
Testing robustness of communicating systems using ioco-based approach

Antoine Rollet
LABRI - CNRS (UMR 5800)

University of Bordeaux
33405 Talence cedex, France

rollet@labri.fr

Sébastien Salva
LIMOS - CNRS (UMR 6158)

Campus des Ćezeaux
Aubière, France

salva@iut.u-clermont1.fr

Abstract

This paper deals with communicating system robustness
testing by proposing a method for checking the correct be-
haviour of the Implementation Under Test (IUT) in unex-
pected situations. This formal method takes specifications
written with IOLTS and generates robustness test cases by
using the ioco theory. IOLTS are used to model many
systems like distributed ones or Web service compositions.
We present an algorithm permitting to generate sound test
cases especially focusing on robustness aspects.
Key-words : Robustness testing, Formal testing, Labelled
Transition Systems, Hazards, ioco.

1 Introduction

Software development companies are more and more
aware that validation is a required step in software life cycle,
especially since quality processes, like the CMMI (Capabil-
ity Maturity Model Integration) model, are taken into con-
sideration. Besides, using formal and automatic methods
for test generation usually increases the confidence level of
the system while reducing the total cost compared to man-
ual and empiric ones.

It is very difficult to say that a system has the highest
level of quality if this one is not robust. Robustness im-
plies that the system will behave correctly despite unspeci-
fied events. This is why testing the system robustness is im-
portant. And in this context we propose a formal test cases
generation method focusing on robustness aspects. We con-
sider testing as “dynamic testing”, i.e. testing consists in
applying test sequences in the Implementation Under Test
(IUT). Two main categories of testing are considered in the
literature : (1) Functional testing : the source code is un-
known. Only functional aspects are verified, using a specifi-
cation (or the requirements) to generate tests. (2) Structural
testing : the source code is known. Generation is done using
the source code, usually focusing on code covering aspects.

In this work we propose a new method for robustness test
cases generation of communicating systems. We only deal
with black-box (i.e. the only information available from the
specification are inputs and outputs) functional testing. We
consider that the system is described with an Input Output
Labeled Transition System (IOLTS) and we use it as a refer-
ence for test case generation. IOLTS may be used to specify
many communicating systems like distributed ones or Web
service compositions ([FTdV06]).

In [oSET99], robustness is defined as “the ability of a
system to function correctly in presence of faults or stressful
environmental conditions“. Thus, we consider that testing
the robustness means that we intend to focus on unexpected
aspects of the system. Such unexpected events are usually
calledhazards. A study on hazards and their classification
can be found in [SKRC07] and [CW03]. In this paper, we
deal with external hazards. We consider three situations :
(1) Occurrence of an input known by the system but not
expected at this moment (2) Occurrence of an unknown in-
put (not in the alphabet). (3) Occurrence of an unexpected
output (in the alphabet or not).

The steps of our methodology are : (1) Computing the
suspension automaton (2) Determinisation (3) Completion
(4) Test case generation The relation used to check the cor-
rectness of the IUT in theioco preorder ([TRE96]). Using
this relation, we propose a complete test cases generation
mainly focusing on robustness aspects, i.e. on hazards.

This article is structured as follows. In section 2, we
present the definitions and models used in this paper. Sec-
tion 3 mainly gives the contribution of this paper by pre-
senting test cases generation method. We propose a brief
discussion in Section 4. Section 5 contains related works
on robustness testing, and finally we conclude in Section 6.

2 Models and definitions

In this work, systems are modeled with IOLTS (Input
Output Labelled Transition System). We use this model to
describe the specification, the implementation and the test



cases. It is an extension of the LTS model permitting to dis-
tinguish the inputs (controllable) and the outputs (only ob-
servable) ([TRE96]). This model also allows to use internal
transitions.

Definition 2.1 (IOLTS) An Input Output Labelled Transi-
tion System (IOLTS) is a 4-upletS =< QS , qS

0 ,ΣS ,→s>

such that :(1)QS is a countable set of states; (2)qS
0 ∈ Q is

the initial state; (3)ΣS is a countable alphabet of actions,
partitioned into two subsets such thatΣS = ΣS

i ∪ ΣS
o (re-

spectively input marked with a? and outputs marked with
a !); (4) →s⊂ QS × ΣS

τ × QS is a set of transitions (ΣS
τ

meansΣS ∪ {τ} whereτ is an internal action). Sometimes
when it is obvious,S is not given in the notations.

In order to analyse traces of the system, we need some
further usual notations. We suppose thatq, q′, q1, ..., qn ∈
QS , a, a1, ...,an ∈ ΣS andσ ∈ (ΣS)∗.

• q
a
→ means∃q′|q

a
→ q′

• q
ǫ
⇒ q′ means∃q0 = q, q1, ..., qn = q′,∀i ∈ [0, n −

1],∃τi ∈ {τ} such thatqi
τi→ qi+1

• for a ∈ ΣS , q
a
⇒ q′ means∃q1, q2 such thatq

ǫ
⇒ q1

a
→

q2

ǫ
⇒ q′.

• for a1, ...an ∈ ΣS , q
a1...an⇒ q′ means∃q0, ..., qn such

thatq = q0

a1⇒ q1...
an⇒ qn = q′.

• ΓS(q) = {a ∈ ΣS |q
a
→} is the set of fir-able actions,

and inS(q) (resp. outS(q)) = {a ∈ ΣS
i (resp. ΣS

o )
|q

a
→} the subsets for inputs and outputs.

• q afterσ = {q′ ∈ QS |q
σ
⇒ q′}

We also denoteAS the set of all possible actions divided
into two distinct subsetsAS

i andA
S
o , such thatΣS

i ⊆ A
S
i

andΣS
o ⊆ A

S
o . All these sets are finite. The interest of the

increased setsAS
i andA

S
o is to consider events that are not

handled in the original specification. It may be inputs (the
tester has to choose an unexpected event), or outputs (the
tester has to handle unexpected events). We consider that
such sets are implicitly existing for any IOLTS.

In figure 1 we give an example of a simple IOLTS spec-
ification describing the behaviour of a phone application.
The user has to pick up the phone, and to compose a num-
ber. In this situation it is possible to wait for somebody
to answer (!ring), to have a signal for line occupation (!oc-
cupied), or to get informed that the number does not exist
(!unknown). After the ringing signal, it is possible to begin
a dialog session (!dialog). This example will be used as a
specification, denotedS in the following in order to illus-
trate our robustness testing method.

?pickup

?compose

τ

τ

!unknown
!ring !occupied

!dialog

Figure 1. Example of IOLTS specification S

3 Testing method

In this section we explain our testing method. As we said
before, robustness testing has to focus on unspecified parts
on the specification. We use the IOLTS model to describe
the specification. Thus we propose a generation method us-
ing a ioco-based approach ([TRE96]) which is sound and
exhaustive. This approach gives the possibility to detect
unspecified blocking states (quiescent states) in the imple-
mentation.

We have identified different situations that should be fo-
cused for robustness testing. We intend to check the cor-
rectness of the implementation when : (1) an input event
arrives with a known symbol, but not expected at this state
(2) an input arrives with an unknown symbol (3) the tester
also has to be prepared to receive unexpected outputs from
the system (usually leading to a fail verdict).

In order to be able to focus on unspecified parts, we have
defined two new sets to extend the domain of inputs and
outputsAS

i andA
S
o . The idea behind is that the tester needs

to give unexpected (and unspecified) inputs sometimes. We
consider that these sets are finite (which may be seen as
a strong restriction, but necessary for the testing process),
and practically they have to be given by the designer of the
system (using experimental data for example).

This framework is divided into different steps that will
be detailed in the following : (1) Construct the suspension
automatonSδ (2) Transformation the suspension automaton
into a deterministic onedet(Sδ) (3) Complete the obtained
automaton with inputs and outputscompl(det(Sδ)) (4) Se-
lect test cases for robustness.

2



3.1 Suspension automaton

One feature of the ioco approach is to detect quiescent
(or blocking) states. So we need to identify such states in
the specification, calledquiescent states. Usually we con-
sider that a blocking state of the implementation (practically
a timeout) is considered as correct if the specification ex-
pects it.

Formally, a stateq is considered quiescent in case of :

(1) outputlock :∀a ∈ Σo

⋃
{τ}, q

a

6→ (2) deadlock :∀a ∈

Σ, q
a

6→ (3) livelock : ∃σ ∈ {τ}+, q
σ
→ q.

The suspension IOLTSSδ is obtained from the IOLTS
S by simply adding a loop labeled with a specialδ output
on the transition for each quiescent state ofS. For a state
q, we define the setoutδ(q) = {a ∈ Σo

⋃
{δ}|q

a
→}. The

suspension automaton of figure 1 is given in figure 2.

?pickup

?compose

τ

τ

!unknown
!ring !occupied

!dialog

!δ
!δ

!δ

!δ

!δ

Figure 2. Suspension automaton of the spec-
ification S

3.2 Determinisation

Since we are studying black box testing, we only fo-
cus on observable actions. Moreover we need a determin-
istic specification in order to construct a deterministic test
case. As described in [Con08], we construct a deterministic
IOTLS det(S) from S :

Definition 3.1 (determinisation) det(S) =< 2Q, q0 af-
ter ǫ,Σ,→det> is the deterministic IOLTS obtained from
S =< Q, q0,Σ,→> with →det the smallest relation such
that forR,R′ ∈ 2Q, a ∈ Σ, R

a
→det R′ if R′ = R aftera.

The deterministic IOLTS obtained from the suspension
IOLTS of figure 2 is given in figure 3.

?pickup

?compose

!unknown
!ring !occupied

!dialog

!δ

!δ
!δ

!δ

!δ

Figure 3. Determinisation of the suspension
automaton

3.3 Input and output completion

This step only deals with robustness testing. We intend
to complete the specification with all possible inputs and all
possible outputs, and to detect the unauthorized situations
leading to a fail state. Compared to conformance testing,
three new aspects have to be considered : (1) We need to
complete each state with all inputs known by the specifica-
tion. (2) We need to complete each state with all inputs not
known by the specification (increased sets). (3) We need to
complete each state with all the ouputs known and and not
known by the specification. This leads to a failing situation.
At the end of this step, we obtain an IOLTS describing all
possible behaviors for a test case.

Definition 3.2 (Completion) Considering a deterministic
suspension IOLTSM =< QM , qM

0 ,ΣM ,→M>, the com-
pletion of M is a deterministic IOLTScompl(M) =<

Q, q0,Σ,→> such that :

• Q = QM

⋃
{ fail }

• q0 = qM
0

• Σ = A
M

• → = →M

⋃
{q

a
→ fail |a ∈ Ao ∪{δ}, q

a

6→M}
⋃
{q

b
→

q|b ∈ Ai, q
b

6→M}

The IOLTS in figure 4 is the result of the completion of
the deterministic suspension IOLTS of figure 3. In order to
simplify the notations, we use the symbol?# (resp. !∗) to
represent any symbol outside from the original input (resp
output) alphabet, i.e. any element ofAi−Σi (resp. any ele-
ment ofAo −Σo). In a real test experimentation,?# would
be replaced by any perturbing information, e.g. a corrupted
message, or any information not in the specification of the
system.!∗ symbolizes any unknown event.

3



fail

fail

fail

fail

fail

?pickup

?pickup?compose

?compose

!unknown
!ring !occupied

!dialog
!δ

!δ

!δ

!δ

!δ

?#

?#

(1)
(1)

(1)

(1)

(1)

(2)

(3)

(4)

(4)

(4)

(4)

(4)

(1) !dialog, !ring, !unknown, !occupied, !∗
(2) !dialog, !δ, !∗
(3) !ring, !unknown, !occupied, !δ, !∗
(4) ?pickup, ?compose, ?#

Figure 4. Input and output completion of the
specification S

3.4 Test cases generation

At this step, we have an IOLTScompl(det(Sδ)) rep-
resenting all possible test cases, and especially detecting
traces leading to a failing situation. This model includes
robustness situations, since all possible inputs have been
added, and all possible outputs are handled in the testing
process. Naturally, in order to ensure completeness of gen-
erated test cases, it is necessary to consider that the sets of
possible inputs (Ai) and ouputs (Ao) are finite.

The weakness of this IOLTS is that no particular be-
haviour is highlighted. For practical reasons, it is usually
necessary to focus on particular behaviours. A first classic
possibility is to use a test purpose in order to generate test
cases. In the domain of robustness testing, it is possible to
use such an approach.

In the following, we propose a test case generation fo-
cusing on robustness aspects. The idea is to force the tester
to fire transitions of unexpected input situations. As we said
before, we identify two possibilities of inputs hazards : (1)
Apply an input known by the system, but not expected at
this state (2) Apply an input that is unknown by the system.

More precisely, the user has to provide a robustness cri-
terion composed by two integersrob1 androb2. rob1 (resp.
rob2) gives the number of successive inputs the test case has
to compute in situation (1) (resp. (2)) when it is possible. It
is not possible to force the system to try all unexpected input
transitions since some traces depend on the answers of the
implementation, i.e. some transitions may be unreachable.
In the following, we consider the case (1) as aninopportune
input, and case (2) as anunknown input.

Our test case generation method is given in Algorithm
2. In order to generate test cases, this algorithm has to be
called ondet(Sδ). Inputs and ouputs are permuted in order
to adopt the tester point of view. For an input (resp. output)
elementa of the alphabet we use the overline notationa to
express the corresponding output (resp. input) of the tester.

Algorithm 2 Test suite derivation algorithm for robustness

functionTC(S : IOLTS)
{Initialisation}
for all states of S do

s.rob1 := false; s.rob2 := false

deriv(initial state(S))
end for

functionderiv(s : state)
if s.rob1 = false then

s.rob1 := true

t := a1; ...; arob1; t
′ with (a1, ..., arob1) ∈ (Σi −

in(s))rob1 andt′ = deriv(s aftera1...arob1)
else ifs.rob2 = false then

s.rob2 := true

t := a1; ...; arob2; t
′ with (a1, ..., arob1) ∈ (Ai −

Σi)
rob2 andt′ = deriv(s aftera1...arob2)

else
Apply one of the three following choices :
(1) t := pass {stops the recursion}
(2) t := a; t′ with a ∈ in(s)

⋃
Ai andt′ = deriv(s

aftera)
{Note thatin(s) ⊆ Ai. We need to allow any element
of Ai to ensure exhaustiveness, but practicallyin(s)
should be preferred}
(3) t := Σ{x; fail |x ∈ Ao, x 6∈ out(s)}
+Σ{δ; fail |δ 6∈ outδ(s)}
+Σ{x; tx|x ∈ Σo, x ∈ out(s)} with tx = deriv(s
afterx)
+Σ{δ; tδ|δ ∈ outδ(s)} with tδ = deriv(s after δ)
{here+ and Σ classically mean the choice and the
sum}

end if

This algorithm is divided into two distinct parts. The sec-
ond one is a classical non deterministic generation choice
between sending an input, waiting for an output, or ending
the algorithm. This part permits to get an exhaustive gener-
ation algorithm while integrating unexpected inputs in the
generation. First part focuses on robustness aspects. The
user has to provide two integer values,rob1 androb2 which
are the number of unexpected inputs we intend to inject suc-
cessively (if possible) in a state :rob1 is the number of inop-
portune inputs, androb2 is the number of unknown inputs.
If possible, algorithm forces to firerob1 times the looping
transition with inopportune inputs on this state, thenrob2

4



times the looping transition with unknown inputs.
A possible test case for our specification example in fig-

ure 3 is given in figure 5 with the values(1, 1).

!pickup!pickup

!pickup

!pickup

!pickup

!pickup

!compose

!compose

!compose

?unknown

?ring

?occupied

?dialog ?δ?δ

?δ

!#!# !#

!#

!#

!#

!#

(1)

(2)(2)

(2)

(3)

passpass

pass

fail failfail

fail

fail

(1) ?dialog, ?∗, ?δ

(2) ?dialog, ?ring, ?unknown, ?occupied, ?∗

(3) ?ring, ?unknown, ?occupied, ?∗, ?δ

Figure 5. A possible test case for S

4 Discussion

In a summarized way, we recall that an implementation
passesa test case if all possible executions lead to apass
verdict. We recall some classic properties of test cases
([TRE96]). For an implementationi and a test suite (i.e.
a set of test cases)T :

• T is complete= ∀i : i iocos ⇔ i passesT

• T is sound= ∀i : i iocos ⇒ i passesT

• T is exhaustive= ∀i : i iocos ⇐ i passesT

The soundness is the most important property of testing
methods, since it is not acceptable to consider as faulty a
correct implementation.

The algorithm 2 permits to generate an exhaustive test
suite. In experimentation the generated test suite is sound,
but of course not exhaustive. However the set of all possi-
ble test cases generated using this algorithm is exhaustive.

The principle of the proof is similar to [TRE96], by con-
sidering it directly on the completed deterministic suspen-
sion automaton, using the extended alphabetA, which is
considered here as finite (exhaustiveness is possible only if
the set of all possible inputs and outputs in considered as
finite). Notice that second part of the algorithm (the non de-
terministic one) is sufficient to ensure exhaustiveness (asin
[TRE96]). The first part of the algorithm permits to apply
hazards in order to focus on robustness.

5 Related work

Many research have been done in the domain of reactive
systems testing . The majority of these works deals with
conformance testing, normalized in [IEE04]. An overview
may be found in [JER03]. In this section, we focus particu-
larly on robustness testing works.

In [CW03], authors propose a study on robustness test-
ing, focusing on hazard classification and some possible
directions to handle the problem. Authors define the ro-
bustness notion as ”the ability of a system to function ac-
ceptably in the presence of faults or stressful environmental
conditions” and provide a state of the contributions in this
domain.

In [RLT02], authors present the PROTOS project in
which they describe the system with a high level of abstrac-
tion and then to simulate abnormal inputs in the specifica-
tion. It is mainly focused on the detection of vulnerabilities
of a network software system. In this case, robustness is
restricted to the notion of network security.

Some approaches are based on software fault injection :
The FIAT tool exposed in [BCSS90] modifies a processus
binary image in memory. In [Reg05], authors propose to
apply randomly interruptions in the IUT, whereas the BAL-
LISTA tool works on data unexpected modifications. This
idea is explained in [DKG99]. These approaches are based
on integration of faults directly in the software implemen-
tation of the system, but do not care about interpretation of
different behaviors.

Another approach consists in using model-based test
generation. The main difficulty of such technics is to de-
scribe the hazards in the model. Many works consider such
approach : see for example [SKRC07, FMP05, Rol03].

In [SKRC07], authors propose an approach based on an
increased specification used to specify the acceptable be-
haviours in presence of hazards.

In [FMP05], authors use a formal fault model in order
to build a ”mutant” specification. They use a fault model
in order to add ”fault” transitions in the specification. They
define a robustness relation based on a robustness property.
Contrary to our approach, they do not permit to integrate
unexpected inputs in the model.

5



The results in [Rol03] show how to use a degraded spec-
ification to model the behavior in case of critical situation,
and integrate the hazards directly in the test sequences. A
major difference between works described in [Rol03] and
this work is in the concept of robustness : we consider here
that robustness implies conformance; the method described
in [Rol03] does not.

In our approach, we use only the original specification,
but the extended alphabet has to be provided.

6 Conclusion and future works

In this paper, we have presented a formal approach to
test the robustness of a system modeled with an IOLTS. In
this work, we have considered an increased alphabet of the
system, and we have proposed a way to inject these hazards
in the test cases. We have proposed a test case generation
algorithm permitting to obtain a sound and exhaustive test
suite.

In the future, we intend to extend this approach on real
time systems. The idea is to model the specification using
timed automata with inputs and outputs. The difficulty of
this work is to handle new kinds of hazards due to timing
failures. In a general way, timing aspects may lead to com-
binatorial explosion. In order to solve this problem, we in-
tend to use the so called difference Bounds Matrix (DBM).

References

[BCSS90] J.-H. Barton, E.-W. Czeck, Z.-Z. Segall, and D.-
P. Siewiorek. Fault injection experiments using
FIAT. IEEE Trans. Comput., 39(4):575–582,
1990.

[Con08] C. Constant.Géńeration automatique de tests
pour mod̀eles avec variables ou récursivit́e.
PhD thesis, Université de Rennes 1, 2008.

[CW03] R. CASTANET and H. WAESELYNK. Tech-
niques avances de test de systmes complexes:
Test de robustesse. Technical report, Action sp-
cifique 23 du CNRS, 11 2003.

[DKG99] J. DeVale, P. Koopman, and D. Guttendorf.
The ballista software robustness testing ser-
vice. InTesting Computer Software Conference
(TCSC99), June 1999.

[FMP05] J-C. FERNANDEZ, L. MOUNIER, and C. PA-
CHON. A model-based approach for robust-
ness testing. In LNCS, editor,Testing of Com-
munication Systems, volume 3502, pages 333–
348. ifip, may/june 2005.

[FTdV06] Lars Frantzen, Jan Tretmans, and René
de Vries. Towards model-based testing of web
services. In Antonia Bertolino and Andrea
Polini, editors,in Proceedings of International
Workshop on Web Services Modeling and Test-
ing (WS-MaTe2006), pages 67–82, Palermo,
Sicily, ITALY, June 9th 2006.

[IEE04] IEEE.International Organization for Standard-
ization, Conformance testing methodology and
framework - part 2: abstract test suite specifi-
cation, 2004.

[JER03] T. JERON. Gnration de tests pour les systmes
ractifs. un survol des thories et techniques. In
IRIT, editor,ETR2003. Systmes, Rseaux et Ap-
plications, pages 105–122. IRIT, Septembre
2003.

[oSET99] IEEE Standard Glossary of Software Engineer-
ing Terminology 610.12-1990. Customer and
terminology standards.In IEEE Standards Soft-
ware Engineering, IEEE Press, 1, 1999.

[Reg05] J. Regehr. Random testing of interrupt-driven
software. InEMSOFT ’05: Proceedings of the
5th ACM international conference on Embed-
ded software, pages 290–298, New York, NY,
USA, 2005. ACM Press.

[RLT02] J. Rning, M. Laakso, and A. Taka-
nen. PROTOS - systematic approach
to eliminate software vulnerabilities.
http://www.ee.oulu.fi/research/ouspg, May
2002. 2002.

[Rol03] A. Rollet. Testing robustness of real-time em-
bedded systems.In Proceedings of Workshop
On Testing Real-Time and Embedded Systems
(WTRTES), Satellite Workshop of Formal Meth-
ods (FM 2003) Symposium, Pisa, Italy, Septem-
ber 13 2003.

[SKRC07] F. Saad-Khorchef, A. Rollet, and R. Castanet.
A framework and a tool for robustness test-
ing of communicationg software. In22nd an-
nual ACM Symposium on Applied Computing
(SAC’07), March 11-15, 2007 Seoul, Korea,
pages 1461–1466. ACM Press, march 2007.

[TRE96] J. TRETMANS. Test generation with inputs,
outputs, and quiescence. In T. Margaria and
B. Steffen, editors,Second Int. Workshop on
Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’96), volume 1055
of Lecture Notes in Computer Science, pages
127–146. Springer-Verlag, 1996.

6


