
A Systematic Approach to Assist Designers in Security Pattern Integration

Loukmen Regainia∗, Cédric Bouhours† and Sébastien Salva‡
LIMOS - UMR CNRS 6158
Auvergne University, France

Email: ∗ loukmen.regainia@udamail.fr, † cedric.bouhours@udamail.fr, ‡ sebastien.salva@udamail.fr

Abstract—The last decade has witnessed significant contribu-
tions in software engineering to design more secure systems
and applications. Software designers can now leverage specific
patterns, called security patterns as reusable solutions to model
more secure applications. But, despite the advantages offered by
security patterns, these are rarely used in practice, because choos-
ing and employing them for devising less vulnerable applications,
is still a difficult and error-prone task. In this work, we propose
an original approach to guide designers for checking whether
a set of security patterns is correctly integrated into models
and if vulnerabilities are yet exposed despite their use. This
approach relies upon the analysis of the structural and behavioral
properties of security patterns and on formal methods to check
if these properties hold in the application model completed with
patterns. We also provide a metric computation to assess the
integration quality of patterns. Afterwards, we check whether the
vulnerabilities, which should be removed by the use of patterns,
are not exposed in the model. We illustrate this approach on an
example of Web application, the Moodle education platform.

Keywords—Model; UML; Security Patterns; Verification

I. INTRODUCTION

Despite the indisputable improvements recently made in
modeling, coding and testing, software engineering is still
regarded as a complex field. One reason for this complexity is
well-known: software engineering must not only address the
functional aspects of an application, but also have to cover
other aspects such as security. Indeed, providing secure models
and code is recognized as an important factor of quality, but
on the other hand, devising them is a difficult task.

To solve this issue, a large set of papers and tools have been
proposed to help the integration of security in the software
engineering steps [1][2]. Among them, the pattern community
proposed the notion of security patterns as reusable solutions
to security issues in the modeling stage [3]. Specifically, a
pattern represents a structure, a behavior, or some intents that
have to be applied in models to meet security properties or to
prevent threats (sometimes partially). At present, the security
pattern base holds hundreds of available patterns, more and
less detailed and compatible with each other. Many of them
are indeed described with text only, their contextualization
(a.k.a. instantiation) being left to designers. Furthermore, the
impact of their composition is often unknown. Hence, the
choice of the relevant patterns and their inclusion in models
is yet onerous and error-prone, even for experts. This paper
focuses on these difficulties and proposes an approach for
helping designers to integrate the appropriate patterns and to
design more secure applications. This approach corresponds to
a sequential process, whose main benefits are twofold: measur-
ing the integration quality of security patterns in models, and

checking if these models are yet vulnerable to attacks despite
the use of patterns.

More precisely, the designer initially chooses a list of
vulnerabilities that must not be found in the application
model and a set of security patterns that should correct these
vulnerabilities or prevent attackers from exploiting them. The
proposed formal method-based process firstly aims at helping
the designer to integrate each pattern in the application model:
we check whether the structural and behavioral properties
of the pattern hold in the model by means of a method
based on OCL (Object Constraint Language) queries and a
verification technique. The former tries to locate the pattern
shape in the model and returns a coefficient of disclosure.
The verification technique checks whether some behavioral
properties of the security pattern, expressed with LTL (Linear
Temporal Logic) formulas, hold in the model. Then, quality
metrics are computed to evaluate the integration quality of
each pattern and of all the patterns in the model. If these
metrics are low, the model should be revisited. In a second
stage, the process also checks whether each vulnerability can
be detected in the model by means of a verification technique.
Actually, despite the use of security patterns, a vulnerability
may be still present on account of several reasons, e.g., the
use of an incomplete or wrong list of security patterns, or the
composition of several patterns in the model that may induce a
vulnerability. Vulnerabilities are formally expressed with LTL
properties that are given to a model-checker. If any property
is satisfied in the model, the designer is then warned that the
latter still includes vulnerabilities and requires modifications.

We illustrate the benefits of this approach by applying it
on a case study, based on Moodle education platform and
on the vulnerability Code injection, which is a well known
flaw allowing to inject code that is then interpreted by the
application [4].

The paper is structured as follows: we briefly present the
background and motivations in Section II. The approach is
described in Section III. Its illustration on a Web application
example is given in Section IV. Finally, we draw conclusions
and perspectives for future work in Section V.

II. BACKGROUND

As the number of available security patterns is continuously
growing, choosing the appropriate ones, to design more secure
applications, is more and more tedious and error-prone. To
help designers in this task, several papers proposed classifi-
cations and taxonomies to organize security patterns. Based
on the STRIDE threat management methodology, Munawar et

al. presented an organization of 97 security patterns on three
architectural layers (Core, Exterior, Perimeter) [5]. In addition,
Alvi et al. proposed in [6] a natural scheme for classifying
security patterns. They associated their classification to the
phases of software life cycle, i.e., security objectives in the
requirement phase, security properties in the design phase, and
attack patterns in the implementation phase.

The above papers provide classifications to help designers
in the choices of security patterns. But, they do not help check
whether patterns are correctly included in models. They also
do not ensure that models are indeed more secure.

For the first point, Konrad et al. introduced in [7] a security
pattern template to ease pattern integration. They exposed the
difficulties related to the lack of comprehensive and formal
description and proposed a template composed of Unified
Modeling Language (UML) diagrams and LTL properties.
Actually, we assume in our approach, that security patterns
are indeed described with this kind of template.

In the last decade, several papers also proposed methods
to check if UML models meet security requirements, the
latter being usually expressed with LTL properties [8]-[9].
For instance, Tanvir, et al. proposed an approach to verify
the impact of using Role Based Access Control (RBAC) in a
Computer Supported Cooperative Work (CSCW) [8]. Thereby,
they showed how to formally check if an application meets
security requirements.

Our approach proposes to consider both above aspects,
i.e., pattern integration assistance and verification of security
properties on UML models, inside a whole process. We
check pattern integration in UML models by considering their
structural and behavioral properties. We also define and assess
their integration quality with metrics. If these are low, the
designer is warned that the UML diagrams of the application
should be revisited. Afterwards, we also check, by means
of model-checking, that the chosen security patterns actually
remove undesired vulnerabilities from the UML models. This
step aims to attest that the chosen patterns are effective against
undesired vulnerabilities, or to warn designers to chose other
patterns.

III. MODEL SECURING WITH PATTERN INTEGRATION
AIDED BY FORMAL TECHNIQUES

In this section, we present our approach to assist designers
to integrate security patterns in models for devising more
secure applications, as illustrated in Figure 1. In this paper, we
assume having a UML model M of the application, a vulner-
ability set V , which must not be exploited by attackers in the
application, and a security pattern set Sp = {Sp1, ..., Spk},
which should prevent the vulnerabilities of V = {V1, ..., Vl}
from being exploited. We also assume having a base of generic
formal properties PVi and PSpj describing Vi and Spj . The
approach illustrated in Figure 2 aims at checking whether each
pattern Spj is correctly integrated on M and if M still has
the vulnerability Vi despite the use of Sp.

As the patterns are described in a generic, abstract form,
the first step for the designer is to instantiate every pattern

Designer

Model Vulnerability Security Patternwants to protect his against a in using

Figure. 1. Context of the proposed approach

to the context of his model. Instantiating a pattern consists in
adapting each constituting element to the specific context of a
model. It is a complex step, which requires expertise in order
to not damage the pattern. Hence, this step has to be verified:

1) Given a pattern Spj , we check if the structural and
behavioral properties of Spj hold in the model M . For
the structural properties, we use the approach and tool
we developed in [10]. Given the pattern Spj and its
generic description, the tool automatically derives a set
of OCL queries encoding the structure of the pattern.
Then, we call an executor of procedural OCL queries
[11]. After the execution, all micro-architectures, subsets
of the model, looking like the pattern are listed and
a coefficient of disclosure CSpj

, ranging between 0
and 1, is given. The one with the highest coefficient
is taken into account to locate where the pattern has
been integrated in the model. If the designer does not
agree, two cases are possible. On one hand, the pattern
instantiation is incorrect and should be modified. On the
other hand, the context is specific enough to justify a
change in the structure. In any case, if the designer does
not consider that the pattern is structurally integrated,
the next step cannot be reached.

2) This step consists in checking whether some behavioral
properties of Spj hold in M . We provide, with the
pattern, a set of generic behavioral properties PSpj

,
described in LTL. These rules describe the sequential
message exchanges between the methods and the tem-
poral states of the objects. These properties are generic
and should be manually instantiated by the designer.
Once instantiated, M is automatically translated into a
Promela (PROtocol MEta LAnguage) specification with
the HugoRT tool [12] and we check if this specification
satisfies the previous LTL formulas with the model-
checker Spin [13]. This indicates whether the pattern
integration into the model respects behavior imposed by
the pattern.

3) Quality metrics are now computed to measure the in-
tegration quality of the pattern Spj of Sp into the
model M with regard to the coefficient of disclosure
CSpj and the LTL property set PSpj provided with Spj .
Intuitively, the closer CSpj

is to 1 and the larger the set
PSpj

, the more accurate the estimation of the pattern
integration is. We define the mapping m : PSp → {0, 1}
by m(p) = 1 iff M |= p, and m(p) = 0 otherwise. The
estimation range of a pattern Spj integration is between
0 and n = Card(PSpj) + 1 and this first integration
metric is defined as:

0 ≤ m(Spj) =
∑

pi∈PSpj

m(pi) + CSpj
≤ n

Afterwards, we compute the overall integration quality
of the security pattern set Sp = {Sp1, ..., Spk} using an
utility function U . With this aim, we take Simple Ad-
ditive Weighting (SAW) [14] which allows to adjust the
integration estimations of each pattern having different
ranges by a weight representing user preferences and
priorities. In our case U is defined as:

U = 0 ≤
k∑

i=1

m(Spi)/(Card(PSpi
) + 1).wi ≤ 1

with wi ∈ R+
0 and

∑k
i=1 wi = 1, wi being the weight

of Spi to represent designer preferences. The closer U
is to 1, the greater the estimation that security patterns
Sp1, ..., Spk are correctly integrated into M . A good
integration quality U can be reached with few properties.
With a small number of properties, the pattern is not
well documented / defined. In contrast, if the pattern
integration is defined with large property sets and U is
close to 0, this means that a mistake has been made
during the instantiation or that the context is specific
enough to justify a change in the structure of the pattern.

4) The last step of our approach starts when the designer
considers that the pattern is integrated with a sufficient
quality. For the vulnerability Vi ∈ V , we have a set of
generic LTL properties PVi

describing Vi, i.e., undesired
behavior that should never happens. Once more, the
designer has to instantiate these properties in accordance
with the model M . The Spin tool is now called to check
that the Promela specification of M will never satisfy
the undesired behavior expressed by PVi . If the presence
of a vulnerability is detected, a counter-example is
returned by Spin to detail the origin of the violation
of the property. Hence, guided by the counter-example,
the designer has to ensure that the chosen patterns are
effective against the vulnerability or that the combination
of patterns does not induce flaws.

IV. CASE STUDY

In this section, we describe, with more details, the steps of
the proposed approach through a Web application example,
the Moodle education platform [15], and precisely on its
exam (quiz) functionality. The UML class diagram of this
functionality is given in Figure 3 and its sequence diagram
in Figure 4.

A user is identified with an id and accesses the ser-
vice with a request of the form “GET /moodle/quiz/at-
tempt.php?id=123”. The identifier is used by the quizEngine
as a parameter to get information about the user profile so
that he/she has only one opportunity to pass an exam. An
SQL database is used to get the user profile information and
creates an exam session with regard to the requested id.

Designer intantiates the security pattern in his model

[Model M]

[Security Pattern SPj]

[Model M WithPattern]

[Generated OCL queries]

[LTL properties]

Designer uses Neptune to check if the pattern is structurally detectable

[SubSet of the Model with disclosure coefficients]

Designer generates PROMELA specification with HugoRT

[NO]

[YES]

[PROMELA specification of M]

Is cofficient of disclosure acceptable ?

Designer uses SPIN to check if LTL properties held

Designer uses SPIN to check if LTL properties held

Does model respect Pattern properties ?

[NO]

[YES]

[Vulnerability Vi]

[LTL properties]

Is model protected against vulnerability ?

[YES] [NO] [DO NOT KNOW]

Figure. 2. An approach to assist designers to devise more secure applications

Figure. 3. Moodle Quiz engine class diagram

It is well-known that this kind of Web applications is usually
exposed to threats related to input ports ’passing illegal data’,
and especially injection attacks [4]. For instance, an attacker
may exploit a vulnerability to pass an exam many times by
spoofing or forging identities stored in database through SQL
injection attacks. We have chosen to take as example here a
familiar vulnerability called CWE-89: Improper Neutralization
of Special Elements used in an SQL Command (’SQL Injec-
tion’), which is the main reason of SQL Injection attacks and
one of the most recurrent vulnerabilities [16].

In order to secure the Web application, we have chosen to

 : attempt.php : quizEngine

 : question_behaviour

 : qustion_attempt : question : interaction : browser

1 : GET /moodle/quiz/attempt.php?id=123

2 : load_usage_id(123)
3

<<create>>

4
5 : render()

6 : get_renderer()

78 : render()

9
10

11
12

Figure. 4. Moodle Quiz engine sequence diagram

use the Intercepting Validator security pattern whose UML
class diagram is illustrated in Figure 5. This pattern is indeed
presented as a solution to prevent attackers from exploiting the
above vulnerability [17]. The intent of this security pattern is to
validate every user input request before using it as a parameter
by a dynamically loadable validation logic [17].

According to the Intercepting Validator security pattern
documentation, its behavior is highlighted most notably by
the following properties:

1) a validation logic for every data-type used in the appli-
cation,

2) a single mechanism to validate all data-types,
3) the separation of the validation logic from the presenta-

tion logic,

Figure. 5. Intercepting Validator class diagramm

A. Security pattern integration

We instantiated the Intercepting Validator security pattern
on the model of the Moodle QuizEngine application by adapt-
ing its structural and behavioral properties in concordance
with the diagrams in Figures 3 and 4. The pattern classes
are firstly added between attempt.php and quizEngine in the

QuizEngine class diagram to prevent from SQL Injections
through quizEngine, which has access to the database. The
resulting class diagram is depicted in Figure 6. The sequence
diagram of the QuizEngine application is also extended to
include the security pattern behavior. The resulting diagram,
given in Figure 7, shows that the messages exchanged between
attempt.php and quizEngine are now validated.

Figure. 6. Instantiation of the security pattern: class diagramm

B. Security pattern instantiation assessment

In this step, we check if the structural and behavioral
properties of the security pattern hold in the application model
(steps 1, 2 of the approach).

Firstly, we use the method we developed in [10] to extract
the pattern structural properties, expressed with OCL queries.
Then, we call the tool Neptune [11] to return a list of pairs
(v, coef) with v a vertex of the model that is also a vertex of
the pattern and coef a coefficient of disclosure. With the class
diagram of Figure 6, the tool provides the class ”SecBase”

IsValidalt

[not_valid]

[valid]

Attempt : attempt.phpStudent : browser qe : quizEngine QuBa : question_behaviour qa : qustion_attemptsecBase : secBase inVal : inputValidator

sqlVal : sqlValidator

que : questioninte : interaction

1

<<create>>

2
3 : GET /moodle/quiz/attempt.php?id=123()

4 : load_usage('123')
5 : validate('123')

6 : validate_SQL()

7

8

9 : generic_err_msg

10 : err_page

11 : load_usage(123) 12 : create_ba(id=123)

13 : render() 14 : get_renderer()

1516 : render()

17

18

19
2021

Figure. 7. Instantiation of the security pattern: sequence diagramm

and a coefficient equal to 1. This means that the pattern
structure has been completely found only one time. With more
complex diagrams, the designer may check if the tool has
indeed recognized the pattern or has revealed a diagram part
that looks like the pattern. He/she can change the class diagram
if required.

For the behavioral properties, we assume having a set of
generic LTL properties describing the Intercepting Validator
pattern. We assume having three generic properties here, given
in Table I col2 have to be manually instantiated to meet the
QuizEngine application model. These ones are given in Table
I col3.

For example, the property ”A validation logic for every
data-type used in the application” given above, is formalized
with the LTL formula p1, which means ”For every Client
input, we do not validate data until the creation of the
matching validator (SQL, XML, LDAP, etc.)”.

p1 : � (Clientinput(Data)→!V alidate(data)

U createV alidator(Data.type))

This generic formula is instantiated with respect to the
QuizEngine application context, found in the sequence di-
agram of Figure 7. The instantiation of the property im-
plies the good choice of the events matching the facts ad-
dressed by the generic LTL formula. For example, the fact
Clientinput(Data) corresponds to the state input (the arrival
of the request “GET /moodle/quiz/attempt.php?id=123”) of the
object attempt.php. The LTL formula becomes :

p1 : � (attempt.inState(input)→

!secBase.inState(WaitingV al) U inV al.inState (valCreated))

To check whether the LTL formula p1, p2, p3 hold in the
model of Figure 7, we then performed the two following steps:

1) The UML diagram is translated into a Promela specifi-
cation, with the HugoRT tool [12],

2) The Spin model-checker [13] is called to check whether
the Promela specification satisfies the LTL formulas.
Namely, Spin checks that the Promela specification
never ends in a state corresponding to a counterexample
of one of the properties p1, p2, p3.

In this example, all the properties of Table I hold. The pat-
tern integration quality can now be straightforwardly estimated
by combining the results obtained from the previous steps.
Here, the estimation of the pattern integration is given by the
metrics 0 ≤ m(Sp1) = 1+1+1+1 ≤ 4 and 0 ≤ U = 1 ≤ 1.
The latter shows that the security pattern is well integrated
compared to the number of available behavioral properties. In
contrast, the metric m(Sp) also reveals that the upper bound
of the metric range (n) is low. This means that the number
of behavioral properties is modest, and perhaps insufficient to
ensure that the pattern is really correctly integrated.

C. Vulnerability exposure assessment

The last step aims at confirming that the security vulnera-
bility is no longer exposed in the application model. We also
assume having a set of LTL generic properties expressing
behaviors that should never happen. For the CWE-89 vul-
nerability, taken as example in the paper, its documentation
provides the following properties [4]: v1: No input validation,
v2: Bad input validation, v3: Privilege escalation, v4: Remote
information inference. This undesired behavior is formalized
with the LTL formulas given in Table II col.2. These formulas
also have to be manually instantiated with respect to the
context of the application. The resulting formulas are given
in Table II col.3. With the UML diagram of Figure 6, one can
deduce that the event clientInput corresponds to the arrival of
information from attempt.php, and invokeTarget corresponds

TABLE I
INTERCEPTING VALIDATOR LTL PROPERTIES

P LTL generic form LTL instantiated form LTL
p1 �(Clientinput(Data) →

!V alidate(Data) U createV alidator(data.type))
� (attempt.inState(input)) → (! secBase :
inState (WaintingV alidation) U inV al.inState (validators Created)))

p2 �(inputV aldiator.isUnique) �(secBase.isUnique ∧ inV al.isUnique)
p3 �(clientInput(data)∧!ServerV alidate(data) ∧

♦ServerV alidate(data)) →
(!returnGeneric(message) U ServerV alidate(data))

�((attempt.inState(input)∧!secBase.inState(nonvalid) ∧
♦secBase.inState(nonvalid))→!attempt.inState(err−page) U
secBase.inState(nonvalid))

TABLE II
CWE-89 VULNERABILITY PROPERTIES

Vulnerability
property

LTL generic formula LTL instantiated formula Sat

v1 �(clientInput(data) →
♦invokeTarget(data))

�(attempt.inState(input)→ ♦quizEngine.inState(loadUsage)) No

v2 �(clientInput(data) → �(!V alid(data) →
♦invokeTarget(data)))

�(attempt.inState(input) → �(secBase.inState(nonvalid) →
♦(quizEngine.inState(loadUsage))))

No

v3 �(clientInput(data) ∧ client.right(Min) →
♦client.right(Max))

? ?

v4 �(!valid(data)→ ♦(!genMessage)) �(secBase.inState(nonvalid)→ ♦ (!attempt.inState(err−page))) Yes

to the use of the input data in the object quizEngine. With
the sequence diagram of Figure 6, one deduces that the fact
invokeTarget(Data) of the generic formulas has to be replaced
by the state loadUsage of the object attempt.php.

For example, the property No input validation is formu-
lated with the generic LTL formula v1 in Table II, which
intuitively means ”for every client input (data) the target is
eventually invoked with (data) as parameter”. This formula
reflects undesired behavior because client inputs always have
to be validated before any invocation. The instantiation of the
generic formula v1 gives:

v1 : �(attempt.inState(input) →

♦ quizEngine.inState(loadUsage))

During the generic formula instantiation, we observed that
the third property cannot be deduced. Indeed, this property,
which is related to privilege escalation through SQL injection
cannot be expressed with the events found in the diagram of
Figures 6 and 7. This means that the application model does
not include the required features for exposing this property.
Here, the notion of level of access is indeed not represented.

We now call the Spin model-checker to check the absence of
vulnerabilities in the QuizEngine application model. We obtain
the results listed in Table II col.4. Spin detects the presence of
the vulnerability property v4, and provides a counter-example.
This property means that in the case when the client input
is not valid, the generic error messages (whose content is
minimal) is not sent to the client. Thus, the client may get a
more detailed error message with sensitive information about
the application. This information may be used to deduce attack
vectors with a remote information inference.

As a consequence, the QuizEngine application still ex-
poses the CWE-89 vulnerability and this step reveals that
the Intercepting Validator pattern is insufficient to not expose
this vulnerability. After analysis of the counter-example, we
deduced that the vulnerability was detected because there is
no mechanism, expressed in the security pattern, to generate
generic error messages in the case of invalid input messages.
Indeed, the Intercepting Validator pattern validates and filters
input messages only. Another security pattern is therefore
required, for instance the Exception Shielding pattern [5].

In conclusion, all this process helped integrate the security
pattern and showed that this one was not sufficient to secure
the application against all the threats related to the CWE-
89 vulnerability. Either a more appropriate pattern has to be
taken, or another pattern has to be combined with Intercepting
Validator.

V. CONCLUSION

This paper presents a model-based process for helping
designers to devise more secure applications by checking
the appropriate use and contextualization of security patterns
within UML diagrams. In an initial step, we assume that
the designer chooses a list of vulnerabilities that must not
appear in the application and a list of security patterns, which
should prevent these vulnerabilities from being exploited.
The proposed approach then provides several automatic or
manual steps to ensure whether security patterns are correctly
integrated and if vulnerabilities are still exposed despite the
use of security patterns. A coefficient of disclosure is com-
puted for every pattern and assesses if its structure can be
found in the application model. Then, a quality metric is

computed to estimate the integration quality of the patterns
with regard to a set of available properties expressing the
pattern behaviors. Theses metrics guide the designer in the
correct pattern integration. The last step of the process aims at
warning the designer if a vulnerability is still exposed. We have
illustrated this approach with an example of Web application,
which has to be protected against the CWE-89 vulnerability
related to Code Injection.

In the near future, we intend to automate more this process
to make its application easier to use for designers. Automation
sounds typically not applicable to the entire process but to
specific steps, e.g., the choice of the security patterns from
vulnerabilities, or the instantiation of LTL properties from the
application model. Hence, a designer having a very limited
knowledge about security patterns and formal verification
could improve the security of its applications anyway. To
achieve such an automatic process, an initial step will consist
of building an exhaustive base of formal vulnerabilities and
security patterns providing the relationship between them.

VI. ACKNOWLEDGMENT

Research supported by the industrial chair on
Digital Confidence http://confiance-numerique.clermont-
universite.fr/index-en.html

REFERENCES

[1] H. Mouratidis, P. Giorgini, and G. Manson, “When security meets
software engineering,” Inf. Syst., vol. 30, no. 8, pp. 609–629, Dec.
2005. [Online]. Available: http://dx.doi.org/10.1016/j.is.2004.06.002

[2] I. Flechais, C. Mascolo, and M. A. Sasse, “Integrating security and
usability into the requirements and design process,” Int. J. Electron.
Secur. Digit. Forensic, vol. 1, no. 1, pp. 12–26, May 2007. [Online].
Available: http://dx.doi.org/10.1504/IJESDF.2007.013589

[3] N. Yoshioka, H. Washizaki, and K. Maruyama, “A survey on security
patterns,” Progress in Informatics, vol. 5, pp. 35–47, Mar. 2008.

[4] Common weakness enumeration. [Online]. Available: https://cwe.mitre.
org/

[5] Security pattern catalog. [Online]. Available: http://www.munawarhafiz.
com/securitypatterncatalog/

[6] A. K. Alvi and M. Zulkernine, “A Natural Classification Scheme
for Software Security Patterns,” 2011 IEEE Ninth International
Conference on Dependable, Autonomic and Secure Computing, pp.
113–120, 2011. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6118361

[7] S. Konrad, B. H. Cheng, L. a. Campbell, and R. Wassermann, “Using
Security Patterns to Model and Analyze Security Requirements,” 2nd In-
ternational Workshop on Requirements Engineering for High Assurance
Systems, pp. 13–22, 2003.

[8] T. Ahmed and A. R. Tripathi, “Static verification of security
requirements in role based CSCW systems,” Proceedings of the eighth
ACM symposium on Access control models and technologies - SACMAT
’03, p. 196, 2003. [Online]. Available: http://portal.acm.org/citation.
cfm?doid=775412.775438

[9] M. Al-lail, R. Abdunabi, R. B. France, and I. Ray, “An Approach to
Analyzing Temporal Properties in UML Class Models,” pp. 77–86, 2013.

[10] C. Bouhours, H. Leblanc, C. Percebois, and T. Millan, “Detection of
generic micro-architectures on models,” in Proceedings of PATTERNS
2010, The Second International Conferences on Pervasive Patterns and
Applications, Lisbon, Portugal, 21st - 26th November 2010, pp. 34–41.

[11] T. Millan, L. Sabatier, T. T. Le Thi, P. Bazex, and C. Percebois, “An ocl
extension for checking and transforming uml models,” in proceedings
of the 8th International Conference on Software Engineering, Parallel
and Distributed Systems (SEPADS). http://www.wseas.org/: WSEAS
Press, 2009, pp. 144–150, (Invited speaker).

[12] S. Merz and C. Rauh, “Model checking timed uml state machines and
collaborations,” in 7th Intl. Symp. Formal Techniques in Real-Time and
Fault Tolerant Systems (FTRTFT 2002, 2002, pp. 395–414.

[13] G. Holzmann, Spin Model Checker, the: Primer and Reference Manual,
1st ed. Addison-Wesley Professional, 2003.

[14] K. P. Yoon and C.-L. Hwang, “Multiple attribute decision making: An
introduction (quantitative applications in the social sciences),” 1995.

[15] Overview of the moodle question engine. [Online]. Available:
https://docs.moodle.org/dev/Overview of the Moodle question engine

[16] OWASP, “Owasp testing guide v3.0 project,” in
http://www.owasp.org/index.php/Category:OWASP Testing
Project#OWASP Testing Guide v3, 2003.

[17] C. Steel, Core Security Patterns: Best Practices and Strategies for J2EE,
Web Services, and Identity Management. Prentice Hall PTR, 2005.

http://confiance-numerique.clermont-universite.fr/index-en.html
http://confiance-numerique.clermont-universite.fr/index-en.html
http://dx.doi.org/10.1016/j.is.2004.06.002
http://dx.doi.org/10.1504/IJESDF.2007.013589
https://cwe.mitre.org/
https://cwe.mitre.org/
http://www.munawarhafiz.com/securitypatterncatalog/
http://www.munawarhafiz.com/securitypatterncatalog/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6118361
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6118361
http://portal.acm.org/citation.cfm?doid=775412.775438
http://portal.acm.org/citation.cfm?doid=775412.775438
https://docs.moodle.org/dev/Overview_of_the_Moodle_question_engine

	Introduction
	Background
	Model securing with pattern integration aided by formal techniques
	Case Study
	Security pattern integration
	Security pattern instantiation assessment
	Vulnerability exposure assessment

	Conclusion
	Acknowledgment
	References

