
Automatic test purpose generation for Web
services

Sébastien Salva

LIMOS CNRS UMR 6158
PRES Clermont University, Campus des Cézeaux

Aubière, FRANCE
sebastien.salva@u-clermont1.fr

Abstract. It is now well-established that to be reliable, software have
to be tested during the software life cycle, and this is particularly true
with recent technologies such as Web services. Test purpose based meth-
ods are black box testing techniques which take advantage of reducing
the time required for test derivation. Nevertheless, test purposes must be
constructed by hand. To solve this issue, we propose, in this paper, some
automatic test purpose generation methods for testing the operation ex-
istence, the critical states and the exception handling, in stateful Web
services. To take into account the SOAP environment in which they are
deployed, we also augment the specification with SOAP messages. We
show that SOAP gives more observable reactions and helps to test spe-
cific properties.

Keywords: Stateful Web services, STS, SOAP, test purpose generation

1 Introduction

Software testing is an important software engineering activity widely used to
find defects in programs. In particular, black box testing, which is the topic of
this paper, consists in testing a system implementation by means of test cases,
usually constructed from a specification. This paper also focuses on Web ser-
vices which represent interoperable components whose purpose is to externalize
functional code in a standardized way, or the reuse of software accompanied by
cost reduction.

Recently, several Web service based black box testing methods have been
proposed [1–5]. Some of them are said exhaustive i.e. the test case selection is
performed to ensure that a faulty implementation is detected by a least one test
case. Nevertheless, this exhaustiveness often implies a costly test case generation
which eventually may lead to a state space explosion. Moreover, the test case set
is not exhaustive in practice: service oriented application specifications are often
symbolic which means that these latter are composed of variables and guards.
The variable domain is often infinite and impossible to test completely.

Test purpose based methods represent an interesting alternative. Test pur-
poses are test requirements which are given by designers. They can be used to



test various properties such as the critical states, the coverage of specific actions,
etc. The test selection is then guided and thereby reduced since test purposes aim
to target the test of some implementation parts only. Some works dealing with
test purpose based methods for Web services have been proposed recently [3–5].
These methods generate test cases by synchronizing test purposes with the spec-
ification to produce action sequences which respect the specification and which
contain the test purpose properties. Then, test cases are experimented on the
implementation under test to conclude whether test purposes are satisfied.

Although using this approach greatly reduces test costs, the main encoun-
tered issue is that test purposes are formulated manually. And, constructing
them is particularly difficult when the system is large, has real-time constraints
or is distributed. However, many test purposes can be generated automatically
as it has been showed in some works [6] which propose test purpose generation
techniques for specific untimed systems (distributed systems and protocols). But
to our knowledge, none method has been proposed for service oriented appli-
cations. This is why we present, in this paper, several techniques to generate
test purposes for SOAP Web services, modelled with Symbolic Transition Sys-
tems (STS [7]). Usually, Web services are deployed in specific environments, e.g.,
HTTP for REST Web services or SOAP [8]. We show that the latter modifies
the behaviour of the tested Web services and may give new relevant information
(specific messages) for testing. So, the originality of our approach is to augment
the specification to take into account the SOAP environment in order to test spe-
cific properties e.g., the exception handling. From the completed specification,
we propose new test purpose generation methods to test the operation existence,
the critical states and the exception handling.

This paper is structured as follows: Section 2 defines the specification and
test purpose modelling. We describe the advantages granted by SOAP for testing
in section 3 and define the specification completion. Test purpose generation
methods are given in section 4. We provide some experiment results in section
5. And finally, section 6 gives some perspectives and conclusions.

2 Web service and test purpose modelling

We formalize, in this paper, Web services with Symbolic Transition Systems (STS
[7]). This extended automaton model associates a behaviour with a specification
composed of transitions labelled by actions and of internal and external variables
sets, which may be used to send or receive concrete values and to set guards which
must be satisfied to fire transitions. Below, we only summarize the suspension
STS definition where quiescence (the lack of observation) is taken into account
with the δ symbol. The complete definition can be found in [7].

Definition 1. A (suspension) Symbolic Transition System STS is a tuple <
L, l0, V, V0, I, Λ, →>, where:

– L is the finite set of locations, with l0 the initial one,
– V is the finite set of internal variables, I is the finite set of external or

interaction ones. We denote Dv the domain in which a variable v takes



values. The internal variables are initialized with the assignment V0, which
is assumed to take an unique value in DV ,

– Λ is the finite set of actions, partitioned by Λ = ΛIUΛO: inputs, beginning
with ?, are provided to the system, while outputs (beginning with !) are ob-
served from it. a(p) ∈ Λ is an action where p = (p1, ..., pk) is a finite set of
external variables. We denote type(p) = (t1, ..., tk) the type of the variable
set p. δ denotes the quiesence i.e. the lack of observation from a location,

– → is the finite transition set. A transition (li, lj , a(p), φ, ϱ), from the location

li ∈ L to lj ∈ L, also denoted li
a(p),φ,ϱ−−−−−→ lj is labelled by a(p) ∈ Λ, φ ⊆

DV × Dp is a guard which restricts the firing of the transition. Internal
variables are updated with the assignment ϱ : DV × Dp → DV once the
transition is fired.

(a) A Web service specification (b) A test purpose

Fig. 1.

The STS model is not specifically dedicated to Web services. These latter
may be invoked with methods called operations. This is why, for modelling, we
assume that an action a(p) in Λ represents either the invocation of an operation
op which is denoted opReq or the return of an operation op with opResp. For an
STS S, we denote OP(S) the operation set found in Λ. A specification example,
is illustrated in Figure 1(a) (black transitions). This one describes a part of the
Amazon Web Service devoted for e-commerce (AWSECommerceService [9]). For
sake of simplicity, we only consider two operations ”ItemSearch”, which aims
to search for items, and ”ItemLookUp”, which provides more details about an
item. Note that we do not include all the parameters for readability reasons.

On the other hand, test purposes describe the test intention. We assume that
these ones are composed exclusively of specification properties which should be



met in the implementation under test. Usually, test purposes do not represent
complete specification paths. Therefore, they are often synchronized with the
specification to generate executable test cases. Consequently, we also formalize a
test purpose with a deterministic and acyclic STS TP =< LTP , l0TP , VTP , V 0TP ,
ITP , ΛTP ,→TP> such that →TP is composed of transitions modelling spec-

ification properties. So, for any transition lj
a(p),φj ,ϱj−−−−−−→ l′j ∈→TP , it exists a

transition li
a(p),φi,ϱi−−−−−−→ l′i ∈→ and a value set (x1, ..., xn) ∈ Dn

V ∪I such that
φj ∧ φi(x1, ..., xn) |= true. A test purpose example is illustrated in Figure 1(b).
This one aims to search for books whose description contain the keywords ”Harry
potter”. We must obtain a valid response.

3 The advantages offered by the SOAP environment for
testing

Web services are deployed in specific environments, e.g., SOAP for SOAP Web
services, to structure messages in an interoperable manner and to manage opera-
tion invocations. In particular, the SOAP environment consists in a SOAP layer
which serializes messages with XML and of SOAP receivers (SOAP processor
+ Web services) [10] which is software, in Web servers, that consumes mes-
sages. The SOAP processor is a Web service framework part which represents
an intermediary between client applications and Web services and which seri-
alizes/deserializes data and calls the corresponding operations. The significant
modifications involved by SOAP processors can be found in [11].

In summary, SOAP processors add new messages, called SOAP faults, which
give details about faults raised in the server side. They return SOAP faults com-
posed of the causes ”Client” or ”the endpoint reference not found” if services
or operations or parameter types do not exit. SOAP processors also generate
SOAP faults when a service instance has crashed while triggering exceptions. In
this case, the fault cause is equal to the exception name. However, exceptions
correctly managed in the specification and in the service code (with try...catch
blocks) are distinguished from the previous ones since a correct exception han-
dling produces SOAP faults composed of the cause ”SOAPFaultException”. So,
SOAP faults can also be used to test whether the exception handling is cor-
rect by identifying the received causes. Consequently, taking into consideration
these messages while generating test purposes sounds very interesting to check
the satisfaction of specific properties e.g, the exception handling. So, we propose
to augment the specification with the SOAP faults generated by SOAP proces-
sors. We denote (soapfault, cause) a SOAP fault where the variable cause is the
reason of the SOAP fault receipt.

Let S =< L, l0, V, V0, I, Λ, →> be a Web service specification. S is completed
by means of the STS operation addsoap in S which augments the specification
with SOAP faults as described previously. The result is an STS S ↑. The oper-
ation addsoap is defined as follow: addsoap in S =def S ↑=< LS↑, l0, V, V0, I,



ΛS↑,→S↑> where LS↑, ΛS↑ and →S↑ are defined by the following inference rules:

R1 : l1
?opReq(p),φ,ϱ−−−−−−−−−→l2∈→S ,l1

?op′Req(p),φ′,ϱ′−−−−−−−−−−→l/∈→S ,

l
?op′Req(p),∅,∅−−−−−−−−−→l′∈→S↑,l′

!a(p),φ,∅−−−−−→l∈→S↑,φ=[a(p)̸=(soapfault,”CLIENT”)∧
l′ /∈LS

a(p)̸=(soapfault,”the endpoint reference not found”)]

R2 :

l
?opReq(p),φ,ϱ−−−−−−−−−→l′∈→S ,φ′=

∧
l′

!opRespi(ri),φi,ϱi−−−−−−−−−−−−→l′
i
∈→S

¬φi

l′
!(soapfault,cause),φ′,∅−−−−−−−−−−−−−−−→l

The first rule completes the initial specification on the input set by assuming
that each unspecified operation request returns a SOAP fault message. The sec-
ond rule completes the output set by adding, after each transition modelling an
operation request, a transition labelled by a SOAP fault. Its guard corresponds
to the negation of the guards of transitions modelling responses. A completed
specification is illustrated in Figure 1(a) with dashed transitions.

4 Automatic Test Purpose generation methods

Although test purposes sound interesting to reduce test costs, these ones also
raise an important drawback since they are usually formulated manually. So, we
contribute to solve this issue by introducing some automatic generation tech-
niques for Web services. We assume having a completed specification S ↑. We
propose three test purpose generation approaches which aim to test the opera-
tion existence, the critical locations, and the exception handling.

Operation existence testing

This approach generates test purposes for testing whether operations in OP(S ↑),
with S ↑ an STS specification, are implemented and can be invoked. With the
specification completion, detailed in the previous section, it becomes possible to
test the existence of any operation, even those which do not return any response,
i.e. any observable reaction. Indeed, if an operation is not implemented as it is
described in the specification, the SOAP processor will return a SOAP fault
composed either of the cause ”Client” or of the cause ”the end point reference
not found”. So, for a specification S ↑=< LS↑, l0S↑, VS↑, V 0S↑, IS↑, ΛS↑,→S↑>,
the test purpose set is given by:

TP =
∧

op∈OP(S↑)

{tp =< L, l0, VS , V 0S , IS , Λ, →> where →= {l0
?opReq(p),∅,∅−−−−−−−−−→

l1, l1
!a(p),φ,∅−−−−−→ l2, with φ = [a(p) ̸= (soapfault, ”Client”) ∧ a(p) ̸= (soapfault,

”the end point reference not found”)]}}
The specification of Figure 1(a) is composed of two operations, so we obtain

two test purposes. These ones will be synchronized later with the specification
to test any operation invocation.

Critical location testing

The second technique aims at testing the specification critical locations. It is not
obvious to set which location is critical since no general and formal definition



is given in literature. So, in this paper, we suggest that the critical locations
are those the most potentially encountered in the acyclic specification paths.
Nevertheless, other criteria could be chosen, such as the less visited locations, or
the quiescent ones. We give in [11] an algorithm which is derived from the DFS
(Depth First Search) one, to detect the critical location set, denoted CS. Then,
for each critical location l ∈ CS, we construct test purposes to test all the outgo-
ing transitions of l. The test purpose set, expressed below, is composed of specifi-
cation paths finished by output actions to observe the implementation reactions
while testing. For a specification S ↑=< LS↑, l0S↑, VS↑, V 0S↑, IS↑, ΛS↑,→S↑>,
the test purpose set is given by:

TP =
∧

l∈CS

{tp =< L, l0, VS , V 0S , IS , Λ,→> where → is constructed with the

following inferences rules:

R1 :
l

!a(p),ϱ,φ−−−−−→l′∈→S↑,a(p) ̸=δ

l0
!a(p),ϱ,φ−−−−−→l′∈→

R2 :
l

?a(p),ϱ,φ−−−−−−→l′∈→S↑,p=l′
a1(p),ϱ1,φ1−−−−−−−→l′1...l

′
n−1

an(p),ϱn,φn−−−−−−−−→l′n∈(→S↑)
n,an(p)∈ΛO

S↑/{δ}

l0
!a(p),ϱ,φ−−−−−→l′.p∈(→)n+1

R1 is used when an outgoing transition, from a critical location, is labelled
by an output. In this case, this transition is added to the test purpose. The
second rule is used when a transition is labelled by an input. The test purpose
is completed with this transition followed by a specification path finished by an
output. A test purpose generation algorithm is given in [11]. In the specification
of figure 1(a) we have two critical locations l2 and l3. So, we obtain two test
purposes which aim to test all the outgoing transitions of l2 and l3 with paths
finished by output actions.

Exception handling testing

As described in Section 3, SOAP processors return SOAP faults when exception
are triggered in a Web service operation at runtime. SOAP processors also enable
to differentiate the exceptions resulting of unexpected Web service crashes from
those which are thrown in Web service operations (with try ... catch blocks
for instance). In the last case only, we obtain SOAP faults composed of the
”SoapFaultException” cause.

With the specification completion described in section 3, we can construct
test purposes to test whether the exception handling is correctly implemented
and not managed by SOAP processors. However, to trigger exceptions, test
purposes must be formulated over predefined value sets, that we denote U(t).
These ones are composed of unusual values well known for relieving bugs, for
any simple or complex type t. For instance, U(string) is composed of the val-
ues &”, ”$”, null or ” ”, which usually trigger exceptions. For a specification
S ↑=< LS↑, l0S↑, VS↑, V 0S↑, IS↑, ΛS↑,→S↑>, the test purpose set is given by:

TP =
∧

l
?opReq(p),φ,ϱ−−−−−−−−−→l′∈→S↑

{tp =< L, l0, VS↑, V 0S↑, IS↑, Λ, →> where →=



{l0
?opReq(p),φ′,ϱ−−−−−−−−−→ l1, l1

(!soapfault,”SOAPFaultException”),∅,∅−−−−−−−−−−−−−−−−−−−−−−−−−−−→ l2 where φ
′ = φ∧p =

(p1, ..., pn) takes values in U(type(p1))× ...× U(type(pn))}
The specification of Figure 1(a) contains four operation requests from loca-

tions l1 and l3. If we suppose that card(U(type(p1)) × ... × U(type(pn))) = n,
we obtain at most 4n test purposes. It is manifest that the larger the unusual
values sets, the larger the test purpose set will be. To limit it, instead of using
a cartesian product, other solutions may be used such as pairwise testing [12]
which constructs discrete combinations for pair of parameters only and which
has been shown sufficient to cover parameter domains.

5 Experimentation

At the moment, we have implemented a preliminary tool which performs the
test purpose generation from a completed STS and the synchronous products
between the specification and test purposes. Then, we have manually extracted
test cases and translated them into the Soapui format. Then, these ones can
be executed with the Soapui tool [13] which aims to experiment Web services
with unit test cases. A Soapui test case example can be found in an extended
version of this paper in [11]. We applied the test purpose generation on the
AWSECommerceService (09/10 version). Results are given in Figure 2. All the
22 operations handle a large number of parameters, therefore we limited the test
purpose number to 10 per operation, for the exception handling method. We
obtained fail verdicts only for the exception handling tests. Indeed, we obtained
some SOAP faults composed of the cause Client, meaning that the requests
are incoherent although the test cases satisfy the specification. We also received
unspecified messages corresponding to errors composed of a wrong cause. For in-
stance, instead of receiving SOAP faults, we obtained the response ”Your request
should have at least 1 of the following parameters: AWSAccessKeyId, Subscrip-
tionId when we called the operation CartAdd with a quantity equal to ”-1”, or
when we searched for a ”Book” type instead of the ”book” one, whereas the two
parameters AWSAccessKeyId, SubscriptionId were right.

Existence Critical locations Exception handling

test purposes 22 2 22
test cases 44 22 210
fail verdicts 0 0 39

Fig. 2. Test results on the Amazon AWSECommerceService Service

6 Conclusion

We have proposed, in this paper, some methods to generate automatically test
purposes from a Stateful Web service specification. We believe that these latter
are relevant when used in combination with existing test purpose based methods
to produce test cases automatically and to prevent from writing test purposes
manually.



We have also shown that taking into account the SOAP environment during
the test brings new information which help to test specific properties such as
the operation existence or the exception handling. An immediate line of future
work is to propose other generation approaches such as the test of the location
accessibility. We also intend to extend this work on service compositions to test
composition properties.

References

1. Garćıa-Fanjul, J., Tuya, J., de la Riva, C.: Generating test cases specifications for
compositions of web services. In Bertolino, A., Polini, A., eds.: in Proceedings of
International Workshop on Web Services Modeling and Testing (WS-MaTe2006),
Palermo, Sicily, ITALY (2006) 83–94

2. Frantzen, L., Tretmans, J., de Vries, R.: Towards model-based testing of web
services. In Bertolino, A., Polini, A., eds.: in Proceedings of International Workshop
on Web Services Modeling and Testing (WS-MaTe2006), Palermo, Sicily, ITALY
(2006) 67–82

3. Lallali, M., Zaidi, F., Cavalli, A., Hwang, I.: Automatic timed test case genera-
tion for web services composition. In Press, I.C.S., ed.: The 6th IEEE European
Conference on Web Services (ECOWS’08), Dublin (2008) 53–63.

4. Escobedo, J.P., Gaston, C., Gall, P., Cavalli, A.: Observability and controllabil-
ity issues in conformance testing of web service compositions. In: TESTCOM
’09/FATES ’09, Berlin, Heidelberg, Springer-Verlag (2009) 217–222

5. Cao, T.D., Felix, P., Castanet, R.: Wsotf: An automatic testing tool for web
services composition. In: Proceedings of the 2010 Fifth International Conference
on Internet and Web Applications and Services. ICIW ’10, Washington, DC, USA,
IEEE Computer Society (2010) 7–12

6. Henniger, O., Lu, M., Ural, H.: Automatic generation of test purposes for testing
distributed systems. In Petrenko, A., Ulrich, A., eds.: FATES. Volume 2931 of
Lecture Notes in Computer Science., Springer (2003) 178–191

7. Frantzen, L., Tretmans, J., Willemse, T.: Test Generation Based on Symbolic
Specifications. In Grabowski, J., Nielsen, B., eds.: Formal Approaches to Soft-
ware Testing – FATES 2004. Number 3395 in Lecture Notes in Computer Science,
Springer (2005) 1–15

8. Consortium, W.W.W.: Simple object access protocol v1.2 (soap). (2003)
9. Amazon: Amazon e-commerce service. (2010)

http://docs.amazonwebservices.com/AWSEcommerceService/4-0/.
10. organization, W.I.: Ws-i basic profile. (2006) http://www.ws-

i.org/docs/charters/WSBasic Profile Charter2-1.pdf.
11. Salva, S., Rabhi, I.: Automatic test purpose generation for Web services. (2011)

LIMOS Research report RR-11-04.
12. Cohen, M.B., Gibbons, P.B., Mugridge, W.B.: Constructing test suites for in-

teraction testing. In: Proc. Intl. Conf. on Software Engineering (ICSE). (2003)
38–48

13. Eviware: Soapui. (2011) http://www.soapui.org/.


