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Abstract

Passive testing is an alternative testing approach whose purpose is to passively analyze
an implementation behaviour without disturbing it. Usually, passive testing methods extract
traces by means of sniffer-based tools, running in the same environment as the implementa-
tion. Nevertheless, many implementation environments prevent from setting a sniffer-based
tool for security or technical reasons. We propose a passive testing method based on the
notion of proxy-tester which represents an intermediary between client applications and the
implementation. We define a proxy-tester as a product between the specification and its
canonical tester, which is able to receive the client traffic and to forward it to the imple-
mentation and vice versa. It also aims to analyze the implementation traces to detect faults.
We define a non conformance relation between the implementation, its specification and the
external environment from which is received the client traffic. We also provide some pre-
liminary results on the Amazon E-commerce Web service and discuss about the proxy-tester
benefits.
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1: Introduction

Testing is an important engineering activity widely used to find defects in systems or
programs. In particular, black box testing, which is the topic of this paper, consists in
testing whether an implementation behaves as described in its specification. Most testing
methods are said to be active which means that test cases are extracted from the spec-
ification and experimented on the implementation to conclude whether a test relation is
satisfied. For instance, ioco [14] is a well-know test relation for active testing, which is based
on trace (action sequences) equivalence. Active methods require to deploy a pervasive test
environment (test architecture) to execute test cases and to observe implementation re-
actions. They may also interrupt the system normal functioning arbitrarily, for example
by resetting it after each test case execution. However, when a system is deployed in an
integrated environment, it becomes quite difficult to access it. Moreover, active methods
may disturb the natural operation of the implementation under test. So, these ones may
not be suitable in regards to the tested system.

Passive testing represents another interesting alternative, which offers several advantages,
e.g., to publish more rapidly a system or to not disturb it while testing. Passive testing
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methods aim to detect faults by passively observing the implementation input/output ac-
tions, without interrupting its normal behaviour. Usually, the tester corresponds to a kind
of sniffer which can extract both the stimuli sent to the implementation and its reactions
in the environment where it is running. Then, the resulting traces can be used to check
that the implementation behaviour does not contradict the specification one, or to check
the satisfaction of specific properties defined by means of invariants.

Nevertheless, some hypotheses are also required for passive testing. In particular, a mod-
ule, which often corresponds to a sniffer-based tool, has to be set in the implementation
environment to observe its reactions. This assumption is difficult to maintain with many
environments in practice: for instance, as soon as a system is deployed on an infrastructure
which does not allow a test environment installation (testers, sniffer-based tools, etc.) for
security reasons, the messages generated by the implementation cannot be extracted. An-
other recent example concerns Clouds, i.e. virtualized environments where the resources are
not owned by the software development companies. The dynamic nature of the Cloud ar-
chitecture does not enable a tester to retrieve the messages exchanged between applications
since we do not know in advance where they are geographically deployed. Consequently, if
these messages cannot be observed, the traces cannot be extracted and thus the test cannot
be performed.

This paper proposes another passive testing solution, based on the notion of proxy-tester.
This one is a standalone application which can be seen as an intermediary between client
applications and the implementation under test. It aims to receive the client traffic that
it forwards to the implementation and vice versa. While receiving implementation reac-
tions, a proxy-tester is also able to detect incorrect behaviours and to conclude on the non
conformance of the implementation. Moreover, proxy-testers offer a lot of flexibility since
they can be deployed in the same environment as the implementation but also outside of
it, in condition that proxy-testers may interact with the implementation. In the remainder
of the paper, we formally define the notion of proxy-tester for symbolic systems. We also
define a non conformance test relation between the implementation and its specification
that we model with STS (Symbolic Transition System [5]). And finally, we present some
of the possibilities offered by a proxy-tester, e.g., for security testing.

This paper is structured as follows: we briefly present, in Section 2, selected publica-
tions on passive testing, related to the topics covered in this paper. Section 3 defines the
specification modelling. Section 4 describes our passive testing method by defining the
proxy-tester of a specification and the corresponding passive conformance test relation. We
provide some preliminary results on the Amazon E-commerce Web service and discussions
in Section 5. Finally, we conclude in Section 6.

2: Related work on passive testing

Some works dealing with passive testing of protocols or components (Web services) have
been proposed recently.

In [10], Lee et al. propose a passive testing approach dedicated to wired protocols
modelled with Extended Finite State Machines (EFSM), composed of variables. Several
algorithms on the EFSM model and their applications to OSPF and TCP state machine are
presented. Algorithms aim to check whether traces, composed of actions and parameters,
satisfy the specification on the fly. As is described in the experimentation part, reactions



are extracted by means of sniffers.
Some works deal with Mobile ad hoc network routing protocol testing. In [11], the passive

testing approach is based on the notion of Relay Node Set (RNS) concept. A RNS is a
set of nodes that allow reaching all nodes in the network. RNS passively computes some
metrics from the packets passing through the node and from formulae constructed manually
according to the tested protocol. Metrics may be based on the overhead of the network, or
on the number of retransmissions etc. Based on the previous metrics, the protocol can be
optimized by managing the node number for instance. In [3], the passive testing approach
is based on the correctness of an implementation through a set of invariants (or properties)
and traces. This approach is constructed by different steps: definition of invariants from
the specification, extraction of execution traces by means of sniffers, verification of the
invariants on the traces.

Other works focus on Web service testing: in this case, passive methods are used to
check conformance or security. In [12], the confidence level between the implementation
and its specification is also defined with invariants. As in [3], invariants are constructed
from the specification and traces are collected with network sniffers. Then, the TIP tool
performs automated analysis of the captured traces to determine if the given timed extended
invariants are satisfied or not. Security of Web service compositions are passively tested in
[2]. Security rules are modelled with the Nomad language which can express authorizations
or prohibitions with timed properties. Firstly, a rule set is manually constructed from a
specification. Traces of the implementation are extracted with modules which are placed
at each workflow engine layer which executes Web services. Then, authors check that the
implementation does not contradict the security rules with the collected traces.

To our knowledge, the passive testing methods proposed in literature (and especially the
previous ones) rely on a sniffer-based tool as a central point to extract all the client requests
and implementation reactions (messages, packets, etc.). In this paper, we consider that the
access to the implementation environment is restricted. So, a sniffer-based tool cannot be
set up in the environment. Instead, we define the notion of proxy-tester which is constructed
from a specification and its canonical tester. We assume that the client traffic is routed to
the proxy-tester which forwards it to the implementation and vice versa. It also analyzes
the implementation reactions on the fly to detect non conformance. Non conformance
is defined formally with a passive test relation which depends on an implementation, its
specification and the external environment which stimulates (calls) the implementation.

3: Model Definition and notations

Several models, e.g., UML, Petri nets, process algebra, have been proposed to formalize
systems or applications. The STS (Symbolic Transition Systems [5]) model is one of them
and has been used with many testing methods [6, 7, 13]. The STS formalism offers a large
formal background (definitions of implementation relations, test case generation algorithms,
etc.). So, we based our choice on this latter to model specifications and test cases. An STS
is a kind of input/output automaton extended with a set of variables, with guards and
assignments on variables labelled on the transitions. In the following, we assume that STSs
are deterministic.

Definition 1 A Symbolic Transition System STS is a tuple < L, l0, V, V0, I,Λ, →>, where:



• L is the finite set of locations, with l0 the initial one,

• V is the finite set of internal variables, while I is the finite set of external or interac-
tion ones. We denote Dv the domain in which a variable v takes values. The internal
variables are initialized with the assignment V0, which is assumed to take an unique
value in DV ,

• Λ is the finite set of action labels, partitioned by Λ = ΛI ∪ΛO: inputs, beginning with
?, are provided to the system, while outputs (beginning with !) are observed from it,

• → is the finite transition set. A transition (li, lj , a(p), ϕ, %), from the location li ∈ L
to lj ∈ L, also denoted li

a(p),ϕ,%−−−−−→ lj is labelled by a(p) ∈ Λ × P(I), with a ∈ Λ an
action and p ⊆ I is a finite set of external variables p = (p1, ..., pk). We denote
type(p) = (t1, ..., tk) the type of the variable set p. ϕ ⊆ DV × Dp is a guard which
restricts the firing of the transition. Internal variables are updated with the assignment
% : DV ×Dp → DV once the transition is fired.

An immediate STS extension is called the STS suspension which also expresses quies-
cence. A quiescence occurs when no output can be observed. The system is blocked unless
the environment provides an input. Quiescence is modelled by a new symbol !δ and an
augmented STS denoted ∆(STS). For an STS S, ∆(S) is obtained by adding a self-loop
labelled by !δ for each location where quiescence may be observed. The guard of this new
transition must return true for each value of DV ∪I which does not allow firing a transition
labelled by an output. An STS suspension example is illustrated in Figure 1. This straight-
forward specification describes a banking component with two methods lg for logging on the
bank system and transfer whose purpose is to transfer money from one bank account to
another one. The specification handles an internal and private method valid which returns
true if the given bank accounts or keys are valid and false otherwise.

Figure 1. A suspension STS

An STS is also associated to an LTS (Labelled Transition System) to define its semantics.
The LTS semantics corresponds to a valued automaton without symbolic variables: the LTS
states are labelled by internal variable values while transitions are labelled by actions and
parameter values.



Definition 2 The semantics of an STS S =< L, l0, V, V0, I,Λ,→> is an LTS ||S|| =<
Q, q0,

∑
,→> where:

• Q = L×DV is the finite set of states,

• q0 = (l0, V0) is the initial state,

•
∑

= {(a(p), θ) | a(p) ∈ Λ, θ ∈ Dp} is the set of valued symbols,

• → is the transition relation Q× Σ×Q deduced by the following rule:

li
a(p),ϕ,%−−−−−→lj ,θ∈Dp,v∈DV ,v′∈DV ,ϕ(v,θ)|= true,v′=%(v,θ)

(li,v)
a(p),θ−−−→(lj ,v′)

Intuitively, for an STS transition li
a(p),ϕ,%−−−−−→ lj , we obtain an LTS one (li, v)

a(p),θ−−−→ (lj , v
′)

with v an internal variable value set, if there exists a parameter value θ such that the
guard ϕ(v, θ) returns true. Once the transition is executed, the internal variables take the
value v′ derived from the assignment %(v, θ). An STS suspension ∆(S) is associated to its
suspension LTS semantics by ||∆(S)|| = ∆(||S||).

For defining STS-based conformance relations, an implementation under test is usually
assumed to behave like an LTS. So, runs and traces can then be extracted during the test
execution.

For an STS S, interpreted by its LTS semantics ||S|| =< Q, q0,
∑
,→>, a run q0α0...αn−1qn

is an alternate sequence of states and valued actions. RUN(S) = RUN(||S||) is the set of
runs found in ||S||. RUNF (S) is the set of runs of S finished by a state in F ⊆ Q.

It follows that a trace of a run is defined as a projection on actions. So, TracesF (S) =
TracesF (||S||) is the set of traces of runs finished by states in F ⊆ Q.

4: Passive testing with proxy-tester

4.1: Proxy-tester definition

Figure 2. The proxy-tester use

This paper proposes an alternative passive testing method by defining a proxy-tester
which can be seen as a kind of intermediary between the external environment (client side)
and the implementation. Figure 2 illustrates an example of a proxy-tester use. This one
may be deployed in the implementation environment or outside of it, in condition that
it may interact with the implementation. From the external side, it replaces (conceals)
the implementation so this requires the client traffic to be routed to the proxy-tester.



Thus, a proxy-tester must interact with the external environment as it is described in the
specification. Each action received from the external environment by the proxy-tester is
forwarded to the implementation as well. It must be also able to receive actions from the
implementation which are forwarded to the external environment, but which can be also
analyzed to check properties and especially the implementation conformance.

So, to be defined as an intermediary between the external environment and the implemen-
tation, the proxy-tester must behave like the specification for interacting with the external
environment side and must also act as a mirror specification to interact with the implemen-
tation side. To analyze the implementation actions or more precisely the implementations
traces, it must also recognizes the correct traces (those found in the specification) and the
incorrect ones. Consequently, we can deduce that a proxy-tester must be a combination
of the specification with a mirror specification blent with incorrect behaviours. And this
second part corresponds to the canonical tester of the specification.

The canonical tester of an STS, gathers the specification transitions labelled by mirrored
actions (inputs becomes outputs and vice versa) and transitions leading to a new location
Fail, modelling the receipt of unspecified actions [8].

Let S =< LS, l0S, VS, V 0S, IS,ΛS,→S> be a deterministic STS and ∆(S) be its suspension.
The canonical tester for S is the deterministic STS CAN(S) =< LCAN , l0CAN , VS , V 0S , IS ,
ΛCAN ,→CAN> such that:

• ΛICAN = ΛOS ∪ {?δ} and ΛOCAN = ΛIS ,

• LCAN , l0CAN ,→CAN are defined by the rules:

(keep S transitions):
t∈→∆(S)

t∈→CAN

(incorrect behaviour
completion):

a∈ΛO
S
∪{!δ},ϕa =

∧
l1

a(p),ϕn,%n−−−−−−→∆(S)ln

¬ϕn

l1
?a(p),ϕa,∅−−−−−−→CANFail

The canonical tester of the specification, given in Figure 1, is illustrated in Figure 3. For
readability reason, locations are identified by letters but it is not mandatory. The resulting
STS is completed on the input set. For instance, from the location B, new transitions to
Fail are added to model the receipt of unspecified responses or quiescence.

In the proxy-tester, to clearly separate the external environment side to the imple-
mentation one, we separate the variable set of S to the variable set of CAN(S) with
the renaming function φ : V ∪ I → V ′ ∪ I ′, φ(v) → v′. So, for an STS S, we denote
φ(S) =< LS, l0S, φ(VS), φ(V 0S), φ(IS),ΛS ,→φ(S)> where →φ(S) is the finite transition set
composed of transitions

l
a(p),φ(ϕ),φ(%)−−−−−−−−−→φ(S) l

′ with φ(ϕ) ⊆ Dφ(V ) ×Dφ(p) and φ(%) : Dφ(V ) ×Dφ(p) → Dφ(V ). In the
following proxy-tester definition, we also add, for each transition, an internal variable side
which helps to clearly identify the interactions with the external environment (side := Env)
from the interactions with the implementation under test (side := IUT ).

A proxy-tester P(S) of the specification S =< LS, l0S, VS, V 0S, IS,ΛS,→S> is a combina-
tion of ∆(S) with its canonical tester φ(CAN(S)). P(S) is defined by a deterministic STS
< LP, l0P, VS ∪ Vφ(S) ∪ {side}, V 0S ∪ V 0φ(S) ∪ {side := ””}, IS ∪ Iφ(S), Λ∆(S) ∪ ΛCAN ,→P>



Figure 3. A canonical tester

such that LP, l0P and →P are constructed by the following inference rules:

(Env to IUT): l1
?a(p),ϕ,%−−−−−→∆(S) l2, l1

!δ−→∆(S) l1, l1′
!a(p′),ϕ′,%′−−−−−−→CAN l2′ ,

l1′
?δ−→CAN l1′ , ϕ

′ = φ(ϕ), %′ = φ(%)
`
(l1l1′)

?a(p),ϕ,[%∧temp:=p∧side:=Env]−−−−−−−−−−−−−−−−−−−−→P (l2l1′aϕ)
!a(p′),[p′==temp∧ϕ′],[%′∧side:=IUT ]−−−−−−−−−−−−−−−−−−−−−−−→P (l2l2′),

(l2l1′aϕ)
?δ,∅,[side:=IUT ]−−−−−−−−−−→P (l2l1′δ)

!δ,∅,[side:=Env]−−−−−−−−−−→P (l2l1′aϕ)

(Env to IUT)2: l1
?a(p),ϕ,%−−−−−→∆(S) l2, l1′

!a(p′),ϕ′,%′−−−−−−→CAN l2′ ,

l1′
b(p′′),ϕb,%b−−−−−−−→CAN Fail, ϕ′ = φ(ϕ), %′ = φ(%)

`
(l2l1′aϕ)

b(p′′),ϕb,[%b∧side:=IUT ]−−−−−−−−−−−−−−−→P Fail

(IUT to Env): l1
!a(p),ϕ,%−−−−−→∆(S) l2, l1′

?a(p′),ϕ′,%′−−−−−−−→CAN l2′ ,

l1′
b(p′′),ϕb,%b−−−−−−−→CAN Fail, ϕ′ = φ(ϕ), %′ = φ(%)

`
(l1l1′)

?a(p′),ϕ′,[%′∧temp:=p′∧side:=IUT ]−−−−−−−−−−−−−−−−−−−−−−→P (l1l2′aϕ)
!a(p),[p==temp∧ϕ],[%∧side:=Env]−−−−−−−−−−−−−−−−−−−−−→P (l2l2′),

(l1l1′)
b(p′′),ϕb,%b−−−−−−−→P Fail

The first rule (Env to IUT) combines a specification transition and a canonical tester
one labelled by the same mirrored actions to express that if an action is received from



the external environment then this one is spread to the implementation. The two steps
(receiving an action and forwarding it) are separated by a new location (l2l1′aϕ) which is
unique for each transition of the specification since this one and its canonical tester are
deterministic (for any action a and any pair of transitions carrying a with two guards ϕ1

and ϕ2, ϕ1 ∧ ϕ2 is unsatisfiable). Transitions labelled by δ modelling quiescence are also
combined: so if quiescence is detected from the implementation, quiescence is also observed
from the external environment. Note that a suspension STS location has inevitably a self-
loop transition labelled by !δ if a transition labelled by an input may be fired from the same
location. The second rule (Env to IUT)2 adds eventually the canonical tester transitions
leading to Fail. The last rule (IUT to Env) similarly combines a specification transition
and a canonical tester one labelled by the same mirrored actions to express that if an action
is received from the implementation then this one is spread to the external environment.
In this case, we always have a canonical tester transition leading to Fail which is added to
the proxy-tester (at least a transition labelled by ?δ expressing quiescence). For each rule,
the resulting transitions are identified by means of the side internal variable.

The resulting proxy-tester obtained from the previous specification (Figure 1) and its
canonical tester (Figure 3) is depicted in Figure 4. For sake of readability, the side variable is
replaced with solid and dashed transitions: solid transitions stand for interactions with the
external environment (side := Env), dashed ones for interactions with the implementation
(side := IUT ). Figure 4 clearly illustrates that the initial specification behaviour (paths)
is kept and that the incorrect behaviour depicted in the canonical tester is present too.

Figure 4. A proxy-tester

The transitions representing interactions with the external environment are separated to
the other ones by means of the side variable. As a consequence, runs and traces of the
proxy-tester can be also separated.

Let P =< LP, l0P, VP, V 0P, IP,ΛP,→P> be an STS and ||P|| = P =< QP , q0P ,
∑

P ,→P>
be its LTS semantics. We define Side : QP → DVP the mapping which returns the value of
the side variable of a state. (STS internal variable values are located in LTS states).

Let RUN(P) be the set of runs of P. We define RUNE(P) as the projection
proj(qαq1∈RUN(P),Side(q)=E)(RUN(P)) which denotes the set of partial runs qiαi...αn−1qn
relative to the E side. It follows that TracesE(P) is the set of traces of partial runs in



RUNE(P).
For a proxy-tester P(S), we can write TracesIUTFail(P(S)) for representing the non confor-

mance traces extracted by the proxy-tester from the implementation side. For instance,
in the proxy-tester of Figure 4, !lgReq(”a incorrect key”).?lgResp(”connected”) belongs to
TracesIUTFail(P(S)).

With these notations, we can also write some interesting trace properties.

Proposition 3 The traces of the canonical tester are equal to the traces given by the
transitions of the proxy-tester labelled by the assignment side := IUT . So, we have
TracesIUT (P(S)) = Traces(CAN(S))

Proof sketch: for simplicity, we give only the intuition of proof here (the complete proof
requires to consider all the cases described in the proxy-tester construction rules i.e. tran-
sitions with inputs, outputs, quiescence, transitions leading to Fail, etc.). This equality
can be proved by focusing on the proxy-tester construction rules. These ones keep the path
structure of both the specification and its canonical tester by interleaving one transition
of the specification with its mirrored transition and by adding the transitions modelling
incorrect behaviours of the canonical tester. Let S be an STS, and P(S) be its proxy-tester,
which is a combination of ∆(S) with its canonical tester φ(CAN(S)). If we suppose that

we have two transitions l1
a(p)−−→∆(S) l2

b(p)−−→∆(S) l3 and l′1
a(p′)−−−→φ(CAN(S)) l

′
2

b(p′)−−−→φ(CAN(S)) l
′
3.

Either of the rules produce a path l1l
′
1

?a(p)−−−→P(S) lt1
!a(p)−−−→P(S) l2l

′
2

?b(p)−−−→P(S) lt2
!b(p)−−−→P(S) l3l

′
3,

where lt1 and lt2 are unique. Transitions labelled by δ in ∆(S) are joined in the same way,
and transitions leading to Fail in CAN(S) are added in the proxy-tester P(S). Thereby,
the path structure (behaviours of the suspension specification and of its canonical tester)
is kept.

Consequently, for a run r = q0α0...αn−1qn of the LTS semantics of φ(CAN(S)), there
exists a run r′ of the LTS semantics P of P(S) such that proj(qαq1∈r′,Side(q)=IUT ) (r′) =

q′iα0...αn−1q
′
m. It follows that TracesIUT (

P(S)) = Traces(φ(CAN(S))) = Traces(CAN(S)). The last equality is straightforward
since φ is a mapping which renames variables in CAN(S) for the proxy-tester defini-
tion. However, traces are not constructed over variable names but with values. We can
also deduce that we have the same trace set leading to Fail. So, TracesIUTFail(P(S)) =
TracesFail(CAN(S)).

4.2: Passive conformance

To reason about conformance, the implementation under test is assumed behaving like its
model and is represented by an LTS I. ∆(I) represents its suspension LTS. Active testing
methods usually define the confidence degree of the implementation I with its specification
S by means of a test relation. For instance, ioco is a well known test relation based on
trace equivalence, dedicated for systems modelling with either LTSs or STSs. In [8], ioco
is defined for STSs by:

I ioco S⇔ Traces(∆(I)) ∩NC Traces(∆(S)) = ∅

whereNC Traces = Traces(∆(S)).(
∑O ∪{!δ}\Traces(∆(S)) is the minimal non-conformant

trace set. Nevertheless, ioco is not well suited for passive testing since the test depends on



the external environment stimuli which is not expressed. Moreover, passive testing does
not help to check conformance but rather detects non conformance (defects) of the imple-
mentation on the received stimuli set during a long period of time. We prefer defining the
following relation, based on ioco:

I non-conform S⇔ Traces(∆(I)) ∩NC Traces(∆(S)) 6= ∅

However, NC Traces(S) is equivalent to TracesFail(CAN(S)) since CAN(S) recognizes
non-conformant behaviours in its Fail states [8]. And previously, we have shown that
TracesFail(CAN(S)) = TracesIUTFail(P(S)). So, we can write:

I non-conform S⇔ Traces(∆(I)) ∩ TracesIUTFail(P(S)) 6= ∅

To take into account the passive test execution, we need to reason about the paral-
lel composition of the External environment, the proxy-tester and the implementation.
P =< QP , q0P ,

∑
P ,→P> is the LTS semantics of a proxy-tester P(S). We assume that

the external environment can be modelled with an LTS Env =< QEnv, q0Env,
∑

Env ⊆∑
P ,→Env>, and I =< QI , q0I ,

∑
I ⊆

∑
P ,→I> is the implementation. The passive test-

ing of I is modelled by the parallel composition ||(Env, P, I) =< QEnv ×QP ×QI , q0Env ×
q0P × q0I ,

∑
Env ⊆

∑
P ,→||(Env,P,I)> where the transition relation →||(Env,P,I) is defined

by the following rules. For readability reason, we denote an LTS transition q1
?a−→
E

q2 when

Side(q1) = E (a variable side is valued to E in q1).

(Env to IUT):
q1

!a−→∆(Env)q2,q
′′
2

?a−→∆(I)q
′′
3 ,q

′
1

?a−−→
Env P

q′2
!a−−−→
IUT P

q′3

q1q′1q
′′
2

?a−−→
Env ||(Env,P,I)

q2q′2q
′′
2

!a−−−→
IUT ||(Env,P,I)

q2q′3q
′′
3

(IUT to Env):
q2

?a−→∆(Env)q3,q
′′
1

!a−→∆(I)q
′′
2 ,q

′
1

?a−−−→
IUT P

q′2
!a−−→
Env P

q′3,q
′
3 6=Fail

q2q′1q
′′
1

?a−−−→
IUT ||(Env,P,I)

q2q′2q
′′
2

!a−−→
Env ||(Env,P,I)

q3q′3q
′′
2

(IUT to Fail):
q2

?δ−→∆(Env)q3,q
′′
1

!a−→∆(I)q
′′
2 ,q

′
1

?a−−−→
IUT P

Fail

q2q′1q
′′
1

?a−−−→
IUT ||(Env,P,I)

Fail

The immediate deduction of the →||(Env,P,I) definition is that →||(Env,P,I) is exactly
composed of the same transition number as →P and keeps the same symbol set. Only
states are modified.

According to the previous rules, it follows that the trace set of ||(Env, P, I) is equal to
the one of P . Since P = ||P(S)||, Traces(P ) is equivalent to Traces(P(S)) (Section 3) and
to Traces(||(Env, P, I)).
In particular, TracesIUTFail(P(S)) = TracesIUTFail(||(Env, P, I)). Finally, we can also write:

I non-conform S ⇔ Traces(∆(I)) ∩ TracesIUTFail(P(S)) 6= ∅
⇔ Traces(∆(I)) ∩ TracesIUTFail(||(Env, P, I)) 6= ∅

In other terms, this relation means that the implementation I does not conform to its
specification if a trace of the suspension implementation is found in a trace of the parallel
composition ||(Env, P, I) leading to one of its Fail states.



In practice, to detect non conformance of the implementation, we assume that the client
traffic is routed to the proxy-tester. We also assume that the proxy-tester instance con-
figuration is the same as the implementation one. For instance, if the implementation is
a multi-instance system (one implementation instance per client), the proxy-tester mode
must be identical.

During its execution, the proxy-tester receives valued requests from both the external
environment and the implementation under test. It covers its transitions until it reaches a
Fail state. In this case the implementation is non conforming. Algorithm 1, derived from the
one given in [10], details the proxy-tester functioning. The latter considers both the external
environment and the implementation as LTS suspensions. The covering of the proxy-tester
transitions is based on the notion of Configuration which reminds the LTS semantics states.
A configuration C =< l,Assertl > is a pair composed of a location l and of an assertion
Assertl which is a set expressing the current variable state. This set may be composed
of variable guards and assignments. The complete definition of an assertion is given in
[10]. The proxy-tester starts from its initial configuration i.e. the couple (initial location,
initial internal variable value set). Upon a received valued event e(p) (line 2), which is
either an action with values or quiescence, it checks wether a next transition may be fired
(lines 5-6): this one must have the same start location than the current configuration C,
the same action than the received event e(p) and Eval(ϕ,Assertl) must not return false.
This subroutine evaluates the guard of the transition along with the assertion Assertl of
the current configuration. Then, the algorithm computes the next configuration with the
Merge subroutine (lines 9-10). If the Fail location is reached then the algorithm ends
and returns Fail (lines 11-12). A trace of the implementation belongs to TracesIUTFail(P(S))
therefore the implementation is non-conform to its specification. Otherwise, the event e(p)
is forwarded with the next proxy-tester transition t′ either to the implementation or to the
external environment, depending on the side value found in the assignment %′ of t′, denoted
side(t′) for simplicity in the algorithm (line 14). The new corresponding configuration is
computed (lines 15-16). Then, the proxy-tester waits for the next event. Both subroutines
Merge and Eval are discussed and detailed in [10].

5: Experimentation and discussion

We experimented our method on the Amazon E-commerce Web service [1] whose spec-
ification part is illustrated in Figure 6. We chose this application because we tested it in
[13] and detected some bugs that we have reused in this experimentation to check whether
a proxy-tester is able to detect them too.

We have implemented a tool which computes an STS proxy-tester from an STS specifi-
cation. Then, we coded the proxy-tester manually, from Algorithm 1, as a Web service and
deployed it on a Web server. For simplicity, we have only considered the string variable
type and have replaced the Eval subroutine by the Hampi solver [9] which takes strings
as inputs. The whole architecture is given in Figure 5. Finally, from known bugs of the
implementation, we prepared some test sequences to simulate client requests and executed
them with the SOAPUI tool [4], which is a unit testing tool for Web services. These se-
quences have been constructed to call the proxy-tester instead of the Amazon Web service.
For each test sequence, the proxy-tester has returned Fail as expected.

We also performed this experimentation to check the feasibility of this method. Fig-



Algorithm 1: Proxy-tester algorithm

input : A proxy-tester P(S)
output: Fault detected

1 //initialize the proxy-tester to its initial Configuration C :=< l0P(S), V 0P(S) >;

2 while Event(e(p)) do
// possible next Configuration

3 C ′ = ∅;
// possible next firable transition

4 tnext := ∅ ;

5 foreach t = l
?e(p),ϕ,%−−−−−→P(S) lnext ∈→P(S) do

6 if C ==< l,Assertl > & Eval(ϕ,Assertl) 6= false then
7 tnext := t;
8 break;

9 Assertlnext := Merge(Assertl, ϕ, %);
10 C ′ =< lnext, Assertlnext >;
11 if lnext == Fail then
12 return Fail;

13 else
// event forwarded to the right side

14 Execute( t′ = lnext
!e(p),ϕ′,%′−−−−−−→P(S) lnext2) ; // send !e(p) to side(t′)

15 Assertlnext2 := Merge(Assertlnext , ϕ
′, %′);

16 C =< lnext2, Assertlnext2 >;



Figure 5. The experimentation architecture

Figure 6. A part of the the Amazon E-commerce Web Service specification

ure 7 gives the location and transition numbers obtained for the Amazon Web service.
Even though the proxy-tester transition number grows rapidly, this one is finite since it
corresponds to the combination of the specification and of its canonical tester whose tran-
sition number is finite too. The STS proxy-tester can be computed rapidly (at most some
minutes).

This experimentation showed that proxy-testers offer a very interesting alternative to
classical sniffer-based tools since they detect non conformance of the implementation with-
out invariants, even if the environment access is restricted.

A proxy-tester can also offer much more possibilities (and future works) than those
described in the paper. Below, we propose some of them:

Location nb Transitions nb Transitions to Fail nb
Specification 24 67 0
Canonical tester 25 202 133
Proxy-tester 49 269 133

Figure 7. Statistics on the Amazon Web Service



• Component-based systems testing in restricted environments: such systems could be
passively tested by means of a set of proxy-testers interconnected to one another.
If we assume that we have one specification modelling the whole system, we need
to extract one sub-specification per component to generate a proxy-tester for each.
The main issues concern the proxy-tester synchronization or the recomposition of the
partial traces collected by proxy-testers. It is also manifest that the test relation must
be redefined,

• Combination with invariant-based methods: it is still possible to extract implementa-
tion traces with proxy testers. So, passive testing methods which check the satisfac-
tion of invariants can be used in combination with proxy-testers when the environment
access is restricted. For instance, once traces are collected with a proxy-tester on Web
services, the tool described in [2] can be executed to check the satisfaction of security
rules,

• Security testing and protection: an interesting proxy-tester advantage is the separa-
tion of the events received from the external environment to those produced by the
implementation. On the one hand, this separation may help to protect a system
from attacks received from the external environment. And on the other hand, the
proxy-tester can also check whether the system behaviour respects a security rule set
in the meantime. Intuitively both protection rules and security rules could be defined
with STSs: the first rules have to be synchronized with transitions composed of the
assertion side := Env modelling interactions with the external environment, while se-
curity rules must be synchronized with the other transitions. The result corresponds
to a specialized application firewall combined with a security passive testing tool,

• System quality improvement: a proxy-tester can be seen as a kind of upper layer which
encompasses the implementation. So, we could augment the proxy-tester model so
that it could responds instead of the implementation, for example if this one has
crashed. A modified proxy-tester could analyze the implementation responses and
could modify its behaviour at runtime to improve some of its properties such as its
observability, or to replace incorrect action responses.

6: Conclusion

A sniffer-based passive testing method cannot be applied on systems deployed in environ-
ments whose access is restricted for security or technical reasons. We believe that the use
of a proxy-tester, which represents an intermediary between the external environment and
the implementation under test, is an interesting alternative. So, we have defined the notion
of proxy-tester in this paper and have defined the non-conform test relation expressing non
conformance only since passive testing methods are not exhaustive.

An immediate line of future work is to extend the notion of proxy-tester for both security
testing and protection. We have to define security rules with STSs for protecting and for
testing. Then, these rules must be synchronized with a proxy-tester. It is also manifest
that a new test relation must be defined.
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