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Abstract

This paper deals with test quality of systems described either by timed automata or by
region graphs (Alur and Dill) which are models usually used in timed systems testing. The
aim of this work is to propose some quality parameters for the whole system and to measure
them in order to know, a priori, the test cost and the test coverage (time and e�ort) before
starting the test process.

Key-words : Testing, Timed Automata, Region Graph, Test quality, Real-Time sys-
tems.

1 Introduction

The veri�cation of distributed systems is a very important step in the system design cycle.
This step helps designers to validate their products in order to be implemented and used in
the industry.

Presently, systems become more and more complex. This complexity is sometimes due
to the addiction of timing constraints in system speci�cations. Then timed automata have
been introduced in the 90's for taking into account these constraints. The timed automata
model [AD94] has been widely studied in various cases: veri�cation [MY96, SY96, AD92],
system description [DY95, BGK+96], tools [DOTY95, BL]...

This study is based on conformance testing as used in the protocol engineering area. The
aim of conformance testing is to check if the implementation of a system (which is a black
box) behaves as the is described in the speci�cation of the system. Usually, we extract from
the speci�cation "test sequences" (which are pertinent sequences of actions to be executed
on the system) and should be executed on the implementation. A test sequence is composed
of a preamble (sequence of actions allowing to reach an action), of the action to test, and of a
postamble (sequence allowing to come back to the initial state). The analysis of the verdict
of this execution inform us about the conformance of the implementation to the speci�cation.

This paper investigates especially the measurements of some criteria on the system before
starting tests. The obtained measures should be able to help designers to evaluate, a priori,
test costs: time, e�orts and fault coverage. This evaluation is called test quality (testability).
Criteria presented here are based on a speci�c testing methodology [PF99a] but they can be
adapted to other methods since they are only based on the timed automata model.

This paper is structured as follows: In section 2, we present the main studies on testability
and the timed automata model. In section ??, we present basic de�nitions of timed automata
and a timed testing methodology. In section ??, we present the testability of untimed systems
based on the work of [KGD96]. In section 3, we propose factors of test quality for timed
automata. Finally, in section 5, we conclude and we give some ideas about future extensions
of this work.
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2 Related work

In this section, we give some ideas about studies on systems' testability and we draw brie�y
the main de�nitions about timed automata.

2.1 Testability
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Figure 1: Testability in life cycle

The �gure 1 summarizes the software life cycle which takes into account testability mea-
surements. The testability evaluation before the testing step allows the designer to decide if
the test can be applied, or if the speci�cation must be modi�ed in order to obtain a more
signi�cant test result. The testability can also help the designer to choose one speci�cation
among others describing the same behavior.

In our knowledge, the main studies about testability on telecommunication protocols can
be found in [Fre91, YPKP95, KDCK94]. All of these papers deal with the IOFSM model:
it is a Finite State Machine where each transition is labeled with an input and an output
symbol.

All these references agree with the following de�nition about testability: "A system is
testable if it is observable and controllable". In [Fre91], these two concepts are de�ned with:

• the observability, which allows to determine the internal state of a system under obser-
vation. Practically, we say that a speci�cation is observable if, for each input symbol
and for each state, there exists one or several output symbols.

• the controllability, which allows to propagate speci�c values towards observable out-
puts. Practically, a speci�cation is said controllable if, for each output symbol, it exists
at least an input symbol which forces the system to give this output symbol.

In [KGD96], four factors (de�ned bellow), depending on observability and on controlla-
bility, are presented to evaluate several degrees of testability. Indeed, each factor gives a
value, included between 0 and 1, and the more these values are close to 1, the more the
system is testable. Consequently, by calculating these degrees, it is possible to evaluate the
testing cost and to evaluate if all errors may be discovered. Afterwards, the designer may
evaluate if this quality is su�cient for the test.

For a system A, we summarize these factors here:
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• The Controllability degree, C(A), evaluates the e�ort needed to reach each state in the
speci�cation. This e�ort depends on the cardinal of the set of preambles and on the
length of these preambles, chosen for the test.

• The Fuzziness degree, F (A), evaluates the e�ort, depending on the number of states
which can not be distinguished. Indeed, only some methods, as the HSI method
[LPB93], accept systems with non distinguishable states, but they demand more ef-
forts to create test sequences.

• The State Characterization degree, W (A), evaluates the e�ort, depending on the length
of the input sequences needed to distinguish the system states.

• The Abstraction degree, AB(A), compares the speci�cation 's states number to the
implementation 's states number. The implementation is less abstract, then it contains
more states. And this di�erence a�ects the testability.

All these factors are joined in a vector, called the Testability vector, TV of a system A,
and

TV (A) =< C(A), F (A),W (A), AB(A) >

.

2.2 Timed system model

2.2.1 Timed Input Output automata (TIOA)

Timed automata [AD94] are graphs representing timed systems during their executions. To
represent time in timed systems, a set of clocks is associated to the automaton. Each clock
is represented by a real value (dense time representation) and grows strictly monotonically.
All clocks are set to 0 in the initial state. Clocks can be reset on any transition.

De�nition 2.1 (Clock constraint [AD94]) Let CA be a �nite set of clocks, and xi ∈ CA.

A clock constraint δ over xi is a boolean expression of the form δ = xi ≤ c | c ≥ xi | ¬δ | δ1∧δ2
where c ∈ Q.

The set of clock constraints over CA is denoted Φ(CA).

Timed Input Output automata are extended timed automata where symbols are divided
into input symbols and output symbols.

De�nition 2.2 (Timed Input Output automata) A TIOA A is de�ned as a tuple <
ΣA, SA, s

0
A, CA, EA >, where:

• ΣA is a �nite alphabet,

• SA is a �nite set of states,

• s0A is the initial state,

• CA is a �nite set of clocks,

• EA ⊆ LA × ({?, !} × ΣA)× 2CA × Φ(CA) is the �nite set of transitions.

An input symbol begins with "?" and an output one begins with "!".

A tuple < l, l′, a, λ,G > represents a transition from state l to state l′, labeled with the

symbol a. The subset λ ⊂ CA gives the clocks to be reset within this transition, and

G is a clock constraint over CA.

A transition Si
?x−→ Sj , labeled by the input symbol "?x", models an input action induced

by the external environment of the implementation. A transition Si
!x−→ Sj , labeled by the

output symbol "!x", represents an output action executed by the implementation.
An example of TIOA is illustrated in �gure 2, which models a part of the MAP-GSM

protocol with addiction of time, represented by two clock x and y. If we consider the

transition TMP3
!O6−−→ DE, the clock constraint x ≥ 2 should be satis�ed in order to the

system sends "!O6".
Dense time representation is modelled in TIOA with systems of inequations, added on

any transitions. Testing temporal properties of an implementation with only these ones
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Figure 2: A part of the MAP-GSM protocol with addiction of two clocks

seems di�cult since the tester can only deals with clock values, during test execution. So,
most of testing methodologies, using TIOA model [LC97, PLC98] translate these constraints
into time intervals. That is, for each transition t ∈ EA, and for each clock x ∈ CA, the
minimal clock value of x allowing to reach t and the maximal clock value of x allowing to
execute t, are computed. Therefore, we obtain card(CA) time intervals satisfying together
the execution of t. Note, the complexity to compute these time intervals is lower than
computing the corresponding region graph, but interaction between clocks is prohibited.
Figure 3 represents the translated automaton of Figure 2 with time intervals.
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Figure 3: Clock constraints modelled with time intervals

2.2.2 Region Graph

De�nition 2.3 (Clock valuation [AD94]) A clock valuation over a set of clocks CA is a

mapping v that assigns to each clock x ∈ CA a value in IR+, called clock value. We denote

the set of clock valuation by V (CA).
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A clock valuation v satis�es a clock constraint G, denoted v |= G, if and only if G is evaluated

to true under v.
For d ∈ IR+, v+d denotes the clock valuation which assigns a value v(x)+d to each clock x.
For X ⊆ CA, [X → d]v denotes the clock valuation for CA which assigns d to each x ∈ X,

and agrees with v over the rest of the clocks.

So, if n is the number of clocks of A, a clock valuation is a n-tuple of clock values. With
this previous de�nition, we can say the future behavior of a timed system is determined by
its states and by the clock valuations over CA. This motivates a new representation of timed
systems, by combining these states and these clock valuations. An equivalence relation is
de�ned in [AD94] in order to gather clock values which have the same integral parts.

For any t ∈ IR+, fract(t) denotes the fractional part of t and ⌊t⌋ denotes the integral
part of t.

De�nition 2.4 (Clock Region [AD94]) Let A =< ΣA, LA, l
0
A, CA, EA > be a timed au-

tomaton. For each x ∈ CA, let cx be the largest integer c such that (x ≤ c) or (c ≤ x) is a

subformula of some clock constraints appearing in EA.

The equivalence relation ∼ is de�ned over the set of all clock interpretations for CA;

v ∼ v′ i� all the following conditions hold:

• For all x ∈ cA, either ⌊v(x)⌋ and ⌊v′(x)⌋ are the same, or both v(x) and v′(x) are

greater than cx.

• For all x, y ∈ CA with v(x) ≤ cx and v(y) ≤ cy, fract(v(x)) ≤ fract(v(y)) i�

fract(v′(x)) ≤ fract(v′(y)).

• For all x ∈ CA with v(x) ≤ cx, fract(v(x)) = 0 i� fract(v′(x)) = 0.

A clock region for A is an equivalence class of clock valuations induced by ∼.

We will use [v] the clock region to which v belongs. Clock regions can be illustrated by
polyhedrons containing several vertices. For a clock region R, we also say a clock valuation
c ∈ R i� c satis�es all the inequations of R.

De�nition 2.5 (Time Successor) A clock region R′ is a time-successor of a clock region

R i� for each v ∈ R, there exists a positive t ∈ IR such that v + t ∈ R′

Region graphs are equivalent representations of timed automata where timed constraints
are moved into states. A region graph state is a tuple containing one state of the TIOA and
one clock region. This new representation allows to distinguish each time interval during
which an action may be executed. An algorithm to transform TIOA into region graphs is
given in [AD94].

De�nition 2.6 (Region Graph) Let A = (ΣA, SA, s
0
A, CA, EA) be a timed input output

automaton. A region graph of A is an automaton RA = (ΣRA, SRA, s
0
RA, ERA) where:

• ΣRA = ΣA ∪ δ,where δ represents the time elapsing,

• SRA ⊆ {⟨s, [v]⟩ | s ∈ SA ∧ v ∈ V (CA)}
• s0RA = ⟨s0A, [v0]⟩ where v0(x) = 0 for all x ∈ CA

• RA has a transition, q
a−→RA q′, from state q(⟨s, [v]⟩) to state q′(⟨s′, [v′]⟩) with the

symbol a, i� either

� a ̸= δ and there is a transition (s, s′, a, λ,G) ∈ EA and d ∈ R+ such that (v+d) |=
G and v′ = [λ 7→ 0](v + d),

� a = δ, s ̸= s′ and there exists d ∈ R+ such that v′ = v + d.

Region graphs can be minimized using the algorithm, described in [YL93], which generates
the portion of the minimized system that is reachable in polynomial time. Consequently, all
clock regions, in which the same actions can be executed, are gathered into one clock region.
So, the number of states of a region graph is strongly reduced.

For example, we obtain from the TIOA, illustrated in �gure 2, the following minimized
clock regions:
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Clock Region Inequations
r1 0 ≤ x = y < 1
r2 x ≤ 2, y ≤ 2 and x ≤ y ≤ x+ 1
r3 y ≤ x < 2
r4 y ≤ x ≤ y + 2 and 2 ≤ x < 3
r5 y ≤ x ≤ y + 2 and 3 ≤ x < 4
r6 y ≤ x ≤ y + 2 and x ≥ 4

They also can be illustrated with �gure 4.
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Figure 4: Clock regions of A

Finally, the �gure 5 describe the minimized region graph generated from the previous
TIOA (�gure 2).
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Figure 5: The region graph obtained from A

2.3 Timed testing methodologies

We present brie�y the main and common steps of the timed system test methodologies
which aims to check the temporal and behavior properties of timed implementation, by
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means of a conformance relation, describing an equivalence relation between this one and
the speci�cation.

The �rst step consists in generating sequences of actions, called test sequences by gath-
ering information on speci�cation behavior in order to characterize it. These sequences can
be generated automatically or can be given by the designer.

In order to check the conformity of the implementation, each test sequence is executed
by means of a speci�c test architecture [PF99b, ?], which consists in:

• An implementation under test (I.U.T), composed by two points of control and observa-
tion (PCO), one for submission of the input events and another one for the observation
of the output events.

• The tester, which executes a speci�c algorithm able to submit and to control the imple-
mentation test. In [], the tester does not contain clocks but can interrogate the I.U.T
ones to obtain clock values. In contrary, in [PF99b], the tester uses its own clocks
synchronized with the I.U.T ones. As the I.U.T is seen as a black box, the only way to
check behavior properties, with the tester, is to apply test sequences to the I.U.T, and
by observing its reactions (output actions).

3 Timed Systems Testability

Testability of untimed systems, allows to evaluate the quality of test induced by the observ-
ability and the controllability of theses ones. For timed systems, all the previous degrees can
be always used to evaluate these two notions.

However, it is necessary to introduce several new degrees, depending only on timing
constraints to evaluate the in�uence of time on timed systems testing. Timed systems can
be represented with many models, but usually, TIOA and region graph models are at the
heart of any veri�cation or testing technique (for example see [DY95, NSY92, LC97]). In
this �eld, we will focus on theses models, in order to study their temporal properties, and
we will show that some of these ones prevent the coverage of all of the parts of the system,
which implies a lost of error detection, and that the other ones improve the testing cost.

For each temporal property, reducing timed systems testability, we de�ne a new degree,
giving a value included between 0 and 1 : so, the more each degree is close to 1, the more
the timed system is testable, and in contrary, if each degree is close to 0, the test will
not prove the conformance of the whole implementation. Consequently, the computation of
these ones, which can be done before the test and before the generation of the test suite, will
allow to evaluate if an implementation may be correctly tested in taking into account timing
constraints.

In all this section, we will use a system described with a TIOA A = (ΣA, SA, s
0
A, CA, EA)

and its region graph RA = (ΣRA, SRA, s
0
RA, ERA).

3.1 Preliminaries

Let δ representing the elapse of time in a system A and RA = (ΣRA, SRA, s
0
RA, ERA) the

region graph of A. So, we de�ne these sets:

• IA is the set of time intervals computed from A (section 2.2.1).

• QA = {sequence σ | ∀ transition t ∈ σ, σ contains only one time t} is the set of cover
sequences of A. This set contains the sequences of A without taking into account the
property of connectivity of A. To build this set, the cover tree of the graph can be
construct. This tree must begin with the initial state. The sequences of QA are all the
sequences of the tree. We also denote QRA the set of cover sequences of RA.

• RRA = {[v] | ∃(s, [v]) ∈ SRA}, is the set of clock regions of the system RA

• UR = {(s,R) | (s,R) ∈ SRA, ∃a ̸= δ,∃(s2, R′) ∈ SRA, (s,R)
a−→ (s2, R

′)}, is the set of
state which may be executed in the region R, and where an action may be performed.
This set allows to know the number of references to the clock region R in the region
graph.
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• AT = {(s, a, λ, s′) ∈ ERA | a ̸= δ}, is the set of transitions where each action is not an
time elapsing. AT ⊆ ERA

• IT = {(s, a, λ, s′) ∈ AT | a is an input symbol} is the set of input actions.

3.2 TIOA Testability

By studying timing constraints of TIOA, modelled by time intervals (see section 2.2.1), we
propose to de�ne four degrees which are the TIOA Time Shape Degree (Stioa), TIOA Time
Reachability Degree (Rtioa)), TIOA Controllability Degree (Ctioa), TIOA Time Independency
Degree (Itioa).

The �rst two degrees allows to evaluate the test coverage of the system behavior, and
thus, to evaluate the part of the system which may not to be tested. The last ones measure
a part of the e�orts needed for the test execution, depending, in this case, on the number
of clocks of the system, and the time needed to execute all of its actions. Because we don't
consider the testing methodology and the test sequences, we cannot evaluate with precision
the cost of the test execution, but we evaluate a factor which in�uences it.

Then we gather the previous degrees into a vector, called the Timed testability Vector of
TIOA, such as: TTVtioa(A) =< Stioa, Rtioa, Ctioa, Itioa >

3.2.1 TIOA Time Shape Degree

Timed systems may be speci�ed with some clock constraints, as xi ≥ c, xi ∈ CA, c ∈ IR+,
which can generate an in�nite time interval for xi. Such an interval I cannot be used for
testing, without being bounded since the testing time must be �nite. Indeed, for transitions
labeled with an input symbol ?A, the choice of clock values, used for sending ?A to the I.U.T,
seems di�cult on account of the in�nity number of clock values in I. And for transitions
labeled with an output symbol, the tester, which must receive the symbol for any clock value
of I could wait inde�nitely.

Consequently, all the time intervals of A must be bounded, before testing. However, we
test only a part of the behavior of A and this implies that some potentials errors, executable
in in�nite intervals, could not be detected. So, the system can be only partially tested, and
fault detection is reduced.

So, the number of in�nite time intervals in�uences the coverage of all parts of the system.
Hence, we propose a new degree, denoted the TIOA Time Shape Degree (St) in order to
measure this evaluation. Let INFA = {I ∈ IA | I = [a,∞], a ∈ IR+}, be the set of in�nite
time intervals of A. For the system A, St(A) is calculated as:

St(A) = 1− card(INFA)

card(IA)
and 0 ≤ St(A) ≤ 1

Consequently, the greater St(A) is, the more the system A will be covered by the test. If
St(A) equals to 1, the system A does not contains in�nite time intervals, and A is the most
testable. In contrary, if St(A) equals to 0, all of the time intervals are in�nite, and only a
little part of the behavior of A will be tested. The detection of faults is not su�cient.

Consider the TIOA, illustrated in �gure 3, and its speci�cs time intervals. By measuring
the TIOA Time Shape Degree, we obtain four transitions with in�nite time intervals. And
as Card(IA) = 34, we obtain Stioa = (A) = 13

17 . Consequently, during the test execution,
the system will be only partially tested, and the execution of "?I1", "!O1", "?15" and "!O9"
may generate non detectable errors.

3.2.2 TIOA Time Reachability Degree

During the test, the behavior of the I.U.T is di�cult to be controlled, i.e, it is di�cult to force

execution of sequences of actions, at speci�c clock values. Indeed, an output action S
!A−→ S′

can be executed at any clock values of the time intervals set I, satisfying the execution of
this action.

But, if we want to test an action "A", each implementation's clock xi must satisfy at
least one clock value of the time interval [Ti1Ti2] ∈ I. We will say the clocks must enter in
their corresponding time intervals, i.e. these ones must be reachable. If one or more time
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intervals cannot be reached, then the action won't be able to be tested. So, the system can
be only partially tested, and fault coverage is reduced.

Let
A−−−−−−−−−−−−−→

⌊T ′
11T

′
12⌋...⌊T ′

n1T
′
n2⌋

B−−−−−−−−−−−−−→
⌊T11T12⌋...⌊Tn1Tn2⌋

be two consecutive transitions with, for each

clock xi the timing constraints represented by the time interval [Ti1Ti2]. We consider that
the set I of the times intervals [T11T12], ..., [Ti1Ti2], ..., [Tn1Tn2] can be reachable by the clocks
if the following assumptions are satis�ed :

Case 1: If "A" is an output action, for each clock xi ∈ CA, the time interval [Ti1Ti2] must
contain clock values which do not belong to [T ′

i1T
′
i2], thus Ti2 > T ′

i2. The execution of
"A" is uncontrollable, so this hypothesis must be veri�ed to always reach I.

Case 2: For each clock xi ∈ CA and xj ∈ CA with i ̸= j, the elapse of time between [T ′
i1T

′
i2]

and [Ti1Ti2] must be the same as the elapse of time between [T ′
j1T

′
j2] and [Tj1Tj2], since

the clocks grows with the same manner and strictly monotonically. So, Ti1 − T ′
i1 =

Ti2 − T ′
i2 = Tj1 − T ′

j1 = Tj2 − T ′
j2.

Case 3: For each clocks xi ∈ CA and xj ∈ CA with i ̸= j, if xj is reset with the execution of
"A", the elapse of time, needed to reach [Ti1Ti2] from [T ′

i1T
′
i2] must be between [Tj1Tj2],

and this can be veri�ed with: Ti1 ∈ [Tj1 + T ′
i1Tj2 + T ′

i1] and Ti2 ∈ [Tj1 + T ′
i2Tj2 + T ′

i2]

Proof:
For the case 1, suppose that Ti2 ≤ T ′

i2. [T ′
i1T

′
i2] is composed by the following intervals

[T ′
i1Ti1] + [Ti1Ti2] + [Ti2T

′
i2]. If the output action "A" is executed by the system at any clock

value of [Ti2T
′
i2] ("A" is uncontrollable), then the time interval [Ti1Ti2] cannot be reached

by the clock. Consequently the assumption Ti2 > T ′
i2 must be satisfy.

For the case 2, let T ′
i1 ≤ x ≤ T ′

i2 and T ′
j1 ≤ y ≤ T ′

j2 the clock values of the clock xi and
xj during which "A" is executed. The clocks of CA grows in the same manner and strictly
monotonically and none clock is reset, so let d ∈ IR+ such as Ti1 ≤ x′ = x + d ≤ Ti2 and
Tj1 ≤ y′ = y+ d ≤ Tj2. x

′ and y′ are the clock values of [Ti1Ti2] and [Tj1Tj2] reached by the
clocks after the execution of "A". Ti1 ≤ x+ d ≤ Ti2 is equivalent to Ti1 − d ≤ x ≤ Ti2 − d,
thus Ti1 − d = T ′

i1 and Ti2 − d = T ′
i2. In the same way, we easily obtain Tj1 − d = T ′

j1 and
Tj2 − d = T ′

j2. Consequently, Ti1 − T ′
i1 = Ti2 − T ′

i2 = Tj1 − T ′
j1 = Tj2 − T ′

j2.
For the case 3, let x be the clock value of xi after the execution of "A". For the clock

xj , this value obviously equals to 0. Consequently, the elapse of time d, needed to reach the
set of time intervals I, is such as Tj1 ≤ d ≤ Tj2. Let x

′ = x + d the clock value reached by
xi in [Ti1Ti2]. We obtain T ′

i1 + d ≤ x′ = x+ d ≤ T ′
i2 + d, and d = Ti1 − T ′

i1 = Ti2 − T ′
i2. So,

we obtain Tj1 ≤ Ti1 − T ′
i1 ≤ Tj2, and �nally Ti1 ∈ [Tj1 + T ′

i1Tj2 + T ′
i1]. In the same way, we

conclude that Ti2 ∈ [Tj1 + T ′
i2Tj2 + T ′

i2].

So, for a transition t, consecutive of t′, such as
{?!}×ΣA−−−−−−−−−−−−−→

⌊T ′
11T

′
12⌋...⌊T ′

n1T
′
n2⌋

{?!}×ΣA−−−−−−−−−−−−−→
⌊T11T12⌋...⌊Tn1Tn2⌋

, let

Nt be the number of time intervals satisfying all of the previous cases. We de�ne a �rst
factor ρ measuring the di�culty to reach It = {[T11T12], ..., [Tn1Tn2]} from the time intervals
It′ , obtained after having executed the action of t′. Note that if t is an outgoing transition
of the initial state, then It′ = {0, ..., 0}. ρ is evaluated as:
ρ(It) =

Nt

card(CA) , and 0 ≤ ρ(It) ≤ 1

Now, let SEQt be the set of sequences of QA, allowing to reach t. Each sequence σ ∈
SEQt does not contain redundant transition. The di�culty to reach It with σ is denoted
Reach(It, σ) and is evaluated as:

Reach(It, σ) =
∏
t∈σ

ρ(It)

Then, we can �nally de�ne the time reachability of the set of time intervals It = with the
Time Intervals Reachability Degree of It, denoted RT (It) and evaluated as:

RT (It) =

∑
σi∈SEQt

Reach(It, σi)

Card(SEQt)
and 0 ≤ RT (It) ≤ 1

If, for a transition t ∈ EA, RT (It) = 1, each clock xi ∈ CA can reach the corresponding
time interval [Ti1Ti2], and we say It is completely time reachable. In contrary, if RT (It) = 0,
the transition t is not testable, hence only a part of the system will be tested. A modi�cation
of the timing constraints should be necessary.
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Finally, for the whole system, we de�ne the TIOA Time Reachability Degree of the TIOA
A, denoted Rtioa(A) which aims to measure the average reachability of time intervals sets It
of A, with t ∈ EA. It can be evaluated as:

Rtioa(A) =

∑
{!?}×ΣA−−−−−−→

It
∈EA

RT (It)

Card(EA)
, and 0 < Rtioa(A) ≤ 1

Consequently, the greater Rtioa(A) is, the more testable the system is. If Rtioa(A) = 1,
all time intervals are reachable by the clocks for at least for one clock value. If Rtioa(A) is
close to 0, most of the time intervals are not reachable by the clocks, thus only a little part
of the system (the outgoing transitions of the initial state) can be checked during the test
execution. We can note this factor can also in�uence the choice of the preambles, indeed,
for reaching an action of the system, all actions of the preamble p must be executed, thus
all time intervals of p must be reachable.

The following results show the reachability of each time intervals of the TIOA, illustrated
in �gure 3 .

Transition Time Intervals card(SEQ) RTrg

I
?I2−−→ DP X[0 1] Y[0 1] 0 1

I
?I3−−→ WFUR X[0 2] Y[0 2] 0 1

WFUR
?I4−−→ TMP3 X[0 2] Y[0 2] 1 1

TMP3
?I4−−→ WFUR X[0 2] Y[0 2] 1 1

WFUR
?I1−−→ TMP5 X[2 10] Y[2 10] 2 1

TMP5
!O1−−→ I X[2 10] Y[2 10] 2 1

DP
?I7−−→ DAcc X[0 2] Y[0 2] 1 1

DAcc
?I4−−→ TMP4 X[0 2] Y[0 2] 1 1

TMP4
!O3−−→ DAcc X[0 3] Y[0 3] 1 1

DAcc
?I16−−−→ TMP1 X[0 2] Y[0 2] 2 1

2

TMP1
!O3−−→ I X[0 2] Y[0 2] 2 1

2

DAcc
?I11−−−→ TMP3 X[2 4] Y[2 4] 2 1

TMP3
!O6−−→ DE X[2 4] Y[2 4] 2 1

DE
?I15−−−→ TMP2 X[4 10] Y[4 10] 2 1

TMP2
!O9−−→ I X[4 10] Y[4 10] 2 1

DE
?I13−−−→ WFC1 X[2 4] Y[2 4] 2 1

DE
?I14−−−→ WFC2 X[2 4] Y[2 4] 2 1

Finally, the Time intervals Reachability Degree becomes Rtioa(A) =
16
17 . So, most of the

time intervals are reachable during test execution, but the system will be partially tested

on account of the consecutive transitions TMP4
!O3−−→ DAcc

?I16−−−→ TMP1. Indeed, this case
corresponds to the third case of unreachability. So, the execution of actions "?I16" and "!O5"
may not to be always checked, during the testing process.

3.2.3 TIOA Controllability Degree

The Controllability Degree, �rst de�ned in [KGD96], aims to evaluate the di�culty to reach
each action of the implementation, during the test. The set of sequences, allowing to reach
these actions, is called the set of preambles, denoted P . Each preamble p ∈ P constitutes
a bone of the test sequences and P guarantees the access of each action. Consequently,
P a�ects the testing cost. Indeed, the longer the execution of preambles is, the longer the
execution of the test will be. So, a degree is necessary to evaluate the testing cost, depending
on P . P is not unique, but we consider that P ⊆ QA. In this case, the maximum length of
a preamble p is n− 1, with n the number of states of A, and no action of p is redundant.
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With untimed systems, the length of preambles is su�cient to evaluate the Controllability
Degree. Indeed, the longer the sequences of actions, applied to an I.U.T is, the more di�cult,
the action to reach, will be.

With timed systems, execution of preambles needs time, so the length of preambles is not
su�cient. To evaluate the di�culty to reach each action of a timed system, we must take
into account the time consuming induced by the execution of each preamble p ∈ P . As this
time is not constant, we consider the three following cases :

• After executing an action a1 of p, it may be necessary to wait before executing the next
action a2. Indeed, the clock of the system must satisfy all of the time intervals of a2
to execute it, so an elapse of time could be needed.

• Let
?A−−→ be a transition labeled by an input action, and [T11T12], ..., [Tn1Tn2] be the

time intervals of the clocks X1, ..., Xn. During the test execution, the tester can send
"?A" for any clock values satisfying these time intervals. For evaluating the execution
cost of p, we will consider two executions: a �rst one, during which each input action
is sent immediately (none elapse of time), and a second one, during which each input
action is executed the latest possible. In this last case, an elapse of time is necessary
before sending each input action, and this one equals to min{[T12−X1], ..., [Tn2−Xn]}
which represents the maximal interval of time during which the action can be executed.

• Let
!A−→ be a transition labeled by an output action, and [T11T12], ..., [Tn1Tn2] be the

time intervals of the clocks X1, ..., Xn. During the test execution, the tester should
receive the symbol "!A" at any clock values satisfying the time intervals. As we cannot
determine when the action is executed, we will consider "!A" is received the latest
possible. In this case, we must also consider the existence of an elapse of time before
the reception of "!A" and this one also equals to min{[T12 −X1], ..., [Tn2 −Xn]}.

After studying these assumptions, we propose the following algorithm to compute the
minimal time execution Emin and the maximal time execution Emax.

Algorithm Computation of Emin

V = {X1, ..., XN} is a set of clocks initialized to 0

FOR each t ∈ p with the time intervals
{[T11T12]...[T11T12]}

% All time intervals not yet reached
IF X1 /∈ [T11T12] OR ... OR XN /∈ [TN1TN2]

THEN

 d = MAX{T11 −X1, ..., TN1 −X1}
V = {X1 + d, ...,XN + d}
Emin = Emin + d

IF t is labeled with an output symbol

THEN


d = MIN{[T12 −X1], ..., [Tn2 −Xn]}
Emin = Emin + d
V = {X1 + d, ...,XN + d}
Reset the clocks of

IF t is labeled with an input symbol
THEN Reset the clocks of λ

ENDFOR
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Algorithm Computation of Emax

V = {X1, ..., XN} is a set of clocks initialized to 0

FOR each t ∈ p with the time intervals
[T11T12]...[T11T12]

% All time intervals not yet reached
IF X1 /∈ [T11T12] OR ... OR XN /∈ [TN1TN2]

THEN

 d = MAX{T11 −X1, ..., TN1 −X1}
V = {X1 + d, ...,XN + d}
Emin = Emin + d

d = MIN{[T12 −X1], ..., [Tn2 −Xn]}
Emin = Emin + d
V = {X1 + d, ...,XN + d}
Reset the clocks of λ

ENDFOR

Then, to evaluate the cost to reach a transition t with the preamble p, we de�ne the
TIOA Controllability Degree, denoted CTtioa(p, t) and calculated with:

CTtioa(p, t) = 1− Emin(p) + Emax(p)

maxpi∈QA
{Emin(pi) + Emax(pi)}

and 0 ≤ CTtioa(p, t) ≤ 1

This degree evaluates the di�culty to reach a transition t with p by comparing the two
execution of p with a preamble pi ∈ QA which have the greatest execution time. If CTtioa(p, t)
equals to 0, p is the preamble of QA which demands the longest time to reach t. In contrary,
if CTtioa(p, t) equals to 1, p is executing without consuming time.

Now, we can measure the di�culty to reach all of the actions of the system A, by calcu-
lating the average of CTtioa of each preamble p t−→, allowing to reach a transition t. Therefore,

the Timed System Controllability Degree, denoted Ctioa(A) is evaluated with:

Ctioa(A) =

∑
t∈EA

CTtioa(p t−→, t)

card(EA)
and 0 ≤ Ctioa(A) ≤ 1

Consequently, the longer the time, needed to execute the set of preamble is, the less
testable the system A is, and the greatest test costs will be. If Ctioa(A) equals to 0, execution
of the preamble of P demands the longest time in comparison with all the preambles of QA

that we can choose. In this case, test costs are the greatest. So, the set of preambles P
should be modi�ed. If Ctioa(A) equals to 1, the preambles of P does not need time to be
executed. A such situation can be obtained if no preamble is necessary to reach actions, or
if time intervals length equals to 0.

The measurement of the TIOA Controllability Degree of the example of �gure 3 gives
the following results. We choose the set of preambles denoted in the following tabular. The
sequence of QA which is executed with the longest time is ?I2?I7?I11!O6?I15!O9?I3?I1
with Emin = 12 and Emax = 21.
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Preamble Nb of Transition Reached Emin Emax CTrg

ϵ 2 0 0 1
?I3 2 0 2 31

33
?I3?I4 1 0 2 31

33
?I3?I1 1 2 10 21

33
?I2 1 0 1 32

33
?I2?I7 3 0 2 31

33
?I2?I7?I16 1 0 3 30

33
?I2?I7?I4 1 0 3 30

33
?I2?I7??I4!O3I11 1 3 5 26

33
?I2?I7?I11!O6 3 4 5 24

44
?I2?I7?I11!O6?I15 1 4 11 18

33

As Card(EA) = 17, we obtain CT (A) = 41
51 . This study shows the set P , we have chosen,

allows to reach actions of the system rapidly, in comparison with all its sequences, because
most of preambles are executed with a low cost. However, the preamble ?I2?I7?I4!O3?I11
should be replaced by ?2?I7?I11 which demands less e�orts, thus which is more useful for
testing.

3.2.4 TIOA Time Independency Degree

Dense time notion is modelled in a TIOA A with one set of clocks CA, and this one can be
composed by any number of clocks, and it is rarely minimal. Indeed, most of speci�cations,
are written in a high-level abstraction with timeouts, and later compiled into timed automata,
having a clock number proportional to these timeouts, but these ones are rarely active in the
same time. However, this non minimal number of clocks also in�uences the test costs.

Indeed, the complexity of constructing time intervals depends essentially on the cardinal
of CA, since the number of time intervals per transitions equals to CA. The complexity to
translate TIOA to region graph is also essentially based on Card(CA) (see [AD94]). Costs
of tests execution are also in�uenced by this number, since the tester must check if either
each clocks of the I.U.T (test architecture described in []) or each of its own clocks (test
architecture described in [PF99b]) satis�es the speci�ed time intervals, after executing an
output action.

As the number of clocks may be in�nite, the in�uence of these ones, on the test, seems
di�cult to evaluate. So, we consider that a system, speci�ed with a number of clocks upper
to the number of transitions, must be reduced.

Now, we can de�ne the TIOA Time Independency Degree of a TIOA A, denoted Itioa(A),
which aims to measure the in�uence of the number of clocks on the test costs. This one is
evaluated as:

Itioa(A) = 1− Card(CA)− 1

Card(EA)− 1
and 0 ≤ Itioa(A) ≤ 1

Consequently, the more Itioa(A) is close to 1, the more the test costs are reduced and the
system is testable. IfItioa(A) is equals to 1, only one clock is used to specify the system,
so the test costs depends essentially on the controllability of A. If Itioa(A) equals to 0, the
number of clocks equals to the number of transitions, and the system should be reduced. In
[DY96], a method is proposed in order to reduce the number of clocks in a extended timed
automaton.

If we apply this degree on the TIOA of the Figure 3, we obtain Itioa = 15
16 . We can

conclude that the testing costs are little in�uenced by the number of clocks of the system
since it contains only two clocks.

3.3 Region graph Testability

With region graphs, timing constraints are represented with clock regions (see section 2.2.2),
and after studying them, we propose also to de�ne four factors to evaluate the testability of
region graph model. These factors are the same as TIOA ones but the properties in�uencing
region graphs test are di�erent: the Timed Shape degree (Srg(A)), the Timed Reachability
degree (Rrg(A)), the Timed Controllability degree (Crg(A)) and the Timed Independency
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degree (Irg(A)). The �rst two degrees in�uence also the coverage of the system during the
test, and the last ones the cost of the test execution.

In the same way, we gather them in a vector, called the Timed Testability Vector of
region graphs, such as:

TTVrg(A) =< Srg(RA), Rrg(rA), Crg(rA), Drg(RA) >

3.3.1 Region Graph Shape degree

Region graphs may also contain clock regions which can contains in�nite clock valuations.
Indeed, some clock constraints, like xi ≥ c, xi ∈ CA, c ∈ IR+ can imply such clock regions.
We de�ne such a clock region Ri which have in�nite values as an in�nite clock region:

De�nition 3.1 (In�nite Clock Region) Let [v] be a clock region. [v] is an in�nite clock

region i�: ∀d ∈ IR+,∃v ∈ [v],∃xi ∈ CA, v(xi) + d ∈ [v]

The test of an action, in such a in�nite clock region Ri is impossible, indeed, as we have
seen in section ?? the testing time must be �nite, thus such a clock region must be bounded,
that is all clocks, given in�nite clock values, must be bounded. In this case, we still test only
a part of the region graph RA because its behavior can be only checked in a smaller clock
region R′

i ⊂ Ri, bounded for each in�nite clock. So, the system can only be partially tested,
and fault coverage is reduced , on account of these clock regions.

Let IRi = {xj ∈ CA | ∀M ∈ IR+,∃v ∈ Ri | v(xj) + M ∈ Ri}, be the set of in�nite
clocks of the system in the region Ri. Card(IRi) a�ect the testability. Indeed, the greater
Card(IRi) is, the less completely tested a system will be in Ri. So, we propose a �rst factor,
measuring this evaluation. We call it the Time Shape Degree of a Region Ri, denoted ST ,
and we evaluate it with

ST (Ri) = 1− card(IRi)

card(CA)
, and 0 ≤ ST (Ri) ≤ 1

If ST (Ri) equals 1, we say Ri is completely shaped, and all actions, which can be executed
in Ri, will be completely tested in Ri. If ST (Ri) equals 0, the system is the most partially
tested in Ri.

To measure this evaluation on the complete system A, we de�ne a new degree, called the
Region Graph Time Shape Degree, denoted Srg(RA) and we evaluate it, for the system RA
with:

Srg(RA) =

∑
Ri∈RRA

ST (Ri) ∗ card(URi)

card(AT )
and 0 ≤ Srg(RA) ≤ 1

Therefore, the greater Srg(RA) is, the more testable the system will be. If Srg(A) equals
1, all the clock regions are completely bounded, and ∀Ri ∈ RRA, IRi

= ∅. In this case, the
system may be theoretically completely tested, and we say the system is completely timed
shaped. On the other hand, if Srg(A) equals 0, RA have a unique in�nite clock region Ri,
with IRi = CA. In this case, the system is the less testable.

If we consider the Region graph, illustrated in �gure 5, and its six regions (�gure 4), we
evaluate:

Clock Region Nb Clocks Unbounded card(URi) STrg

R1 0 4 1
R2 0 4 1
R3 0 4 1
R4 0 7 1
R5 0 6 1
R6 2 4 0

and Card(AT ) = 29. Finally, we obtain Srg = (RA) = 25
29 . This factor means the system

RA is not completely timed shaped, on account of the clock region R6 which contains in�nite
tuple of values.
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3.3.2 Clock Region Reachability Degree

The translation of TIOA into region graphs generates clock regions which are the represen-
tation of timing constraints of TIOA. All clock regions of a sequence of transitions are time
successor, that is, for each clock valuation of the initial clock region, the clocks can reach
a valuation of a next clock region. In spite of this new property, we will show that clock
regions are not always reachable on account of the uncontrollable behavior of the system,
that is on account of the output actions.

Let ρ(Ri, (S,Rj)
a−→ (S′, Ri)) be the factor which evaluates the di�culty to reach the

region Ri with the transition (S,Rj)
a−→ (S′, Ri), knowing that the system's clocks are in Rj .

The evaluation of this factor depends on three cases:

• If Ri is the �rst region reached by the system's clocks, (without executing any action),
Ri is always reachable. In this case, the di�culty to reach Ri is denoted ρ(Ri, ϵ), and
ρ(Ri, ϵ) equals to 1.

• If the action is an input transition (S,Rj)
?A−−→ (S′, Ri), then, the di�culty to reach

Ri also equals to 1. Indeed, the tester de�ne when the I.U.T executes the action, by
sending "?A" at a clock valuation of Rj . The tester control the execution of the action.

So, Ri is always reachable, and ρ(Ri, (S,Rj)
?A−−→ (S′, Ri)) equals to 1.

• If the action is an output action, (S,Rj)
!A−→ (S′, Ri), the di�culty to reach Ri depends

only on the behavior of the I.U.T. If this output action may be performed in several
clock regions Rj , ..., Rl, and allows to reach Ri, ..., Rk, we obtain the graph of the �gure
6. This case comes from the times intervals which are cut into several clock regions
during the region graph translation process.

S Rj

S’ Ri

!A

S Rj+1

S’ Ri+1

!A

S Rl−1

S’ Rk−1

!A

S Rl

S’ Rk

!A

....

Figure 6: An example of reachability with an output action

In this case, the di�culty to reach Ri is obviously di�erent from 1, because others
clock regions can also be reached, instead of Ri. We consider the I.U.T 's clocks
can reach Ri, ..., Rk, with the same rate. Therefore, the di�culty to reach Ri, with

(S,Rj)
!A−→ (S′, Ri) is measured with:

ρ(Ri, (S,Rj)
!A−→ (S′, Ri)) =

1

Card({Si|S
δ−→Si})+1

• Finally, if the action represents an elapse of time (S,Rj)
δ−→ (S′, Ri), the di�culty to

reach Ri depends on the number of output action which can also be executed from
(S,Rj). Indeed, either the system reaches Ri with δ or it executes any output action.
Moreover, note that we cannot have two outgoing transitions labeled with δ since clocks

grow simultaneously. In this case, the di�culty to reach Ri with (S,Rj)
δ−→ (S′, Ri)

becomes:
ρ(Ri, (S,Rj)

δ−→ (S′, Ri)) =
1

Card({Si|S
!×ΣRA−−−−→Si})+1

.

In most of the cases, it is necessary to execute a sequence of actions to reach a clock
region of RA. So, let SEQRi

∈ QRA be the set of sequences allowing to reach Ri. The
reachability of Ri with a sequence σ ∈ SEQRi , denoted Reach(Ri, σ) is evaluated with:

Reach(Ri, σ) =
∏

((s,r)
a−→(s′,r′))∈σ

ρ(r′, ((s, r)
a−→ (s′, r′))).
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Finally, we measure the reachabilty of Ri, in taking into account all the sequences σi of
SEQRi . Thus, the Timed Reachability Degree of a Region Ri, denoted RT (Ri) is obtained
with:

RT (Ri) =

∑
σi∈SEQRi

Reach(Ri, σi)

Card(SEQRi
)

and 0 < RT (Ri) ≤ 1

So, if RT (Ri) equals 1, the tester may always reach Ri with any action of SEQRi . On
the other hand, if RT (Ri) is close to 0, Ri can be rarely reached, because of most of the
actions in SEQRi can also reach others clock regions.

Now, we can de�ne the Timed Reachability of a system, which evaluates the reachability
of the clock regions of the system. Consequently, the Timed System Reachability Degree ,
denoted Rrg(A) is evaluated with:

Rrg(A) =

∑
Ri∈RRA

RT (Ri) ∗ Card(URi)

Card(AT )
and 0 < Rrg(A) ≤ 1

So, the greater Rrg(A) is, the more testable the system is. If Rrg(A) = 1, we say the
system is completely timed reachable. All the clock regions of RA are completely reachable,
and actions can be tested in all time intervals. On the contrary, if Rrg(A) is close to 0,
several actions will not be tested, because most of the clock regions will not be reached by
the I.U.T 's clocks.

The following results show the reachability of each clock region of the region graph,
illustrated in �gure 5 .

Clock Region card(SEQRi) RTrg Card(URi)
R1 32 41

64 4
R2 14 11

14 4
R3 4 7

8 2
R4 28 35

56 7
R5 54 29

54 6
R6 36 23

36 4

The Clock Region Reachability Degree obtained is Rt(A) ≃ 267
400 . Consequently, we can

conclude that this system is not completely timed reachable, since no clock region cannot
be always reached with sequences of actions of the system. Indeed, the action "!O3" allows
to reach the clock regions R1, R2 from the state (TMP3, R1), and R3, R4 from the state
(TMP4, R3). In this case, we must take care of the choice of the preambles for testing. Each

action of the system can be tested, if no preamble contains the transitions (TMP3, R1)
!O3−−→

(WFUR,R1), (TMP4, R3)
!O3−−→ (DAcc,R3). Indeed, without theses preambles, all clock

regions will be reached, during the test.

3.3.3 Region Graph Controllability Degree

The evaluation of the Controllability degree, for the region graph model, is roughly the same
as the TIOA Controllability Degree one. Indeed, test cases, generated from region graphs,
still contains preambles whose contains actions which are executed in time intervals, modelled
by clock regions.

The main di�erence comes from the calculus of the minimal and the maximal time exe-
cution of a preamble p, Emin(p) and Emax(p). Indeed, the elapse of time needed to reach a
next clock region after having executed an action, and the elapse of time needed to execute
an action the latest possible, must be calculated as follow:

Elapse of time needed to reach the next clock region

Consider the sequence (s1, R1)
A−→ (s2, R2)

δ−→ (s3, R3)
B−→ (s4, R4). We need to calculate the

elapse of time, represented by δ, needed to reach R3 from any clock valuation vinit ∈ R2,
reached after executing the action "A", that is the minimal value d such as vinit + d ∈ R3.
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R1

R2

Reachable Vfinal

Time elapsing

Vinit

Figure 7: Reaching another clock region in vfinal from vinit

Let vinit = (v1, ..., vn). As, the system clocks grow with the same manner, strictly mono-

tonically, it is easy to prove they take the values of the equation

 x1 − x2 = v1 − v2
...
xn−1 − xn = vn−1 − vn

So, the �rst clock valuation vfinal reached by the clocks in R3 is unique and is obtained
by resolving the system of inequations

∆ =


Inequations of R3

x1 − x2 = v1 − v2
...
xn−1 − xn = vn−1 − vn

Finally, the elapse of time δ equals to the di�erence between vinit and the minimal solution
vfinal of ∆. An example, illustrating this elapse of time is given in 7.

Elapse of Time needed to execute an action the latest possible in a clock

region

Actions of region graphs can be executed between the �rst clock valuation vinit of a clock
region R, reached by the clocks, and the last one vfinal. For the calculus of Emin, we consider
that the output actions are executed the latest possible, that is at vfinal. And for the calculus
of Emax, all of the actions must be executed at this one. So, another elapse of time, which
is not represented in region graphs, is needed to reach vfinal. The �gure 8 illustrates this
elapse of time.

R1

Vinit

Vfinal

Time elapsing

Figure 8: Reaching the last clock valuation vfinal of a clock region from vinit

The time, needed to reach vfinal can be computed as the previous way. The clocks also
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take the values of the equation

 x1 − x2 = v1 − v2
...
xn−1 − xn = vn−1 − vn

And vfinal is the maximal solution of the system of inequations

∆ =


Inequations of R
x1 − x2 = v1 − v2
...
xn−1 − xn = vn−1 − vn

Finally, the elapse of time equals to the di�erence vfinal − vinit.
Emin(p) and Emax(p) can be still computed with the algorithms, described in section 3.2.3,
by replacing the calculus of elapse of time by the previous ones.

The di�culty to reach a transition t with the preamble p ∈ P is still evaluated with the
Region Graph Controllability Degree, denoted CTrg(p, t) and calculated with:

CTrg(p, t) = 1− Emin(p) + Emax(p)

maxpi∈QRA{Emin(pi) + Emax(pi)}

and 0 ≤ CTrg(p, t) ≤ 1

The measurement of the cost of the time execution of the set of preambles P , can be
evaluated with the Region Graph Controllability Degree, denoted Crg(RA) which is calculated
as:

Crg(RA) =

∑
t∈AT

CTrg(p t−→, t)

card(AT )
and 0 ≤ Crg(RA) ≤ 1

Consequently, the longer the time, needed to execute the set of preamble is, the less
testable the system A is, and the greatest test costs will be. In the same way, if Crg(A)
equals to 0, execution of the preamble of P demands the longest time in comparison with all
the preambles of QRA, and test costs are the greatest. If Crg(RA) equals to 1, the preambles
of P does not need time to be executed. This situation is obtained if all of the clock regions
of RA can be represented with the point (0, ..., 0).

Now, we can evaluate the Timed Controllability Degree on the example of �gure 5. We
choose the set of preambles, denoted in the following tabular. The sequence of QRA which
is executed with the longest time is ?I2?I7?I11!O6?I15!O9?I3?I1 with Emin = 12 and
Emax = 21. We obtain the following results:

Preamble Nb of transitions reached Emin Emax CTrg

?I3 5 0 2 31
33

?I3?I4 2 0 2 31
33

?I3?I1 3 2 10 21
33

?I3?I1!O1 3 2 10 21
33

?I2 1 0 1 32
33

?I2?I7 4 0 2 31
33

?I2?I7?I16 1 0 3 30
33

?I2?I7?I4 2 0 3 30
33

?I2?I7?I11 2 2 5 26
33

?I2?I7?I11!O6 5 4 5 24
33

?I2?I7?I11!O6?I15 1 4 11 18
33

As Card(AT ) = 29, we obtain CT (RA) = 219
319 . This study shows the set P , we have

chosen, allows to reach actions of the system rapidly, in comparison with all its sequences,
because most of preambles are executed with a low cost. However, the preamble ?I3?I1!O1
should be replaced by ϵ which is a preamble which demands no e�orts, thus which is more
useful for testing.

3.3.4 Timed System Independency Degree

For timed systems, the methodology, described in [PF00], aims to test each action (Si, Ri)
?A−−→

(Sj , Rj) ∈ ERA, at clock valuations equals to the vertices of Ri. Thus, let ϑRi be the set of
vertices of the clock region Ri. The greater the number of vertices is, the longer the test of
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an input action, executed in Ri will be. Indeed, let p be the preamble allowing to reach an
input action to test. p will be applied card(ϑRi) times to the I.U.T, in order to reach each
vertex of Ri.

So, card(ϑRi) a�ect also the test cost of A. To evaluate this di�culty, we suggest a
new degree, called the Timed Independency Degree of a Region Ri, denoted IT (Ri) which
measures the di�culty to test any action in Ri, due to the number of its vertices. Let N be
max(card(ϑRi) | Ri ∈ RRA. We obtain the following:

IT (Ri) =
N − card(ϑRi)

N − 1
and 0 ≤ IT (Ri) ≤ 1

So, if IT (Ri) equals to 0, Ri is the clock region of RRA which have the more of vertices.
The test of an action in Ri will be the longest. On the other hand, if IT (Ri) equals to 1, Ri

contains only one vertex, thus only one clock valuation. Thus, the test cost is minimal with
Ri

For the complete system A, the greater the number of clock regions vertices is, the greater
the test cost of A will be. So, we de�ne the Timed System Independency Degree, denoted
It(A), to measure this evaluation:

It(A) =

∑
Ri∈RRA

IT (Ri) ∗ Card(URi)

card(AT )

and 0 ≤ It(A) ≤ 1

Thus, the more independent on time the system is, the less e�ort the test demands, and
the more testable A is. If It(A) equals 0, all the clock regions of the system are built with
N vertices. In this case, the test will be the longest, and the test cost will be the greatest.
On the other hand, if It(A) equals 1, only one clock valuation by clock region is used for
testing. Thus an action is checked only one time in a such clock region. The test will be
rapidly executed.

Now, we can apply this factor to the system described in �gure 2. Before, we will bound
the in�nite regions with x = 2 and y = 2. Then, we obtain:

Clock Region Number of vertices URi IT
R1 3 3 1

3
R2 2 3 2

3
R3 3 1 1

3
R5 4 2 0
R6 4 2 0

and Card(AT ) = 11. Consequently, we obtain It(A) = 10
33 . We can conclude that the

test cost is important with this system, on account of the number of vertices of the clock
regions.

4 Discussion and concluding remarks

In this paper, we have introduced some factors for evaluating test quality of timed system,
modelled with TIOA or region graphs. We have shown how they can be measured and their
in�uence on the testing process.

4.1 Summery

We have show that, in many cases, the timed implementation may be only partially tested,
on account either of the in�nity of the time intervals or clock regions of the speci�cation or
of the unrechability of some of its timed parts. So, the testability of timed systems does not
depend only on its observation and its control.

So, that motivates a new de�nition of testability for timed systems which is:

19



De�nition 4.1 A timed system is testable i� it is observable, controllable, and i� it can be

completely tested in all of its time parts: that is i� all time intervals or clock regions can be

always reached by the implementation 's clocks, and if each one can be completely covered

during the system functioning.

The measurement of timed systems testability, before the test sequences generation, is
obtained with the Timed Testability vector, TTVtioa or TTVrg, and with the Testability
vector TV (A), de�ned in [KGD96]. A unique value of testability can be evaluated with a
level-headed average of all these degrees.

A system A is the most testable if we obtain the following vectors TTVtioa(A) =<
1, 1, 1, 1 > and TV (A) =< 1, 1, 1, 1 >, or TTVrg(RA) =< 1, 1, 1, 1 > and TV (RA) =<
1, 1, 1, 1 >. But the best TTV can be rarely obtained, since the performance is not always
compatible with the test coverage. In fact, the best testability of timed systems depends
mainly on criteria's designer.

For example, if we want to test a software or a protocol, the more rapidly as possible,
even if it will be only partially tested in time, the vector < Ctioa, Itioa > or < Crg, Irg >
is su�cient to measure the test costs. Indeed, Ctioa or Crg evaluates the e�ort needed to
execute the preambles of A or RA, and Itioa or Irg, the e�orts due to the addiction of time.

On the other hand, if we want to test completely the system independently of test cost,
we can only consider the vector < Stioa, Rtioa >, or < Srg, Rrg >. These tuple evaluate
whether the system is tested in all of its timing parts and if these ones will be completely
covered, during the test.

Other degrees can be de�ned or some of the previous ones can be modi�ed to be more
expressive and adapted to a speci�c testing methodology. For example, for methodologies,
[PF99a, ENDKE98], using a characterization of each state for generating test sequences, a
degree could be de�ned to evaluate the cost of this characterization, in taking into account
behavior but also temporal properties of the speci�cation. The controllability degree could
be also rede�ned to consider the test execution, described in methodologies. This allows
to measure, with precision, the costs of the test. An exemple of metrics, depending on the
methodology described in [PF99a], is given in [SSb00].

4.2 Complexity

The calculation of these degrees can be long, especially with real time systems, because
their complexity is proportional to their number of clock regions or time intervals and their
number of actions.

• For the Timed Shape degree, the complexity of Stioa is proportional to K, with K the
number of actions. The complexity of Srgis proportional to N , with N the number of
clock regions.

• For the Timed Reachability Degree, the complexity of Rtioa is proportional to K ∗
card(QA) +M ∗K, with M the number of states. QA is obtained by constructing the
cover tree of A , and then enumerating the partial sequences in the tree. Since each
action appear once in the tree, the complexity is proportional to M ∗ K. Moreover,
the complexity of the calculus of the reachability of one clock region is obtained by
scanning, in the worst, all sequences of QA. For region graphs, we consider the number
of clock regions, otherwise the timed reachability is constructed in the same manner,
so the complexity of Rrg is proportional to N ∗ card(QRA) +M ∗K.

• For the Timed Controllability Degree, the complexity of Ctioa is proportional to card(QA)∗
2K+M ∗K. For constructing this degree, two executions are considered, and the length
of a preamble is, in the worst case, equals to K − 1. Then, it is necessary to scan each
preamble, and in the worst case, the set of preambles P = QA. The complexity to
construct QA is still equals to M ∗K. For region graphs, the complexity is equivalent
to the previous one, and is proportional to card(QRA) ∗ 2K +M ∗K.

• For the Timed Independency Degree, the complexity is proportional to K for TIOA or
to N for region graphs.
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5 Conclusion

In this paper, we have introduced some factors for evaluating test quality of timed systems.
These factors depends heavily on system speci�cation structure. These factors consider the
behavior part as well as the timing part of a system. We have shown how they can be
measured on any timed system and their in�uence on the testing process.

For the near future, we intend to include the computation of these factors in a testing tool
which has been undertaken in our laboratory since one year. We have also began working
on a testing generation technique based on state characterization based on a region graph
as de�ned by Alur and Dill [AD94]. This last step will help us in the design of our timed
testing tool.
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