati-
cally. But it worth mentioning that the addition
of new security patterns or weaknesses requires
some manual steps. Our previous classification,
proposed in (Regainia et al., 2016a), associates
weaknesses and security patterns from documen-
tation: if a new security pattern has to be added,
two steps have to be manually done (mapping
between the pattern and its strong points, and
mapping between strong points and security prin-
ciples). In the same way, if a new CWE weak-
ness is added, two other steps must be manually
completed (mitigation extraction, mapping be-
tween mitigations and security principles). The
re-generation of the whole classification, which
includes new attacks, weaknesses or security pat-
terns is automatically performed. It could rel-
evant to investigate whether some text mining
techniques would help partially automate these
manual steps without adding ambiguity.

6 CONCLUSION

In this paper, we have presented a classification
methodology putting together CAPEC attacks,
CWE weaknesses and security patterns to guide
designers in their pattern choices. Given an at-
tack, the classification provides a hierarchical tree
of its sub-attacks (up to the most concrete ones),
the targeted weaknesses, the security principles
that have to be addressed to fix the weaknesses
and the combinations of patterns that overcome
the attacks. The classification is available in (Re-
gainia et al., 2016b). ADTrees are automatically
generated from the classification to ease its read-
ability. For each attack of the classification, they
portray its sub-attacks and combinations of secu-
rity patterns. These ADTrees can be taken as a



first step of other security processes, e.g., threat
modelling.

Our most immediate line of future work is re-
lated to a specific section of the CAPEC base,
called “Attack execution Flow“, listing the se-
quences of attacks (not the sets) that have to
be followed to execute a meta-attack. We in-
tend to take this section into consideration to
extend the classification and the generation of
extended ADTrees so that the latter explicitly
show these attack sequences. The resulting trees
(called SAND trees) shall increase the expressive-
ness of the ADTrees by adding the notion of or-
dered events. Then, from these SAND trees and
the information included in the classification, we
will focus on the generation of (generic) test cases
to check whether an implementation is protected
against the attacks or if security patterns are cor-
rectly contextualised and implemented w.r.t. the
application context.

REFERENCES

Alvi, A. K. and Zulkernine, M. (2011). A Natu-
ral Classification Scheme for Software Security
Patterns. 2011 IEEE Ninth International Con-
ference on Dependable, Autonomic and Secure
Computing, pages 113–120.

Alvi, Aleem, K. and Zulkernine, M. (2012). A
Comparative Study of Software Security Pattern
Classifications. 2012 Seventh International Con-
ference on Availability, Reliability and Security,
pages 582–589.

Anand, P., Ryoo, J., and Kazman, R. (2014).
Vulnerability-Based Security Pattern Catego-
rization in Search of Missing Patterns. 2014
Ninth International Conference on Availability,
Reliability and Security, pages 476–483.

Bunke, M., Koschke, R., and Sohr, K. (2012). Orga-
nizing security patterns related to security and
pattern recognition requirements. International
Journal on Advances in Security, 5.

Fernandez, E. B. (2007). Security patterns and secure
systems design.

Fernandez, E. B., Washizaki, H., Yoshioka, N., Kubo,
A., and Fukazawa, Y. (2008). Classifying secu-
rity patterns. In Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinfor-
matics), volume 4976 LNCS, pages 342–347.

Harb, D., Bouhours, C., and Leblanc, H. (2009). Us-
ing an Ontology to Suggest Software Design Pat-
terns Integration, pages 318–331. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Kordy, B., Kordy, P., Mauw, S., and Schweitzer, P.
(2013). ADTool: Security Analysis with Attack–

Defense Trees, pages 173–176. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Kordy, B., Mauw, S., Radomirović, S., and
Schweitzer, P. (2012). Attack–defense trees.
Journal of Logic and Computation, page exs029.

Mitre corporation (2015a). Common attack
pattern enumeration and classification,
url:https://capec.mitre.org/.

Mitre corporation (2015b). Common weakness enu-
meration, url:https://cwe.mitre.org/.

Regainia, L. (2016). Attack defence trees generator,
url:http://regainia.com/adtreegen.zip.

Regainia, L., Salva, S., and Bouhours, C. (2016a).
A classification methodology for security pat-
terns to help fix software weaknesses. In Proceed-
ings of the 13th ACS/IEEE International Con-
ference on Computer Systems and Applications
AICCSA.

Regainia, L., Salva, S., and Bouhours, C.
(2016b). Security pattern classification url:
http://regainia.com/research/database.html.

Rodriguez, E. (2003). Security Design Patterns, vol-
ume 49.

Schneier, B. (1999). Attack trees: Modeling security
threats. Dr. Dobb’s journal.

Schumacher, M. and Roedig, U. (2001). Security En-
gineering with Patterns. Engineering, 2754:1–
208.

Slavin, R. and Niu, J. (2016). Security patterns repos-
itory, url: http://sefm.cs.utsa.edu/repository/.

Tøndel, I. A., Jensen, J., and Røstad, L. (2010). Com-
bining misuse cases with attack trees and secu-
rity activity models. In Availability, Reliabil-
ity, and Security, 2010. ARES’10 International
Conference on, pages 438–445. IEEE.

Uzunov, A. V. and Fernandez, E. B. (2014). An ex-
tensible pattern-based library and taxonomy of
security threats for distributed systems. Com-
puter Standards & Interfaces, 36(4):734–747.

Wiesauer, A. and Sametinger, J. (2009). A secu-
rity design pattern taxonomy based on attack
patterns. In International Joint Conference on
e-Business and Telecommunications, pages 387–
394.

Yskout, K., Heyman, T., Scandariato, R., and
Joosen, W. (2006). A system of security pat-
terns.

Yskout, K., Scandariato, R., and Joosen, W. (2012).
Does organizing security patterns focus architec-
tural choices? Proceedings - International Con-
ference on Software Engineering, pages 617–627.


