
A classification methodology for security patterns to help fix software weaknesses

Loukmen Regainia⇤, Sébastien Salva† and Cédric Bouhours‡
LIMOS - UMR CNRS 6158
Auvergne University, France

Email: ⇤ loukmen.regainia@udamail.fr, † sebastien.salva@udamail.fr, ‡ cedric.bouhours@udamail.fr

Abstract—Security patterns are generic solutions that can be

applied since early stages of software life to overcome recurrent

security weaknesses. Their generic nature and growing number

make their choice difficult, even for experts in system design. To

help them on the pattern choice, this paper proposes a semi-

automatic methodology of classification and the classification

itself, which exposes relationships among software weaknesses,

security principles and security patterns. It expresses which

patterns remove a given weakness with respect to the security

principles that have to be addressed to fix the weakness. The

methodology is based on seven steps, which anatomize patterns

and weaknesses into set of more precise sub-properties that

are associated through a hierarchical organization of security

principles. These steps provide the detailed justifications of

the resulting classification and allow its upgrade. Without loss

of generality, this classification has been established for Web

applications and covers 185 software weaknesses, 26 security

patterns and 66 security principles.

Index Terms—software weakness; Security patterns; Security

principles; Classification

I. INTRODUCTION

Most of the security experts/practitioners admitted that ap-
plying the Maginot line syndrome in the software development
life cycle (i.e. adding a line of defenses after the development
stage) is a bad strategy. Instead, security has to be thoroughly
considered throughout the software life cycle. Security at the
design stage can be performed by means of security patterns,
which are specific patterns helping in designing secure applica-
tions. These patterns represent general and reusable solutions
to recurring security problems [1]. Since 1997, the number
of security patterns is continuously growing and around 170
security patterns are available at the moment [2]. As patterns
are often presented with an abstract point of view, they may
be differently interpreted according to a given context. As a
consequence, the choice of the good security pattern against
a security problem is sensitive and somehow perilous [3], [4].
As designers cannot be experts in any field, they clearly lack
of guidance during the design phase.

Hence, with the stated goal to guide designers towards
good practices, some papers [5] proposed to classify pat-
terns into categories related to security concepts also known
as principles, e.g., Authorization, Fault tolerance or Access
control. Despite the benefits brought by these studies, this
kind of classification remains insufficient because security
principles are mostly abstract and lead to imprecise categories
from which designers still have to take a decision on the

Research supported by the industrial chair on Digital Confidence
(http://confiance-numerique.clermont-universite.fr/index-en.html)

patterns to implement. This is why other works proposed
to classify security patterns according to vulnerabilities [6],
[4]. For a given security pattern, these classifications provide
the vulnerabilities that are mitigated with the application of
this pattern. But, they do not precise if several patterns are
required. Furthermore, these classifications are established by
directly comparing the textual descriptions of patterns with
those of the vulnerabilities. As these descriptions are generic
and have different levels of abstractions, the categorization of
a pattern with a vulnerability can be done only when there is
an evident link between both. Many patterns may be lost in
the process.

From these observations, we propose another kind of clas-
sification of security patterns. But, first and foremost, we
propose a methodology of classification, i.e. a list of successive
steps, which lead to the classification itself. The primary
contributions of this paper can be summarized by the following
points:

• we present a classification, which establishes relation-
ships among security weaknesses, security principles and
security patterns, expressing which patterns remove a
given weakness with respect to the principles that have
to be addressed to fix the weakness. We focus on weak-
nesses provided by the Common Weakness Enumeration
(CWE) database because a weakness is an error or a
root cause that may lead to a vulnerability in a specific
technology, version or language. A weakness represents
a known error that a designer wish to avoid;

• our classification reveals the combinations of patterns
that should be chosen to remove a given weakness. In
addition, our classification also gives the relations among
these patterns. Indeed, studies about the inter-pattern
relations have been proposed in [7], [8]. We leverage
these results and include them in the classification. For
instance, these inter-pattern relations offer the advantage
to make apparent the conflicting or alternative patterns;

• we propose a methodology, built on seven steps, which
anatomizes patterns and weaknesses into sets of more
precise sub-properties that are connected by means of a
hierarchical organization of security principles. Actually,
these steps provide the detailed justifications of the result-
ing classification. Since patterns and weaknesses are still
presented with texts, some of these steps are manually
done. But, other steps, in particular the construction of
the final classification, are automatically performed. As
a consequence, this methodology can be followed again



to classify new security patterns or weaknesses, without
the need to re-investigate all the patterns and weaknesses
considered in the classification.

Without loss of generality, we have limited our classification
to the field of Web applications since only for this kind of
application, we picked out 185 software weaknesses and 26
security patterns. For the classification, we also organized
66 security principles. In addition, for some weaknesses,
we portrayed the classification with Security Activity Graphs
(SAG) [9] organizing the principles and patterns related to
a weakness in a tree form. This classification is stored in a
database available in [10].

The paper is organized as follows: Section II starts by
presenting some security pattern classifications and introduce
our motivations. In the next section, we recall some security
concepts used throughout the paper. We get to the heart of the
matter, i.e. the presentation of our classification methodology
in Section IV. We give a short presentation of the classification
in Section V. We traditionally conclude the paper and outline
some perspectives in Section VI.

II. RELATED WORK

The growing number of security patterns available in the
literature makes the choice of the most appropriate ones, for
overcoming a security problem, very difficult. In order to ease
this task, many taxonomies and classifications were proposed
in the literature. Alvi et al. outlined 24 of these classifications
and established a comparative study to point out their positive
and negative aspects [5]. They chose 29 classification attributes
(purpose, abstraction levels, life-cycle, etc.) and compared
the classifications against a set of desirable quality criteria
(navigability, completeness, usefulness, etc.). They observed
that several classifications were built in reference to a unique
classification attribute, which appears to be insufficient. They
indeed concluded that the use of multiple attributes enables
the pattern selection in a faster and more accurate manner.

In order to highlight the key challenges in pattern classifi-
cation, Bunke et al. presented a systematic literature review
of the papers dealing with security patterns between 1997 and
2012. In addition, they listed a set of classification criteria
and established a comparison between design patterns and
security pattern classifications [11]. They finally proposed a
classification based upon the application domains of patterns
(software, network, user, etc.).

The classifications proposed in [6], [4] give another point
of view by helping designers in the choice of patterns to
fix software vulnerabilities and weaknesses. This choice of
categorization seems quite interesting and meaningful since
security vulnerabilities are often known by designers and are
the natural causes of attacks on software systems. Alvi et
al. proposed a vulnerability based scheme putting together
security patterns and weaknesses documented in the CWE
database [4]. They considered that the CWE weaknesses are
appropriate to document flaws added through the design phase
and they manually linked security patterns to CWE weaknesses
from their textual descriptions. Anand et al. proposed another

security pattern catalog composed of 12 families of vulnerabil-
ities and identified some missing security patterns [6]. They
focused on vulnerabilities because they considered that the
CWE database is bigger than the scope of their work. They
grouped software vulnerabilities into families and manually
collected relationships between families and security patterns
from the pattern textual descriptions and their vulnerability
family definitions. We observed that these two classifications
lack of navigability among patterns though, which is an
important property defined as the ability to guide the choice
of designers among related patterns [5]. More precisely, we
noticed that some patterns for the same vulnerability family
are compatible together (for example, Audit interceptor and
Secure logger for log vulnerabilities [7]) and that others are
conflicting in the sense that implementing conflicting patterns
leads to inconsistencies in an application. As a consequence,
a designer may be confused about the use of patterns.

As in [4], we propose a pattern classification expressing
which patterns can be used to remove a weakness of the
CWE database. But similarities end here. Indeed, our clas-
sification aims at proposing a more precise and accurate
mapping between patterns and weaknesses. It is more accurate
in the sense that we translate the meaning of the patterns
and weaknesses into smaller properties, i.e. strong points and
mitigations respectively. We establish relations among these
properties with respect to security principles, which show
the meaning of these relations. The principles are organized
into a tree structure, which enables the generation of inter-
dependences among the security patterns that overcome the
same weakness. In addition, the classification is completed
with the relationships among pattern themselves, expressing
for example the conflicts or the dependence among patterns.
This is why we claim that the proposed classification is
more precise. Another strong contribution of this paper lies
in the presentation of the methodology used to build this
classification. This one is composed of seven manual and
automatic steps, which offer the advantage to justify the
pattern classification and reduces the efforts required to add
new patterns or weaknesses to the classification.

III. BACKGROUND

Our classification methodology is mainly based upon four
security concepts: security patterns, weaknesses associated
with their related mitigations, and security principles. We
recall basics on these concepts below.

A. Security patterns

A security pattern is a generic solution to a recurrent
security problem, which is characterized by a set of structural
and behavioral properties [12]. It can be presented textually
or with schema (UML diagrams). The quality of a pattern and
its classification can be established with strong points, which
correspond to sub-properties of the pattern [13]. Strong points
are manually extracted from the forces and consequences of a
security pattern.



In addition, a security pattern can be documented to express
its relationships with other patterns. Yskout et al. proposed the
following annotations between two patterns p1 and p2 [7]:

Figure. 1. Authorization enforcer pattern

• ”depend”means that the implementation of p1 requires
the implementation of p2;

• ”benefit” expresses that implementing p2 completes p1
with extra security functionalities or decreases the devel-
opment time. However, p1 can be correctly implemented
despite the absence of p2;

• ”impair” means that the functioning of p1 can be ob-
structed by the implementation of p2;

• ”alternative” expresses that p2 is a different pattern ful-
filling the same functionality as p1;

• ”conflict” encodes the fact that if both p1 and p2 are im-
plemented together then it shall result in inconsistencies.

Such annotations may noticeably help combine patterns and
not to devise unsound composite patterns.

For example, Figure 1 portrays the UML class diagram of
the pattern ”Authorization enforcer” whose purpose is to check
whether client applications are authorized to request a Web ap-
plication. This security pattern structures an application in such
a way that the authorization logic is centralized and decoupled
from the functional logic of the application [14]. It benefits
from the presence of a front controller (Security Base Action)
offering a centralized entry point and from the presence of the
pattern ”Authentication enforcer”, which encapsulates the au-
thentication mechanism. It uses the ”Authentication Provider”
whose role is to check the client credentials. With regards to its
forces and consequences, the pattern ”Authorization enforcer”
is characterized by the following strong points:

1) Minimize the decoupling between authorization and
business logics;

2) URL based access control for Web applications;
3) Centralized authorization;
4) Systematic verification of client request permissions;
5) Promotes separation of responsibility;
6) Providing the application with authorization mechanism.

This pattern is related to three other patterns: it is an alterna-
tive to the pattern ”Container managed security”, and benefits
from the patterns ”Secure service facade” and ”Authentication
enforcer”.

B. CWE weaknesses and mitigations

The CWE database [15] provides an open catalog of
software weaknesses. At the moment, this database includes
around 700 software weaknesses but this number is still grow-
ing. A weakness is documented with a panoply of information,
including a full description, its causes, detection methods,
and a mapping between the weakness and CAPEC attack
patterns or vulnerabilities. Furthermore, the CWE database
provides, for each weakness, a set of potential mitigations.
The latter summarize the actions to be done in order to
overcome a weakness. A mitigation is identified by an id
(MIT-ID) and is characterized by three important elements:
a textual description, a strategy that corresponds to the basic
security principle targeted by the mitigation, and its life cycle
phase (requirements, design, implementation, etc.). Neverthe-
less, these elements are not supplied for all the mitigations of
the database. In this work, we only consider mitigations that
are fully documented for a better accuracy in the classification.

C. Security principles

A security principle is a desirable property, structure or
behavior of software that aims at reducing the impact and
the likelihood of a threat realization [16]. They represent an
insight on the nature of close security tasks whose contexts
are not taken into consideration. Saltzer and Schroeder firstly
proposed a set of eight best practices for system security
[17], which were widely expanded in the last decades to form
security principles [16], [18]. Below, we present some security
principles used throughout the paper:

1) Access control: This security principle collects the
mechanisms allowing the identification/authentication of en-
tities (users or services), the definition and the verification
of their access rights and the accounting [19]. In particular,
it includes the AAA (Authentication, Authorization and Ac-
counting) principles.

2) In depth defense: Inspired from a military strategy, this
security principle aims at protecting a system with a layered set
of security mechanisms. It includes sub-principles and mecha-
nisms that can be combined together in a layered form such as:
”Complete mediation” (input validation and canonicalization),
”Perimeter security” (e.g. firewalls), ”Intrusion detection and
prevention”, ”Network and core trust zones definition” (e.g.,
demilitarized zones, sand boxes or chroot jails) [20].

3) Fault tolerance : From a safety point of view and in
order to ensure an acceptable availability, Fault tolerance aims
at enabling an application to continue operating normally
(or in a reduced way) and enhancing the manageability of
failures in the application or in some of its parts. Fault
tolerance comprises the principle ”Exception management” to
prevent the disclosure of internal information of the application
in the case of a failure [18]. ”Repartition” is another sub-
principle of Fault tolerance whose purpose is to avoid the
whole application failure in the case of a dysfunction of one
of its parts.



Figure. 2. The proposed mapping metamodel

4) Sensitive data : This principle addresses the prevention
of sensitive data disclosures. For instance, it is constituted
of these two well-known principles: ”Encryption” (referring
to encryption methods of data) and ”Privacy” (referring to
privacy protection) [18].

5) Configuration management: In software systems, it is
advised to protect configuration items and to control item
changes. The principle of ”Configuration management” ex-
presses this need. It can also be implemented by other
principles, which are related to configurable elements: ”Con-
figuration protection”, ”Privilege management” or ”Fail-safe
defaults” [18].

6) Security simplification: As software sophistication in-
creases, so does the risk to add security vulnerabilities. This
principle refers to the ”keep it simple stupid” (KISS) concept.
It includes several sub-principles, e.g., the ”Economy of mech-
anisms”, ”Psychological acceptability” [17] or ”Open design”
(avoid security by obscurity).

IV. THE CLASSIFICATION METHODOLOGY

Our methodology aims at inferring relationships among a
security weakness, security principles and security patterns,
expressing which set of patterns fixes the weakness and the
relations among the patterns. Without loss of generality, we
applied the following methodology on Web application weak-
nesses, but it can also be applied on other kinds of applications
on condition that the dedicated weaknesses, mitigations and
patterns are being well documented.

The mapping from a weakness to a set of security patterns
is inferred with several steps, summarized in Figure 2. These
steps aim at finding successive concrete links among security
concepts. On the one hand, we look for the mitigations that
avoid exploiting a given weakness. On the other hand, we anat-
omize security patterns to collect a set of strong points, which
represent sub-properties of the pattern. Intuitively, we connect
both sides by means of the notion of security principles
because these give the objectives targeted by the mitigations
and strong points that have to be joined.

The methodology outlined in Figure 2 is actually divided
into 7 manual and automatic steps, presented in Figure 3.
In the first step, we collect the security principles we are
interested in and organize them into a hierarchy. Steps 2
to 5 establish several different mappings from weaknesses
to mitigations, from mitigations to security principles, from
security patterns to strong points and finally from strong

points to security principles. In Step 6, these mapping are
automatically inter-connected. We obtain a database Dbf from
which the classification is automatically extracted in Step 7.
Finally, for sake of readability, we depict pattern combinations
with s, as illustrated in Figure 3 (right side). In our case, a
SAG has a tree structure whose root node is labeled by a
weakness. The other nodes are labeled by principles and the
leaves by patterns. Relationships between two nodes can be
defined using logic operations.

Our methodology offers the advantage to build a classifi-
cation that can be easily updated. Indeed, if a new weakness
is added to the CWE database, only the steps 2 and 3 have
to be followed. In the same way, if a new security pattern
is proposed in the literature, only the steps 4 and 5 have
to be done. The re-generation of the whole classification,
which includes new weaknesses or patterns is automatically
performed. Each step is detailed below and illustrated with
the weakness CWE-285: Improper Authorization.

A. Step 1: hierarchical organization of security principles
For this stage, we collected 66 security principles related

to Web applications found in the literature and organized
them into a tree, which reflects a hierarchy of principles
from the most abstract (those nearest the top) to the most
concrete ones (those nearest the bottom). Indeed, as presented
in Section III, a security principle can be considered as the
realization of other security principles, or as a subordinate
principle of another one. This arrangement is represented by
the tree depicted in Figure 4. This organization was manually
established in relation to the nature of each security principle,
often described with text. The proposed organization is not
exhaustive but covers the security patterns and mitigations
considered for this classification. We chose to organize secu-
rity principles in this way to later generate inter-dependences
among security patterns that completely or partially overcome
a given weakness. In addition, this hierarchical organization
shall give a complete overview (from the most abstract to
the most concrete principles) on the nature of the security
mechanisms that are required to remove a weakness and, in
the same time, that are provided by security patterns.

We encoded this information in a database denoted DB1.

B. Step 2: weakness and mitigation extraction
In this step, we automatically extracted the weaknesses

related to Web applications from the CWE database, and for
each weakness, its potential mitigations. The result is stored
in a database denoted DB2, which gathers information about
185 CWE weaknesses and 65 mitigations.

For example, the weakness CWE-285: Improper Authoriza-
tion is commonly found in Web applications and occurs when
an application does not correctly manage authorization checks.
When the application does not have a correct authorization
mechanism, it exposes several vulnerabilities, e.g., denial of
service or arbitrary code execution. This weakness can be fixed
by means of several mitigations. Due to lack of room, we only
expose some of them here:



Figure. 3. Classification methodology

Figure. 4. Proposed core and design security principles

• Use of a framework that correctly performs the autho-
rization checks;

• Divide the software into anonymous, normal, privileged,
and administrative areas;

• Use Role Based Access Control;
• Default deny in access control lists (ACLs);
• Authorization correctly enforced at the server side;
• Restrict access to requests having an active authenticated

session.

C. Step 3: mapping between mitigations and security princi-
ples

This step aims at establishing relations between mitigations
and security principles. It was manually done by interpreting
the strategies found in mitigations. Indeed, the meaning of
a mitigation strategy is often very close or comprised into
some security principle definitions. As a strategy may cover
several security principles, we have to consider a many-to-
many relation here.

Mitigations are usually described with concrete mechanisms
given with a low abstraction level. Hence, we observed that
mitigations are often associated with the most concrete se-
curity principles in reference to the hierarchical organization
of Figure 4. This step gives a database DB3 associating 65
mitigations and 66 security principles.

For example, the weakness CWE-285 can be fixed with
the mitigation Divide the software into anonymous, normal,
privileged, and administrative areas, which is related to two
security principles:

• Least common mechanisms: so that a failure in an area
does not affect another area;

• Privilege separation: so that a privilege given in an area
is not valid in the other area. A spoofed identity does not
give the possibility to compromise all the authorization
in the application.

D. Step 4: mapping between patterns and strong points
We established two relations among patterns and strong

points:



1) the first one is a many-to-many relation between security
patterns and strong points, each pattern being charac-
terized by a set of strong points that can be shared
with other patterns. For example, the patterns ”Autho-
rization enforcer” and ”Container managed security”
share the strong point ”Providing the application with
authorization mechanism”. This relation is established
by manually extracting the strong points of each pattern
from its textual description (forces and consequences of
the pattern);

2) the second relation is related to the annotations ”de-
pend”, ”benefit”, ”impair” or ”alternative” defined
among patterns [7]. With P a set of patterns, this relation
is defined as a mapping from P 2 to the annotation
set {”depend”, ”benefit”, ”impair”, ”alternative”},
which provides for every pair of patterns (p1, p2) an
annotation about the relationship between p1 and p2.

To summarize, these relations provide connections among
patterns and between patterns and strong points. These are en-
coded into the database DB4, associating 26 security patterns
and 36 strong points.

E. Step 5: mapping between strong points and security prin-
ciples

As introduced in [21], security patterns are classifiable
w.r.t. security principles, like most of the security techniques.
Instead of directly looking for a relation between patterns and
security principles, we focus on the strong points, which are
more precise sub-properties themselves satisfied in patterns.
Hence, this step aims at establishing a many-to-many relation
between strong points and principles. This step was manually
done since strong points and principles are mostly presented
with textual documents. During this step, we observed that
the abstraction level of strong points better fit with the most
concrete principles exposed in our hierarchical organization of
Figure 4. This relation is materialized with the database DB5.

For example, the strong point ”Minimize the decoupling
between authorization and business logics” of the pattern
”Authorization Enforcer” has a security objective also found
in the principle ”Economy of mechanism”, which is a sub-
principle of ”Security simplification”.

F. Step 6: data consolidation

This automatic step integrates the databases DB3, DB4,
and DB5 into a single one. On the one hand, DB3 stores the
relations among CWE weaknesses, their potential mitigations
and the related security principles. On the other hand, DB4

and DB5 store the relations among security patterns, strong
points and principles. It is manifest that the security principle
hierarchy becomes the central point that interconnects weak-
nesses with security patterns. We automatically performed this
step with the tool Talend 1, which produces the final database
DBf .

1https://www.talend.com

G. Step 7: classification extraction

The database DBf holds all the information required to
extract a pattern classification. We have chosen to catalog the
combinations of patterns that prevent attackers from exploit-
ing a given weakness. This step automatically collects these
combinations of patterns for every weakness found in DBf .
More precisely, for a given weakness, we extracted:

• the information about the weakness (name, identifier,
description, etc.);

• the complete hierarchy of security principles Sp related
to a weakness, i.e. the arrangements of principles from
the most abstract ones to the most concrete principles.
The principles of Sp are associated with the weakness
according to its potential mitigations given by the CWE
database. The latter does not precise if one of the pro-
posed mitigations is sufficient to fix the weakness or if all
the mitigations have to be applied. As a consequence, we
suppose that all the security principles have to be applied
in order to overcome the weakness;

• for every principle sp in Sp, the set of patterns Psp,
the set of patterns P2sp not in Psp that have relations
with any pattern of Psp, and the nature of these relations
defined for couples of patterns by the annotations
in {”depend”, ”benefit”, ”impair”, ”alternative”,
”conflict”}.

Figure 5 shows an example of data extraction achieved for
the weakness CWE-285. The tabular provides the security
principles and their levels in the tree of Figure 4 (col. 3-5),
the related security patterns (col. 6) and the relations among
patterns (col. 7,8). Strong points and mitigations can also be
extracted.

For sake of readability, we propose to portray this classifica-
tion with SAGs, organizing the security principles and patterns
related to a weakness. SAGs are semi-automatically drawn by
these steps:

1) a weakness has its own SAG whose root is labeled by
the weakness identifier. The root node is linked to the
most abstract principles found in Sp connected together
with the AND operator, since we consider that all
the security principles have to be ensured to remove
the weakness. The security principles are themselves
connected, from the most to the less abstract ones, by
keeping the hierarchical organization defined in Step 1;

2) as our classification provides the relations among pat-
terns (as explained in Step 4), we propose, in this final
step, to complete the SAG with new nodes encoding
these relations. Actually, we replace these relations with
logic operators to infer a Boolean expression from all
these relations. Given a security principle sp in Sp and
a couple of patterns (p1, p2) of the set Psp, if we have:

• (p1 depend p2) or (p1 benefit p2), we use the
expression (p1 AND p2);

• (p1 impair p2), we use (p1 XOR p2) since the
presence of p2 can decrease the efficiency of p1;



Figure. 5. Extraction of the pattern classification for the weakness CWE-285

• (p1 alternative p2), we use (p1 OR p2). The use
of these two patterns together increases the com-
plexity of the system, but is not problematic. For
example, the patterns Authorization Enforcer and
Container Managed Security are alternative;

• (p1 conflict p2), we use the expression
(p1 XOR p2) meaning that only one of the
pattern can be used;

• p1 having no relation with any pattern p2 in Psp,
we add the expression p1.

All these expressions are assembled with the ”AND” op-
eration. The resulting Boolean expression is graphically
shaped with an expression tree whose nodes are logic
operations and leaves are patterns. The expression tree
is linked to the security principle sp.

3) we observed that the number of relations among patterns
may be large and not always relevant. As a conse-
quence, a designer may still be confused about the
choice of the patterns to use, especially when there
are conflicted patterns. Hence, we propose to simplify
Boolean expressions and to update SAGs with simpli-
fied expression trees. The Boolean expression reduc-
tion is here performed with the tool BExpRed 2. For
instance, with the three patterns p1, p2 and p3 hav-
ing the relations (p1 benefit p2), (p1 alternative p3)
and (p2 alternative p3), we obtain (p1 AND p2)
AND (p2 OR p3) AND (p1 OR p3), which can be
simplified into the expression (p1 AND p2). It is man-
ifest that this expression is clearer than the first one.

The final SAG depicts the combinations of patterns, which
overcome a weakness. We believe that these SAGs offer a good
point of view on the potential solutions and can help choose
the most appropriate one with regard to the application context.
Figure 6 depicts the final SAG obtained for the weakness
CWE-285. It shows that designers can implement either ”Au-
thorization Enforcer” or ”Container managed security” and
should implement all the other patterns (PBAC, RBAC, Least
privileges, etc.) in order to fix the weakness. The SAG also
shows the security principles applied here.

2https://sourceforge.net/projects/bexpred/

Figure. 6. CWE-285 Security patterns tree

V. CLASSIFICATION SHORT PRESENTATION

The classification is built on 185 weaknesses, 26 security
patterns and 66 principles. Due to lack of room, the complete
list is available, with the classification, in [10]. Presented
in tabular form, as illustrated in Figure 5, it enables multi-
attribute based decisions insofar as patterns can also be clas-
sified according to shared strong points, supported security
principles, related weaknesses, mitigations and inter-patterns
relationships.

The proposed classification complies with several quality
criteria defined in [5]. Among them, we have noted Naviga-
bility, Unambiguity and Usefulness classification. Navigability,
which is defined as the ability to direct designers among
related patterns, is satisfied since the classification provides
relationships among patterns and SAGs that illustrate the dif-
ferent choices of pattern combinations. Unambiguity is taken
into account since the classification is clearly defined by means
of the methodology steps, which provide relations among
security properties. All these steps justify the classification.
We believe that the classification can be used in practice since
it is based upon the CWE database (weaknesses, mitigations)
and security principles. In addition, SAGs can help designers
in their pattern combination choices without ambiguity.



Figure. 7. Number of fixed weaknesses per pattern

A variety of statistical information can be extracted from
the classification. For instance, Figure 7 shows the number
of partly fixed weaknesses per pattern. Keeping in mind, that
the set of patterns taken into consideration is not exhaustive,
4 patterns seems to emerge for partly fixing a large part
of the 185 weaknesses covered by the classification: ”Input
Guard”, ”Output Guard”, ”Pathname Canonicalization” and
in particular ”Application firewall”, which can overcome 109
weaknesses. This kind of information shows that, completed
with more patterns, our classification and methodology would
guide designers on good practices. For instance, in our context,
one can deduce that these 4 patterns have to be used with Web
applications. Unfortunately, the classification also reveals that
26 security patterns is insufficient to fix all the Web application
weaknesses. Indeed, 30 weaknesses are not yet associated
with security patterns. Hence the need to complete the current
classification.

VI. CONCLUSION

In this paper, we presented a classification methodology
putting together software weaknesses, security principles and
patterns in order to help designers in the choice of the best pat-
tern combination to fix a given weakness. This methodology
is composed of some manual steps subdividing weaknesses
and patterns into detailed security properties. Then, these are
automatically associated together with respect to security prin-
ciples. We organized the latter into a hierarchy to precisely ex-
press the security objectives of these properties. The resulting
classification is stored into a database available in [10]. This
database can be upgraded with new patterns and weaknesses
without the need of re-writing the whole classification. We also
proposed to portray this classification by means of Security
Activity Graphs showing, without ambiguity, combinations of
patterns and their relations.

In future research, we will continue investigating the specific
issues raised by security pattern classification. Indeed, their

heterogeneous nature and sometimes their ambiguous descrip-
tions leave several problems open. For instance, we intend
to investigate whether text mining techniques could help to
partially automate some steps of the methodology (steps 2
to 5). We also intend to complete the classification with the
attack patterns provided by CAPEC (Common Attack Patterns
Enumeration and Classification) to provide another point of
view on the pattern use. Indeed, it should be possible to extract
Attack Defence Trees (ADT) [22] depicting the defences in
terms of security patterns that designers may use to protect a
software system against attacks.

REFERENCES

[1] J. Yoder, J. Yoder, J. Barcalow, and J. Barcalow, “Architectural patterns
for enabling application security,” Proceedings of PLoP 1997, vol. 51,
p. 31, 1998.

[2] Security patterns repository. [Online]. Available: http://sefm.cs.utsa.edu/
repository/

[3] K. Yskout, R. Scandariato, and W. Joosen, “Does organizing security
patterns focus architectural choices?” Proceedings - International Con-
ference on Software Engineering, pp. 617–627, 2012.

[4] A. K. Alvi and M. Zulkernine, “A Natural Classification Scheme for
Software Security Patterns,” 2011 IEEE Ninth International Conference
on Dependable, Autonomic and Secure Computing, pp. 113–120, 2011.

[5] K. Alvi, Aleem and M. Zulkernine, “A Comparative Study of Software
Security Pattern Classifications,” 2012 Seventh International Conference
on Availability, Reliability and Security, pp. 582–589, 2012.

[6] P. Anand, J. Ryoo, and R. Kazman, “Vulnerability-Based Security
Pattern Categorization in Search of Missing Patterns,” 2014 Ninth
International Conference on Availability, Reliability and Security, pp.
476–483, 2014.

[7] K. Yskout, T. Heyman, R. Scandariato, and W. Joosen, “A system of
security patterns,” 2006.

[8] E. B. Fernandez, H. Washizaki, N. Yoshioka, A. Kubo, and Y. Fukazawa,
“Classifying security patterns,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 4976 LNCS, 2008, pp. 342–347.

[9] S. Ardi, D. Byers, and N. Shahmehri, “Towards a structured unified
process for software security,” in Proceedings of the 2006 international
workshop on Software engineering for secure systems. ACM, 2006,
pp. 3–10.

[10] Security pattern classification. [Online]. Available: http://regainia.com/
research/database.html

[11] M. Bunke, R. Koschke, and K. Sohr, “Organizing security patterns
related to security and pattern recognition requirements,” International
Journal on Advances in Security, vol. 5, 2012.

[12] E. B. Fernandez, “Security patterns and secure systems design,” pp.
233–234, 2007.

[13] D. Harb, C. Bouhours, and H. Leblanc, Using an Ontology to
Suggest Software Design Patterns Integration. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 318–331. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-01648-6 34

[14] C. Steel, Core Security Patterns: Best Practices and Strategies for J2EE,
Web Services, and Identity Management. Prentice Hall PTR, 2005.

[15] Common weakness enumeration.
[16] J. Viega and G. McGraw, Building Secure Software: How to Avoid

Security Problems the Right Way, Portable Documents. Pearson
Education, 2001.

[17] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–
1308, 1975.

[18] J. Meier, “Web application security engineering,” Security & Privacy,
IEEE, vol. 4, no. 4, pp. 16–24, 2006.

[19] J. Scambray and E. Olson, Improving Web Application Security, 2003.
[20] M. R. Stytz, “Considering Defense in Depth for Software Applications,”

IEEE Security and Privacy, vol. 2, no. 1, pp. 72–75, 2004.
[21] R. Wassermann and B. H. Cheng, “Security patterns,” in Michigan State

University, PLoP Conf. Citeseer, 2003.
[22] B. Kordy, S. Mauw, S. Radomirović, and P. Schweitzer, “Attack–defense

trees,” Journal of Logic and Computation, p. exs029, 2012.

http://sefm.cs.utsa.edu/repository/
http://sefm.cs.utsa.edu/repository/
http://regainia.com/research/database.html
http://regainia.com/research/database.html
http://dx.doi.org/10.1007/978-3-642-01648-6_34

	Introduction
	Related Work
	Background
	Security patterns
	CWE weaknesses and mitigations
	Security principles
	Access control
	In depth defense
	Fault tolerance 
	Sensitive data 
	Configuration management
	Security simplification


	The classification methodology
	Step 1: hierarchical organization of security principles
	Step 2: weakness and mitigation extraction
	Step 3: mapping between mitigations and security principles
	Step 4: mapping between patterns and strong points
	Step 5: mapping between strong points and security principles
	Step 6: data consolidation
	Step 7: classification extraction

	Classification short presentation
	Conclusion
	References

