
Two complementary approaches to test robustness of reactive systems

Antoine Rollet
LABRI - CNRS (UMR 5800)

University of Bordeaux 1
33405 Talence cedex, France

rollet@labri.fr

Sébastien Salva
LIMOS - CNRS (UMR 6158)

Campus des Cézeaux
Aubière, France

salva@iut.u-clermont1.fr

Abstract

Robustness is an important aspect for reactive embedded
systems. In this paper, we present two complementary ap-
proaches dedicated to test the robustness of reactive systems
modeled in the IOLTS model. The first approach uses the
specification to build a hazards matrix permitting to gen-
erate cases. The other one is based on two specifications,
a nominal and a degraded one describing the minimal re-
quired behaviour of the system.
Key-words : Robustness Testing, Labelled Transition Sys-
tems, Hazards, Robustness relations.

1 Introduction

Embedded systems are usually exposed to stressful con-
ditions in situations where a failure often leads to catas-
trophic consequences. Thus it is really important to test
properly conformance and robustness of such systems in or-
der to increase the security. Since systems are getting com-
plex, the use of automatic testing methods is necessary to
obtain a sufficient level of confidence.

The IEEE defined the robustness notion as: “a system is
considered as robust if it is able to operate correctly in the
presence of invalid inputs or stressful environment”. Then
we intend to evaluate the behaviour of the system in case of
unexpected situations, called hazards. We present two ap-
proaches; in both, specifications are written in the IOLTS
model ([Tre96]): (1) An approach consisting in using the
specification of the system and the unexpected events to
construct an increased specification, called “hazards ma-
trix”. (2) Another approach consisting in using two spec-
ifications, a nominal one, describing the system in nominal
conditions, and a degraded one, giving the minimal required
behaviour in case of critical situation. We consider it as the
“vital behaviour”.

The two methods are complementary. The first one can
be used if the designer considers that robustness implies ro-

bustness. The second one assumes that in case of critical
situation, conformance may be lost, but the system must re-
spect a minimal behaviour. In this case, the verdict is given
using the degraded specification as a reference. Note that
in both cases, we are working with a black box testing ap-
proach.

This paper is structured as follows. Section 2 contains
related works on robustness testing. In section 3, we give
some explanations on hazards and define some models.
Section 4 presents the robustness testing method with the
increased specification approach, and section 5 gives the de-
scribes the approach based on hazards injection. Section 6
gives the conclusion and some ideas about future works.

2 Related work

Many studies have been focusing on testing reactive sys-
tems. A major part of them are dedicated to conformance
testing. However, robustness testing has been studied in
some areas. In the following, we give an overview on ro-
bustness testing and fault injection works.

Some studies are based on fault injection by using
special-purpose hardware which causes electric distur-
bances.

[KFA+95] proposes in the MARS architecture a compar-
ison of three kinds of physical fault injection: heavy-ion,
pin-level and ElectroMagnetics. These approaches can be
classified as destructive testing techniques. They may cause
permanent damages on systems, then they are really costly.

Some other fault injection approaches applied to soft-
ware are developed and are denoted Software Implemented
Fault Injection (SWIFI). Among, these studies, the FIAT
system ([BCSS90]) modifies the binary image of a process
in memory (fault injection at compile time).

These approaches have lower cost than the hardware one,
and it permits to specify which fault to inject, and the num-
ber of times it has to be injected. In the sofware oriented
approach, [Reg05] proposes to apply randomly unexpected
interrupts on the system.



A research team from Carnegie Mellon University pro-
posed an object oriented approach to test software robust-
ness based on parameter data types rather than component
functionality with a blackbox approach. It is implemented
in the Ballista tool ([DKPD99]).

Ballista is based on automatic creation and execution of
invalid input robustness tests.

[AS202], a study on formal robustness testing for em-
bedded systems, suggests mainly to consider all possible
faults that a system can execute. It gives a state of the art
of robustness testing and the different ways to handle the
problem.

In [JCFP05] and [SKD05], authors model all possible
faults directly in the specification, building a “mutant” or
“degraded” specification. The system and the hazards are
modeled as Input Output Labelled Transition Systems. Fi-
nally, the “mutant” specification is used to generate test se-
quences applied on the IUT. In [SKD05], the ioco confor-
mance relation is used to give a verdict of robustness.

3 Hazards and models

A hazard can be defined as “any event not expected by
the system”. By extension, we consider as hazard any event
not expected in the specification of the system (meaning that
the choice of the model may change the possibilities of haz-
ards). In [AS202], three kinds of hazards are considered :
(1) internal hazards : an unexpected event inside the system
(e.g. a physical problem); (2) external hazards : an unex-
pected event on the fronteers on the system (e.g. a faulty
input); (3) out of fronteers hazards : an unexpected event
(far) away, but having consequences on the system (e.g. ra-
diations, heat, ...). In our method, only external hazards are
considered, since it is the only category which is control-
lable.

In both methods, the specifications are described in the
IOLTS model ([Tre96]) :

Definition 3.1 (IOLTS) An Input Output Labelled Transi-
tion System (IOLTS) is a 4-uplet < Q, q0,Σ,→> such that :

• Q is a countable set of states;

• q0 ∈ Q is the initial state;

• Σ is a countable alphabet of actions, partitioned into
two subsets such that Σ = Σi ∪ Σo (respectively input
marked with a ? and ouputs marked with a !);

• →⊂ Q × Στ × Q is a set of transitions (Στ means
Σ ∪ {τ} where τ is an internal action).

We also denote A the set of all possible actions divided
into two distinct subsets Ai and Ao, such that Σi ⊆ Ai and
Σo ⊆ Ao.

4 Increased specification method

As we discussed before, this method is developed with
the idea that a robust system must also conform to the spec-
ification. Thus, the principle here is to identify carefully
controllable and observable hazards for the system, and to
use them in order to generate test cases. More precisely,
we consider two different actors. Firstly, the “tester” uses
the specification modeled as an IOLTS ([Tre96]) to identify
the hazards of the system. Then, the default behaviour is
automatically computed. This increased behaviour is given
to the “designer” who can decide to precise some specific
behaviours. Finally, this increased specification is used by
the “tester” in order to generate complete test cases.

In order to generate test cases, six steps are necessary;
the specification is given is the IOLTS model :

1. The specification is stored in an array considering con-
trollable and observable hazards of the alphabet. We
denote it Hazards matrix (H).

2. Behaviour in case of timeout (quiescent states) is com-
puted in H

3. Behaviour of non specified inputs is computed in H

4. Behaviour of non specified outputs is computed in H

5. The special behaviour for particular hazards is com-
puted in H

6. Test cases are generated using H

4.1 Detailed framework

In this part, we describe precisely each step of the
method. In the same time, we consider a simple example
in order to illustrate each step. The system is described in
the IOLTS S = < Q, q0,Σ,→>.

In the following we consider as a usual test hypothesis
that the implementation may be modeled as an IOLTS and
that the system is deterministic. Furthermore, we do not
handle τ transitions for a simplicity reason and because they
are not observable and then not necessary for testing. In
case of τ transition of the specification, it is easy to remove
them (using the after operator, see [Tre96]).

4.1.1 Step 1 : computing the hazards matrix (H)

For each state we have to consider all possible events. In
this matrix, lines are labeled with state names, and columns
are labeled with all possible actions of A. Because, we do
not know all the actions (we only know Σ), in fact we create
one column for each action of Σ, and we add a column for
any other input, and another one for any other output. We



also need to add a column to specify the behaviour in case of
quiescent state, which is a “special action” (see next step).

Consider for example the specification S of figure 1.

1 2

3

PSfrag replacements

?a

!b

?c!d

Figure 1. Example of IOLTS specification

Then we obtain the following hazards matrix :

?a ?c Ai − {?a, ?c} !b !d !δ Ao − {!b, !d}
1 2
2 3 1
3 1

The rule of the following steps is to fill the empty cells
and eventually to modify some of them. However it is im-
portant to notice that the cells filled in this first step can
not be modified later (so that conformance of the system is
kept).

4.1.2 Step 2 : computing the behaviour in case of time-
out

The absence of response may be something described in the
specification. In [Tre96], authors define special states in the
specification called quiescent states. These states can not
evolve without an external input. Such situation is consid-
ered as observable with a special output not in A written
!δ. In practice, the tester identifies a timeout. We adapt the
definition of quiescent state of [Tre96] using directly the
hazards matrix : a state is quiescent if, considering the cor-
responding line in the matrix, all crossing columns labeled
with an output (i.e. any element of Ao) are not filled. The
default behaviour in case of quiescent output is : (1) if the
source state is quiescent, the system has to loop back in the
same state (2) otherwise it is a fail situation In the follow-
ing, we consider the notation : for a state S of Q and an
action a in A, we note H(S, a) the cell of H intersection
of the line labeled by S and the column labeled by a if the
column exists, otherwise the column labeled by the set con-
taining a. The fail verdict will be written f in the matrix.

Thus, the matrix is filled as follows (H is the hazards
matrix):

for all state Si ∈ Q do
if quiescent(Si) then

H(Si, !δ) := Si

else
H(Si, !δ) := fail

end if
end for
In our example, we obtain the following matrix H :

?a ?c Ai − {?a, ?c} !b !d !δ Ao − {!b, !d}
1 2 1
2 3 1 f
3 1 f

4.1.3 Step 3 : computing the behaviour in case of un-
expected input

In this step, we identify and compute the default behaviour
in case of unexpected input. Usually, systems should accept
the input and stay in the same state. Then, we consider that
the system has to loop back in the system state in such a
situation. In our work, this gives :

for all state Si ∈ Q do
for all label a ∈ Ai do {only inputs are considered}

if H(Si, a) = ∅ then
H(Si, a) := Si

end if
end for

end for
In our example, this gives :

?a ?c Ai − {?a, ?c} !b !d !δ Ao − {!b, !d}
1 2 1 1 1
2 2 3 2 1 f

3 3 3 3 1 f

4.1.4 Step 4 : computing the behaviour in case of un-
expected output

This step is similar to the previous one. We finish to fill the
matrix considering the outputs not expected in a particular
situation. The default behaviour in such a situation is to
assume that any unexpected output leads to a fail situation.
This gives :

for all state Si ∈ Q do
for all label a ∈ Ao do {only outputs are considered}

if H(Si, a) = ∅ then
H(Si, a) := fail

end if
end for

end for
And we obtain the matrix :

?a ?c Ai − {?a, ?c} !b !d !δ Ao − {!b, !d}
1 2 1 1 f f 1 f
2 2 3 2 1 f f f
3 3 3 3 f 1 f f



4.1.5 Step 5 : handling the hazards

A this moment, the possible hazards are identified and
the default behaviour is computed in the matrix. This
matrix is provided to the designer of the system who has
the possibility to modify some cells. It is important to
notice that it is forbidden to modify any cell filled in the
first step, so that the system keeps conformance with the
original specification. For example, if we consider the
specification of the TCP protocol ([]), it does not consider
the reception of a RST input in any state. However, usual
implementations assume that a RST message leads to the
initial state. Sometimes, some outputs may be acceptable,
with a loopback on the same state... In our example, it is
possible to imagine that in case of ?a input occurring in
state 2, the system comes back to the first state (a kind of
reset). This would give the matrix :

?a ?c Ai − {?a, ?c} !b !d !δ Ao − {!b, !d}
1 2 1 1 f f 1 f
2 1 3 2 1 f f f
3 3 3 3 f 1 f f

Remark that it could be reasonable not to allow the mod-
ifications of the last column (labeled with the set of unex-
pected outputs)

This transformation is simple and light. However, we
have at this step all possible representable behaviours. More
precisely we have in this matrix all possible inputs and the
verdicts. It is now easy to use it to generate a complete test
suite.

Using the same idea, it would be possible to allow the
designer to add some columns in the matrix, in case for
example of particular behaviour for a precise hazard. The
principle is completely similar : we just have to add a col-
umn labeled with this input (resp. output), and to remove it
from the column of all other possible inputs (resp. outputs).

4.1.6 Step 6 : Test derivation

In this part, we use the hazards matrix in order to generate
test cases. The originality here is that the verdicts are di-
rectly included in the matrix. This simple algorithm 1 can
produce a complete test suite T for the ioco relation (see
[Tre96]). The proof of completeness is similar to [Tre96]
since the hazards matrix can be seen as a canonical tester (in
fact the mirror image, i.e. inputs (resp. outputs) get outputs
(resp. inputs)). In order to generate a test case, we consider
a recursive function deriv building a tree. At the beginning
of the generation, this function is applied on the initial state
of the specification, i.e. deriv(q0). For an action a, we use
the notation ā to express the tester point of view, i.e. an
input (resp. output) gets an output (resp. input).

In algorithm 1, we have three possibilities. We can stop
the derivation, send an input (always possible because of the

Algorithm 1 Test suite derivation algorithm
The test case is obtained from H by a finite number of
recursive applications of one of the following three choices :

function deriv(s : state) ::=

if s 6= fail then
(1) t := pass {stops the recursion}
(2) t := ā; t′ where a ∈ Ai with t′ := deriv(H(s, a))
{we (randomly) choose one input a ∈ Ai}
(3) t :=

∑
{x̄; tx|x ∈ Ao

⋃
{δ}} with tx :=

deriv(H(s, x)) {
∑

stands for the sum of all expres-
sions in a set}

else
t := fail

end if

hazards), or wait for an answer from the system. We remark
that in the second rule, if the choice is made randomly and
with equiprobability on the set of inputs Ai, this implies
that the test case focuses on hazards (unexpected inputs),
since the set of unexpected inputs in a given state is usually
important compared to the set of expected ones.

Figure 2 illustrates an example of test case obtained with
our example using the following rules sequence : 2 - 3 - 2
- 2 - 2 - 3 - 1. We use the notation ?∗ for all other actions
received by the tester, and !∗ for all other actions sent by
the tester. In practice for the last case, the tester chooses an
action to send in the extended alphabet Ai − Σi.

fail failfail

1

1

1

2

3

3

1
pass

fail fail failPSfrag replacements
!a

?b

?b

!c

!c

?d

?d

!∗

?∗

?∗

?δ

?δ

Figure 2. Example of test derivation

The obtained test has the property to be complete (i.e.
sound and exhaustive) with the ioco relation. The proof is
similar to [Tre96] with the (obvious) idea that for a state q

and an action a, s = H(q, a) ⇒ s = q after a.



5 Hazards injection method

Now we consider in this section that robustness does not
imply conformance. The idea here is that in case of unex-
pected conditions, the system gets into a degraded mode.
Only the vital functionalities are required. Notice that in
this approach, we do not know precisely “where” the real
behaviour is between the two modes, and the environment
does not always know in which mode the system is (see
FIG. 3).

PSfrag replacements

Nominal

hazards

repairing

Degraded

Figure 3. Nominal and degraded behaviour

An example of such reasoning is the domain of embed-
ded calculators in aircrafts. In nominal mode, the calcu-
lators are used for the safety of passengers, but also for
comfort, whereas in case of unexpected situation (imply-
ing degraded mode), the aim of the calculators is to lead
the aircraft to an airport, without taking care of comfort.
Such ideas are currently used in aeronautics, but generally
with two different systems for the nominal and the degraded
mode.In our work, the system is described with two speci-
fications modeled as IOLTS, a nominal one, S, describing
the behaviour of the system in normal conditions, and a de-
graded one, S′, describing the behaviour in critical situa-
tion, i.e. giving the vital functionalities and the minimum
required behaviour, particularly in the case of unexpected
situations. In the following, if no precision is given, Σ
means the set of labels of S and Σ′ means the set of labels
of S′.

The methodology is composed of four steps :

1. test sequences are derived using the nominal specifica-
tion

2. Hazards are injected in these sequences; only non vital
actions can be modified, i.e. only actions which are
not member of the alphabet of S ′

3. test sequences are applied, traces recorded

4. traces are check to give a robustness verdict

We consider that the two specifications of the system can
not be completely independant. There is a kind of “be-
havioural” inclusion of the behaviour between S and S ′,
since the vital behaviour of a system has to be included in

the normal one. Then, there is a relation S ≤rob S′ (de-
scribed below) for the IOLTS models, modeling the fact that
for all trace in S′, we can find a trace of S having the same
actions in the same order. FIG. 4 shows an example of the
relation S ≤rob S′ defined in Def. 5.2 : in this figure, the
relation S ≤rob S′ is true. The generated test sequences
contain events that may not be included in the degraded
specification, such events are identified as non-vital events,
other events are identified as vital events. In our work, the
set of vital events or actions is the alphabet of the degraded
specification (Σ′).

The system is specified with a nominal specification
S = < Q, q0,Σ,→> and a degraded specification S ′ =
< Q′, q′

0,Σ
′,→′> such that S ≤rob S′ (implying that

Σ′ ⊂ Σ). This relation is defined just below (Def 5.2).
The set of vital actions is defined as the alphabet of the
degraded specification, here Σ′.

5.1 Definitions

In this part, we give some definitions needed to describe
our method.

Definition 5.1 (ordered projection ΠΣ′ ) We define recur-
sively the ordered projection function ΠΣ′ :
Σ∗ → (Σ′)∗

σ = (a1...an) →

8

<

:

∅ if σ = ∅
a1.ΠΣ′(a2...an) if a1 ∈ Σ′ and σ 6= ∅
ΠΣ′(a2...an) else (σ 6= ∅ and a1 6∈ Σ′)

where “dot” means the concatenation.

In other words, ΠΣ′(σ) is the subsequence of σ =
(a1...an) containing only the elements of Σ′ (with the same
order and repetitions). Suppose for example that the set
Σ = {?a, ?b, !c, !d, !e, !f} and Σ′ = {?a, !c, !e}, then if
we apply this function on a trace σ =?a.?b.!c.!d, we obtain
ΠΣ′(?a.?b.!c.!d) =?a.!c.

Now it is possible to define the relation ≤rob between S

and S′.

Definition 5.2 (≤rob) Let two IOLTS S and S′, we say that
S′ is included in S in the sense of robustness iff : S ≤rob S′

=def ∀σ′ ∈ Traces(S′), ∃σ ∈ Traces(S) such that σ′ =
ΠΣS′

(σ)

As we said, the aim of ≤rob is to ensure a relation be-
tween the nominal and the degraded mode. We consider in
fact that all possible behaviours (i.e. traces in our case) must
be described in the nominal specification. The idea is that
for any trace σ of S′ (in other words a trace of vital actions),
there must exist a trace in S “including” the behaviour of σ

(i.e. having all the vital actions in the correct order).
For example, if we consider FIG. 4, we have :

• S ≤rob S′ since there exists for each trace σ of S ′ a
trace of S which is the ordered projection of σ over



the alphabet of S′. Indeed, the trace ?x!y?a!c of S

“includes” the trace ?a!c of S ′, and the trace ?b!g!d of
S “includes” the trace ?b!d of S ′;

• I1 ≤rob S′ since the trace ?x!y?a!y!c of I1 “includes”
the trace ?a!c of S′, and the trace ?b!d of I1 “includes”
the trace ?b!d of S′;

• ¬(I2 ≤rob S′) : there is no trace in I2 “including” the
trace ?b!d of S′.PSfrag replacements

S

S′

I1

I2

?a

?b

!c
!d

?x

!y

!g

PSfrag replacements

S

S′

I1

I2

?a

?b

!c

!d

?x

!y !g

PSfrag replacements
S

S′

I1

I2

?a

?b

!c

!d

?x

!y

!y

!g

PSfrag replacements
S

S′

I1

I2

?a

?b

!c

!d

?x

?x

!y!y

!g

Figure 4. Examples for ≤rob relation

5.2 integration of hazards

As we discussed previously, only external hazards are
considered, since it is the only category which is control-
lable. We generate the test sequences from the specifica-
tion. Then, we apply an hazards integration directly in the
sequences, and we apply these “mutant” sequences on the
IUT. The integration rules are not the topic of this paper.
More details about this integration can be found in [].

The sequences contain vital and non vital actions. Con-
sequently, there are many possibilities of modifications on
the sequences, keeping in mind that we can not modify vi-
tal actions. Different operations are possible on non vital
actions. We propose :
(1) adding, deleting, permuting non vital actions; (2) fail-
ure scenario of another component communicating with
the tested one; (3) another communicating component has
turned into degraded mode.

Suppose for example that a generated sequence is : ?a,
!b, ?a, !b, ?e, !j, ?g, !i, ?c, !d with Σ′ = {?a, !b, ?c, !d}, Σ
= {?a, !b, ?c, !d, ?e, ?f , ?g, ?h, !i, !j, !k} and ?l ∈ A. A
possible modified sequence could be : ?a,?f , !b, ?a, !b, !j,
?g, !i, ?l, ?c, !d.

In fact, the sequence is valid if all the vital actions are
still in the resulting sequence, and in the same order. In our
case, the input actions ?f and ?l has been added, and the
input action ?e has been removed.

5.3 Behaviour analysis

At this step we have to control if the recorded behaviour
may be considered as acceptable. Here “acceptable” means
that the minimal vital behaviour is ensured. As we can see
in FIG. 5, we do not know in advance the actual system
behaviour and its degradation degree, we only know that it
has to be “between” two defined specifications : the nomi-
nal one and the degraded one. In fact, we will check in the
implementation traces if the minimal behaviour described
in the degraded specification is ensured by the IUT, but we
do not take care about actions not described in the degraded
specification. Then, the degraded specification will be the
reference to decide if the implementation is robust. We as-
sume in a classic that the implementation can be modeled
in the IOLTS model.

Nominal

behavior behavior

Degraded

IUT

of the

Behavior

Robustness

Robust enough Not robust enough

System
Out of Service

Figure 5. Robustness degree

A way to define a robust behaviour is that any trace of
the degraded specification should be found in the behaviour
of the implementation, i.e. the same actions in the same or-
dering. These vital actions could be eventually mixed with
non vital actions, but all vital actions has to be present in
the same ordering.

Finally we consider an implementation I as robust if in
any case of hazards integration (included in I), I ≤rob S′.
If we see FIG. 4, supposing that the system is modeled by
S (nominal specification) and S ′ (degraded specification),
and that I1 and I2 are two obtained implementations, then
we can say that I1 is robust (because I1 ≤rob S′), and that
I2 is not (because ¬(I2 ≤rob S′)) .

We also consider that the specifications S ′ must be in-
cluded in the sense of robustness in S (S ≤rob S′) so that
an implementation I having exactly the same behaviour of
S is also considered as robust (soundness of the test), and so
that all sequences generated from the nominal specification
S contain inevitably vital input actions in the correct order,
allowing us to identify the corresponding vital ouputs.

Finally, it is possible to test the robustness with our



method if S ≤rob S′ and the final implementation I of the
system is considered robust if I ≤rob S′.

6 Conclusion

In this paper, we have presented two complementary ap-
proaches to test the robustness. The major difference be-
tween both is the fact that robustness implies conformance
or not. The first method identifies some classic hazards
and uses them in order to create a hazards matrix, whereas
the other one directly integrates the hazards in the test se-
quences.

We intend to define precisely the robustness degrees and
a method able to qualify formaly the degraded degree of
any implementation. We also intend to work on robustness
symbolic testing of systems described by models using data.

References

[AS202] Action spécifique 23 du cnrs, département stic:
Test avancé de systèmes complexes, test de ro-
bustesse, 2002. Animateurs: Richard Castanet
et Hélène Waeselynck.

[BCSS90] J. H. Barton, E. W. Czeck, Z. Z. Segall, and
D. P. Siewiorek. Fault injection experiments us-
ing fiat. IEEE Trans. Comput., 39(4):575–582,
1990.

[DKPD99] DeVale, J. Koopman, P., and Guttendorf D.
The ballista software robustness testing ser-
vice. In Testing Computer Software Conference
(TCSC99), June 1999.

[JCFP05] Laurent Mounier Jean-Claude Fernandez and
Cyril Pachon. A model-based approach for
robustness testing. In Rachida Dssouli Fer-
hat Khendek, editor, Testing of Communicating
Systems, 17th IFIP TC6/WG 6.1 International
Conference, TestCom 2005, Montreal, Canada,
May 31 - June 2, 2005, lncs, pages 333–348.
Springer, June 2005.

[KFA+95] J. Karlsson, P. Folkesson, J. Arlat, Y. Crouzet,
and G. Leber. Integration and comparison of
three physical fault injection techniques. In
Predictably Dependable Computing Systems,
chapter V: Fault Injection, pages 309–329.
Springer Verlag, 1995.

[Reg05] John Regehr. Random testing of interrupt-
driven software. In EMSOFT ’05: Proceed-
ings of the 5th ACM international conference
on Embedded software, pages 290–298, New
York, NY, USA, 2005. ACM Press.

[SKD05] F. Saad Khorchef and X. Delord. Une méthode
de test de robustesse adaptée aux protocoles
de communication : application au protocole
tcp. In CFIP’2005, Bordeaux, France (Papier
Court), Mars 2005.

[Tre96] J. Tretmans. Test generation with inputs, out-
puts, and repetitive quiescence. Software–
Concepts and Tools, 17:103–120, 1996.


