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RÉSUMÉ. Habituellement, les compositions de services Web sont testées en supposant que

celles-ci sont exécutées dans un environnement ouvert dans lequel tous les messages échangés

entre les services participant à la composition sont observable. Néanmoins, lorsque des services

sont déployés dans des environnements partiellement ouverts comme les Clouds, cette hypothèse

ne peut plus être maintenue. Cet article propose une méthode afin de tester si une composition de

services est conforme à sa spécification en référence à la relation de test ioco et en considérant

que les messages internes échangés entre les services sont masqués mais que ces mêmes services

(ou des copies) peuvent être appelés directement. Les spécifications sont modélisées par des

systèmes de transitions symboliques (STS) qui nous spécialisons vis-à-vis des services Web

avec quelques notations et fonctions. Notre approche consiste à décomposer un ensemble de

cas de test existants selon l’imbrication des opérations que nous formalisons par un facteur

appelé le degré de dépendance. Puis, grâce à l’exécution du nouvel ensemble de cas de test,

des fragments de trace (réactions observables) sont collectés puis réassemblés. Grâce à ces

traces, il est ainsi possible de vérifier si l’implantation est ioco-conforme à la spécification.

Notre approche est illustrée grâce à un exemple dérivé de l’application d’externalisation de

carnets de santé pour les patients et médecins, actuellement en cours de développement par la

société Orange Business Service.

ABSTRACT. Usually, Web service compositions are tested by assuming that these ones are

executed inside an open environment where all the messages exchanged between the services

participating to the composition are observable. Nevertheless, when services are deployed in

partially open environments e.g., Clouds, this assumption cannot be sustained. This paper

proposes a method to check whether a service composition is conforming to its specification
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according to the ioco test relation, by considering that the internal messages exchanged be-

tween the services are hidden but that we can invoke each service directly (or an exact copy).

Specifications are modelled with Symbolic Transition Systems (STS) that we specialize in Web

services with some annotations and functions. Our approach consists in decomposing an exist-

ing test case set according to the operation interleaving that we formalize with a factor denoted

the dependency degree. Then, while executing the new test case set, we recover fragments of

traces (observable reactions) that are reassembled. With the final traces, we are able to check

whether the implemented composition is ioco-conforming to its specification. We illustrate our

approach with an example derived from the application of Electronic Health Record external-

ization for both patients and practitioners, currently in development by the Orange Business

Service company.

MOTS-CLÉS : composition; environnement partiellement ouvert; relation de test ioco; test de

conformité; recomposition de traces

KEYWORDS: composition; partially open environment; ioco test relation; conformance test-
ing; trace reconstruction

1. Introduction

Component based software programming is a famous paradigm
which is now pervasive and ubiquitous in most of software develop-
ment companies. This one offers many advantages such as the building
of software upon existing and heterogeneous components, the reuse of
software accompanied by cost reduction, or the design of clear specifi-
cations of the inputs needed from other components.

This paradigm has also given rise to several recent trends and
concepts, such as Web services or Cloud computing where components
are deployed over virtualized and dynamic environments. It has also
been studied, from more a decade, in combination with testing tech-
niques to check many aspects e.g., the security, the robustness or the
conformance of different systems, such as service-oriented applications,
distributed systems or object-oriented systems. In particular, confor-
mance testing, which is the topic of this paper, aims at testing whether
a black box implementation behaves correctly in relation to its specifi-
cation which describes the possible interactions with the environment.
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The correctness is defined by test relations which describe the confi-
dence level between the implementation and its specification. The test
verdict is then given by executing a test case set on the system under test
to extract its observable behaviour. For instance, ioco is a well-known
test relation based on trace (observable event suites) equivalence, which
is often used with component based systems.

The evolution of component based engineering is still bringing new
issues in testing activities. Currently, most of the component based
testing approaches rely on an open environment, i.e. an environment
where the component interactions inside a composition can be obser-
ved/extracted to yield a test verdict. Typically, this is a requirement
for most of conformance testing approaches based on trace equiva-
lence [BFPT06, LZCH08, iHBvdRT03, KABT10a]. Nevertheless, this
assumption becomes more and more difficult to sustain especially with
the recent programming techniques e.g., service or Cloud programming.
Indeed, when a tester has not a sufficient access to the environment
where the composition is deployed for security or technical reasons, it
cannot extract the reactions of each component and cannot compute a
test verdict. For instance, the dynamic nature of the Cloud architecture
does not enable a tester to retrieve the messages exchanged between the
services. Consequently, if the messages cannot be observed, the traces
cannot be extracted and the test cannot be performed.

This paper tackles this issue by proposing a solution which recom-
poses the traces of a service composition under test, executed in a par-
tially open environment like Clouds. We assume that the messages ex-
changed between the Web services are hidden but that we can invoke
each service in a composition or at least an exact copy. We describe ser-
vice compositions with the STS model (Symbolic Transition Systems
[FTW05]) which is a way to describe finite automata extended with va-
riables. STSs are not dedicated to Web service compositions, so we spe-
cialize (restrict) it with specific variables and functions to model service
instances, components, and service methods called operations. We start
with a test case set generated by means of a ioco based method. ioco
[Tre96] is a famous test relation usually chosen for Web service testing
which corresponds to trace equivalence (reaction observed) between the
specification and the implemented services.
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The intuition of our approach is to extract the internal messages by
simulating, with a tester, a service or a client calling other service ope-
rations. So, we begin to decompose each test case to directly call the
service operations with respect to the composition behaviour. More pre-
cisely, if we have a service operation which invokes another operation
in a test case, thus in other terms, if we have an operation dependent
on another one, we decompose the test case to test separately the two
operations. By generalizing this idea, we obtain a larger test case set
which produces incomplete traces, during the test execution. We reas-
semble them with a specific algorithm to finally produce the trace set
referred in the ioco relation. With these traces, we can conclude whether
the service composition conforms to the specification. We illustrate our
approach with an example derived from the health record application,
currently developed by the Orange Business Service company, whose
purpose is to externalize patient health records with EHR (electronic
heath record) which gather systematic collection of electronic health
information about individual patients which can be consulted over the
Internet with security restrictions.

This paper is structured as follows : Section 2 summarizes the related
work concerning component based testing and gives our main motiva-
tions. In Section 3, we define the composition modelling with STSs. We
also give an overview of the ioco theory. Section 4 details the test case
decomposition. We provide a test case execution algorithm and show
how the final traces are reassembled in Section 5. Finally, we discuss
about the trace reconstruction in relation to the ioco relation in Section
6 and we conclude in Section 7.

2. Related Work and motivations

Component and composition testing have been studied by several
works dealing with different areas. We describe only some of them,
below.

Some works consider object-oriented systems. The authors in
[WPC01, ZB07] propose methods for testing component software
(object-oriented systems) from UML specifications. Like many works
focusing on object-oriented systems, test cases are constructed by



Modelling and testing of service... 159

means of oracles (pre, post conditions over data) representing coverage
criteria which reduce the specification exploration. Gallagher and al.
also propose in [GO09], technical details about an automated tool to
support integration testing of object-oriented software.

Several works also consider Web services and compositions. In
[GFTdlR06], the BPEL specification (Business Process Execution Lan-
guage) is translated into PROMELA in order to be used by the SPIN
model checking tool. In [DYZ06], the authors take BPEL specifications
which are translated into Petri nets. Then, standard Petri net tools are
applied to study verification, testing coverage and test case generation.
In [BFPT06], the authors test the interoperability between Web services.
They propose to augment the WSDL description with a UML2.0 Pro-
tocol State Machine (PSM) diagram which models the possible inter-
actions between the service and a client. Test cases are then generated
from the PSM. A framework, called the Audition framework, is defined
for executing these test cases in [BP05]. In [LZCH08], the BPEL spe-
cification is translated into another model called IF, which enables the
modelling of timing constraints. The test case generation is based on
simulation where the exploration is guided thanks to test purposes (test
requirements). A model-based black-box testing approach is described
in [EGGC09]. It adapts the rule-based algorithm of the test case genera-
tion described in [GGRT06]. This algorithm consists of a simultaneous
traversal of the modified execution tree and of a test purpose defined as
selected finite paths of the tree.

Other works focus on components and compositions in general.
Kanso and al. describe in [KABT10b] a conformance theory for com-
ponents, formalized with a model which is abstract enough to subsume
most state-based formalisms. The test selection is guided with test pur-
poses. In [LLML10] Lei and al. propose a robustness testing method
of stateful components modelled with State Machines (symbolic auto-
mata). The method, described in [BK09], consider component based
systems with priorities where components are modelled with Labelled
Transition Systems (LTSs). The authors define a technique for introdu-
cing priorities in the conformance theory. Test cases are extracted from a
generated LTS representing the composition. The approach, suggested
in [FRT10], aims at testing the robustness of Real-Time Component-
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Based Systems. For each component, test cases are derived from two
specifications : a nominal one and a degraded one. Each component
is firstly tested in isolation. Then, the whole composition is robust
whether the communications between components satisfy the degraded
component specifications. Grieskamp and al. propose, in [GTC+05], a
framework for symbolic model composition and conformance testing.
Components are modelled by action machines (symbolic LTSs) which
may be synchronized on the action set to produce a new specification.
The conformance relation is expressed by means of conformance ma-
chines which represent the combination of a implementation (slave ma-
chine) with a specification (master machine). Then, conformance ma-
chines are explored exhaustively by means of a tool set named the XRT
framework.

In most of testing methods dealing with component based systems
and particularly in all the previous ones, it is assumed that all the mes-
sages corresponding to component requests are observable. This as-
sumption makes the testing process easier to execute since the complete
composition behaviour is observable. However, this assumption cannot
be sustained in many cases. For instance, Cloud computing, which is
a topical research subject, offers dynamic and virtualized environments
where components are deployed. In such environments, messages pas-
sing between the components are hidden. This is illustrated in Figure
1. The messages depicted with black arrows are observable, whereas
those depicted with red dashed arrows and modelling internal messages
of the composition cannot be observed. As a general rule, as soon as a
component is deployed in a environment which is partially open, most
of classical testing methods cannot be applied any more.

Van der Bijl and al. proposed a different approach in [iHBvdRT03].
The specification describes the whole composition where the messages
exchanged between the components are here hidden. Each component is
assumed tested and working correctly though. Test cases are generated
in order to check the satisfaction of the ioco test relation between the
composition and the implementation under test.

Our approach offers a different viewpoint. We do not suppose that
the components are tested. Indeed, in service-oriented systems, appli-
cations are often constructed with existing components owned by dif-
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ferent companies and not necessarily tested. We also assume having a
composition specification where all the messages, exchanged between
the components, are expressed. Nevertheless, like in the Cloud compu-
ting example, we cannot observe these messages on the implementation
but we can invoke each component or an exact copy.

Figure 1 – Web service composition observability in a Cloud

3. Conformance testing

3.1. Web service Composition modelling with STSs

Several models e.g., BPEL, UML, Petri nets, process algebra, abs-
tract state machines (ASM), have been proposed to formalize compo-
sitions of Web services, objects, etc. For instance, the BPEL language
defines and manages business processes based on the interactions of
Web services, called partners. A main process describes the exchan-
ged messages and how to orchestrate them. STSs (Symbolic Transition
Systems [FTW05]) have been also used with different testing methods
[FTdV06, iHBvdRT03, SR10] to formalize compositions where no as-
sumption is set on the composition style (orchestration, etc.). The STS
formalism offers also a large formal background (definitions of imple-
mentation relations, test case generation algorithms, etc.). So, we based
our choice on this latter to model Web service compositions and test
cases. An STS is a kind of input/output automaton extended with a set
of variables, with guards and assignments on variables labelled on the
transitions.
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Definition 3.1 A Symbolic Transition System STS is a tuple <
L, l0, V, V0, I,Λ, →>, where :

– L is the finite set of locations, with l0 the initial one,
– V is the finite set of internal variables, while I is the finite set

of external or interaction ones. We denote Dv the domain in which a
variable v takes values. The internal variables are initialized with the
assignment V0, which is assumed to take an unique value in DV ,

– Λ is the finite set of action labels, partitioned by Λ = ΛIUΛO :
inputs, beginning with ?, are provided to the system, while outputs (be-
ginning with !) are observed from it. a(p) ∈∈ Λ × Inn>0 is an action
where p is a finite set of external variables p = (p1, ..., pk). We denote
type(p) = (t1, ..., tk) the type of the variable set p,

– → is the finite transition set. A transition (li, lj, a(p), ϕ, "), from

the location li ∈ L to lj ∈ L, also denoted li
a(p),ϕ,"−−−−→ lj is labelled

by a(p) ∈ Λ, ϕ ⊆ DV × Dp is a guard which restricts the firing of
the transition. Internal variables are updated with the assignment " :
DV ×Dp → DV once the transition is fired.

The STS model is not specifically dedicated (restricted) to Web ser-
vice compositions. These latter are composed of Web services which
may be invoked with methods called operations. This is why, for mo-
delling, we assume that an action a(p) represents either the invocation
of an operation op which is denoted opReq or the return of an operation
op with opResp. For an STS S, we denote OP(S) ⊆ Λ the operation
set found in S. We also assume that the parameter set p is composed of
specific variables : c ∈ I is assigned with the called component (Web
service) name and id ∈ I represents the instance identification of a com-
ponent. An instance identification helps to model a stateful service in a
composition, i.e. a service which has an internal state evolving while
the invocations of its operations.

We denote component : Λ × Inn>0 → DI the relation which gives
the component referenced into a(p) ∈ Λ. C(S) = {component(ai(p)) |
ai(p) ∈ Λ × Inn>0} is the component set found in S. Finally, session :
Λ× Inn>0 → DI is the relation which returns the instance identification
for an action a(p).
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In the following, we assume that : STSs are deterministic, operations
defined as relations are one-to-one and the dependent operations are ses-
sion exclusive. These assumptions, which are explained in the remain-
der of the paper, are required to decompose test cases and to execute
them. As a consequence, we also suppose that operations are synchro-
nous, i.e. a Web service, invoked by an operation, returns a response
immediately or does nothing. Asynchronous operations may return a
response anytime, from several states and often imply indeterminism.

Figure 2 – A composition example

To illustrate this model, we take the example of composition given
in Figure 2, derived from the health record externalization currently de-
veloped by the Orange Business Service company [Ora11a]. This ap-
plication will aim to provide electronic health records (EHR) for both
patients and practitioners. This application is currently available for
sportsmen [Ora11b] but will also be available for the whole French
people. The different main services linked to the specific EHR appli-
cation are described below. These ones are composed of several data
access layers (for access, privacy, etc.) and must respect the specific
context of the directive 94/95 and the article 8 of the CNIL :

– Personal Health Record provider (PHRP) service which corres-
ponds to the service invoked from Client applications,

– Data Administration (DA) service : Information gathering and for-
matting in an organization,

– Record Storage (RS) service : Storing information while respecting
the anonymity systems and data protection. This service depends on
others basic services e.g., patient service, medical file service, etc.,
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– Workflow : Any transmission of stored information, workflows,
restitution, according the level of authentication and trust imposed by
health data system.

These services are currently implemented in a secured environment
(Strong authentication (SSO, PKI) encryption, etc.), which is partially
open and which restricts the possibilities of testing.

For sake of simplicity, we only consider, in our example, a compo-
sition of three services with few operations. The specification is given
in Figure 3, with the symbol table of Figure 4. For readability reason,
the Web service names are not given with the external variable c but
are directly combined with operations. A patient must firstly log on the
PHRP service, with the operation connect, to retrieve a key which is ge-
nerated by the DA service. This key is mandatory to request for a health
record with the Record operation. This one invokes the RS component
with patientRecord to extract the health record and to yield it to the
patient. The specification also refers to internal methods valid and gen
which validate an account or a key and generate a key from an account
respectively.

All the messages exchanged between the components are modelled
by transitions expressing the called components, the operations and pa-
rameter variables. Each component instance is modelled by a session
identification, e.g., ID1 for PHRP. This service is always called with
the same session identifier which means that it is stateful.

An STS is also associated to an LTS (Labelled Transition System)
to define its semantics. Intuitively, the semantics LTS corresponds to a
valued automaton without symbolic variables : the states are labelled by
internal variable values while transitions are labelled with actions and
parameter values.

Definition 3.2 The semantics of an STS S =< L, l0, V, V0, I,Λ,→> is
an LTS ||S|| =< S, s0,

∑
,→> where :

– L = S ×DV is the finite set of states,
– s0 = (l0, V0) is the initial state,
–
∑

= {(a(p), θ) | a(p) ∈ Λ, θ ∈ Dp} is the set of valued symbols,
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Figure 3 – An STS specification

– → is the transition relation S × Σ × S deduced by the following
rule :

li
a(p),ϕ,"−−−−→lj ,θ∈Dp,v∈DV ,v′∈DV ,ϕ(v,θ) true,v′=ρ(v,θ)

(li,v)
a(p),θ−−−→(lj ,v′)

Intuitively, for an STS transition li
a(p),ϕ,"−−−−→ lj , we obtain an LTS one

(li, v)
a(p),θ−−−→ (lj, v′) with v an internal variable value set, if it exists

a parameter value θ such that the guard ϕ(v, θ) is satisfied. Once the
transition is executed, the internal variables take the value v′ derived
from the assignment "(v, θ).

3.2. The ioco testing theory

For sake of simplicity, we only give the intuition of ioco testing in the
paper. A complete definition can be found in [FTW05, Tre96, J0́9]. The
main idea behind the ioco conformance testing relation is to compare
the observable behaviour i.e. the traces of the implementation under
test with the specification ones. The absence of observation is also taken
into account in the traces with a specific action, called quiescence. This
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Symb Message Guard Update
?a PHRP.connectReq(String account,String

id)
id==ID1 a :=

ac-
count

!b DA.checkReq(String account, String id) id==ID2 & account==a
!c DA.checkResp(String r,String id, String

key)
r<>"invalid" & id==ID2
& valid(account) &
key==gen(account)

k :=key

!d PHRP.connectResp(String r,String key,
String id)

r=="connected" & key==k &
id==ID1

!e DA.checkResp(String r,String id, String
key)

r=="invalid" & id==ID2 &
¬valid(account)

k :=null

!f PHRP.connectResp( String r,String key,
String id)

r<>"connected" & key==k &
id==ID1

?g PHRP.RecordReq(String key, String id) valid(k) & key==k & id==ID1
!h RS.patientRecordReq(String key, String

id)
valid(k) & key==k & id==ID3

!i RS.patientRecordResp(Record rec, String
id)

id==ID3 r :=rec

!j PHRP.RecordResp(Record rec, String id) rec==r &id==ID1

Figure 4 – Specification symbol table

action is expressed by a new symbol δ and an augmented STS called
suspension STS and denoted ∆(STS). For an STS S, ∆(S) is obtained
by adding a self-loop labelled by !δ for each state where quiescence
may be observed. The guard of this new transition must return true for
each value of DV ∪I which does not allow firing a transition labelled by
an output. A suspension STS ∆(S) is associated to its suspension LTS
semantics by ||∆(S)|| = ∆(||S||).

The set of suspension traces obtained from ∆(||S||) is denoted
STraces(S). This set takes a predominant place since the ioco rela-
tion consists in comparing the non-conform traces NCTraces of the
specification (the complement of STraces) with the STraces of the
implementation I :

S ioco I ⇔ STraces(I) ∩NCTraces(S) = ∅
To produce STraces(I), test cases are generated from the specifi-

cation S. A test case generation algorithm for STSs can be found in
[FTW05]. Test cases are defined by dedicated STSs which have a tree-
like structure finished by locations labelled by pass or fail. When pass
is reached during the test execution, the test case has been experimented
on the implementation with success. Fail is reached otherwise. With de-
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terministic specifications, when test cases are composed of several pass
locations, it is required to split or to execute them several times for each
pass location. For sake of simplicity, we consider in the paper that test
cases are finished by one pass location only.

A test case example, derived from the STS of Figure 3 is given in
Figures 5 and 6. This one checks that we can log on with the account
"name,pass" and retrieve the corresponding electronic health record. For
readability reason, we have not labelled the transitions to fail. These
ones represent either the receipt of any other message with complemen-
tation of the guards or the observation of quiescence.

Figure 5 – A test case example

Symb Message Guard Update
?a’ PHRP.connectReq(String account,String

id)
account=="name,pass"&id==ID1 a :=ac-

count
!b’ DA.checkReq(String account,String id) id==ID2 & ac-

count=="name,pass"
!c’ DA.checkResp(String r,String id,String

key)
r<>"invalid" & id==ID2 & va-
lid(account) & key=="1234"

k :=
"1234"

!d’ PHRP.connectResp(String r,String key,
String id)

r=="connected" & key=="1234"
& id==ID1

?g’ PHRP.RecordReq(String key,String id) valid(k) & key=="1234" &
id==ID1

!h’ RS.patientRecordReq(String key,String id) valid(k) & key=="1234" &
id==ID3

Figure 6 – Test case symbol table
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The relation between ioco and the test suite TS is given by the sound-
ness or the exhaustiveness of TS :

TS is sound : ∀I, (I ioco S) ⇒ ∀TC ∈ TS,¬(TC mayfail I)

TS is exhaustive : ∀I,¬(I ioco S) ⇒ ∃TC ∈ TS, TC mayfail I

with TC mayfail I = ¬(I passes TC) ⇔ STraces(I) ∩
TracesFail(TC) ,= ∅

A sound test suite means that it must respect the specification and
that a fault cannot be found on a correct implementation. An exhaustive
test suite implies that if the implementation is faulty then a fail verdict
must be reached by at least one test case in TS.

The strong hypothesis behind this theory is that the implementation
is supposed to behave like its reference model, in particular in term
of observation. For compositions, this implies that the test architecture
should be able to scan all the possible messages passing between each
pair of components. So, we must have a total access to the environ-
ment where components are deployed. Having such a test architecture
is difficult if the environment is partially open. On the other hand, each
component (or an exact copy), taken separately, can usually be invoked
by a client application, so we can observe its responses when it is called
directly. But we cannot observe the requests exchanged between one
component and another one.

This paper proposes a solution whose basis is to decompose each test
case with respect to the operation dependency and to the Web service
internal state (for those which are stateful). Then, all the services are cal-
led directly by means of a tester which simulates a component calling
another one. While the test case execution, we recompose STraces(I)
to check whether the ioco relation is satisfied. In the following, we de-
fine the operation dependency and show how to decompose a test case.
We show that slicing this one is not sufficient in particular when ser-
vices are stateful. Then, we describe how to recompose STraces(I) in
Section 5.
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4. Test case decomposition

The test case decomposition is achieved in regards to the dependency
between the components participating in the composition. The intuition
of the test case decomposition is to extract, from an initial test case,
another test case whose purpose is to test the available operations of
the composition (the operations which can be invoked directly by client
applications). Then, for each of these operations, if this one also calls
other operations op1, ..., opn, i.e., if this one is dependent, we extract
another test case to test op1, ..., opn. This process is recursively repeated
until all the dependent operations are tested by one test case.

Below, we formalize the notion of operation with relations to express
and define the notion of operation dependency. Then, we describe how
the test case decomposition is done.

4.1. Operation dependency definition

Prior to formalize the operation dependency, we briefly recall some
relation properties used in the remainder of the paper.

Let R : X → Y and S : Y → Z be two relations.

– S ◦R or R;S = {(x, z) ∈ X ×Y | ∃y ∈ Y, (x, y) ∈
R and (y, z) ∈ S},

– R is injective : ∀x and z ∈ X, ∀y ∈
Y, if xRy and zRy then x = z,

– R is functional : ∀x ∈ X, y and z ∈ Y, if xRy and
xRz then y = z,

– R is one-to-one ⇔ R is injective and functional.

Definition 4.1 Let S =< L, l0, V, V0, I,Λ,→> be an STS modelling a
Web service composition.

We associate the request of the operation op, modelled by a transition
l

opReq(p),ϕ,"−−−−−−−→ l′ ∈→, with the relation opReq : DI∪V → DI∪V . Simi-
larly, a response receipt, modelled by a transition l

opResp(p),ϕ,"−−−−−−−−→ l′ ∈→
is associated with the relation opResp : DI∪V → DI∪V .
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For a transition l
δ,ϕ,"−−→ l′ ∈→ expressing quiescence, we consider

the reflexive relation δ : DV → DV such that ∀x ∈ DV , xδx.

An STS path li
a(p),ϕ,"−−−−→ li+1...lj−1

a(p)′,ϕ′,"′−−−−−→ lj ∈→, is denoted

li
σ=a(p);...;a(p)′
========⇒ lj+1. We extend this notation with the notion of ope-

ration invocation. The invocation of an operation op ∈ OP(S), denoted

li
op
=⇒ lj , refers to a path li

opReq(p),ϕ,"−−−−−−−→ li+1...lj−1
opResp(p′),ϕ′,"′−−−−−−−−−→ lj . If op

does not provide any response li
op
=⇒ li+1 corresponds to the transition

li
opReq(p),ϕ,"−−−−−−−→ li+1.

Now, we can define the operation dependency which expresses that
an operation is dependent if it requires to call other operations to give a
result.

Definition 4.2 Let S be an STS. An operation op ∈ OP(S) is said de-
pendent on a relation R, denoted op ← R = opReq;R; opResp if it
exists the path li

opReq(p) R opResp(p′)
=============⇒ lj ∈→ such that R ,= δ and R ,= ∅.

Otherwise op is said independent.

We also denote op ! R if op is independent or if ∀S such that op ←
S, S ,= R.

An operation may be dependent on a list of other operations which
may be independent or dependent on other ones. The specification of
Figure 3 exhibits several operation dependencies. For instance, the ope-
ration PHRP.connect depends on DA.check and PHRP.Record depends
on RS.patientRecord. In fact, we may reach different levels of depen-
dency, which can be seen as a king of operation hierarchy. We express
this hierarchy with a factor called the dependency degree.

Definition 4.3 Let S be an STS and op1 ∈ OP(S) be an operation.

∀opi ,= op1 ∈ OP(S), if opi ! op1 then we set the dependency
degree of op1 to 1 that we denote opd11 . If op1 ← R and opdi1 then the
dependency degree of R is i+ 1, and we write opdi1 ← Rdi+1. If opdi1 ←
opdi+1

2 ... ← opdkn then opdi1 ← opdkn with k > i.
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With the previous specification example of Figure 3, we can
now write the operation dependencies with PHRP.connectd1 ←
DA.checkd2 and PHRP.Recordd1 ← RS.patientRecordd2.

4.2. Test case extraction

The dependency organization leads to the test case decomposition.
Intuitively, from one initial test case TC, we construct a first test case
TC1 which aims to test all the operation invocations li

op
=⇒ lj in TC

with opd1. Then, for each invocation li
op
=⇒ lj such that ∃R, op ← R, we

construct a new test case TC2(li
op
=⇒ lj) to invoke directly the operations

in R having a dependency degree equal to 2. We repeat the process until
each dependent operation has its own decomposed test case.

However, the extraction of the decomposed test cases from
operation invocations raises a new issue : the services may be sta-
teful, so we need to extract paths, from the initial test case TC,
which aim to call service instances from their initial states. So, let
TC =< LTC , l0TC , VTC , V 0TC , ITC , ΛTC ,→TC> be a test case.
We want to extract a decomposed test case from TC to expe-
riment an operation invocation set {li

op1=⇒ lj, ..., ll
opk=⇒ lm} with

ID = {session(opi)1≤i≤k | li
op1=⇒ lj, ..., ll

opk=⇒ lm ∈→TC}.
We perform this extraction by means of the STS operation
keep ID in TC which aims to keep the transitions of TC la-
belled by actions having a session identification in ID. The
result is a test case P, composed of transitions of TC, which
aims to call service instances in ID only. The operation keep is
defined as follow : if ID ⊆ {session(a(p)) | a(p) ∈ ΛTC},
keep ID in TC =def P =< LTC , l0TC , VTC , V 0TC , ITC ,ΛP,→P>
where ΛP and →P are defined by the following inference rules :
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R1 :
li

ai(p),ϕi,"i−−−−−−→li′∈→TC∧session(ai(p))/∈ID∧l′i (=fail∧ai(p) (=δ

li
τ,∅,"i−−−→l′i∈→P

R2 :
li

ai(p),ϕi,"i−−−−−−→li′∈→TC∧ai(p)=opiReq(p)∧(session(ai(p))∈ID∨l′i=fail)

li
δ−→li∈→P∧li

?ai(p),ϕi,"i−−−−−−→l′i∈→P

R3 :
li

ai(p),ϕi,"i−−−−−−→li′∈→TC∧ai(p) (=opiReq(p)∧(session(ai(p))∈ID∨l′i=fail)

li
!ai(p),ϕi,"i−−−−−−→l′i∈→P

These rules produce an STS P which has the same structure as the
original test case TC. However, these rules hide, with the τ symbol, the
actions of TC which express the call of component instances not refe-
renced in ID. So, during the test execution, this will help to recompose
the final traces. More precisely, the rule R1 aims to hide actions of TC
which do not have a session identification in ID. Transitions leading to
fail or labelled by δ are not hidden. These ones do not interfere with the
call of components. R2 and R3 mean that if the test case transition has a
session identification in ID then this one must be kept. R2 modifies the
action set of the initial test case since all the operation requests, which
are not hidden, are translated into inputs. These inputs will be executed
by a tester during the test execution to call each instance of Web ser-
vices in ID. In R2 when operation requests are translated into inputs,
we also add a self-loop transition labelled by δ to express quiescence.

Now, let op1 and op2 be two operations such that opdi1 ← opdk2 . To
test op2, the previous rules will extract, from a test case TC, all the
transitions lj

aj(p),ϕ,"−−−−−→ lj+1 which have the same instance identification
session(op2). If we suppose that the two operations are called in the
same instance, session(op1) = session(op2), we obtain a test case

part li
op1Req(p),ϕ,"−−−−−−−−→ li+1...lj

op2Req(p′),ϕ′,"′−−−−−−−−−→ lj+1. This one means that we
invoke successively op1 and op2. However the operation op1 implicitly
invokes op2 since opdi1 ← opdk2 . Thus, we obtain a case of dependency
that we cannot break. So, in the remainder of the paper, we set the
following assumption which means that if an operation opi is dependent
on opj then the two operations must not belong to the same component
instance.
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Operation session exclusion : Let S be an STS, and
(opi, opj) ∈ OP(S)2 be two operations. If opdmi ← opdnj then
session(opi) ,= session(opj).

Now, we are ready for the test case decomposition algorithm. Let
TS = {TC1, ..., TCm} be the initial test suite. Each test case TCn ∈
TS is decomposed with Algorithm 1. The latter produces TS ′ =
{TC ′

1, ..., TC
′
m} where TC ′

n ∈ TS ′ corresponds to the decomposition
of TCn. From an initial test case TCn ∈ TS, the algorithm begins to
construct a session identification set from operations of TCpass having
a dependency degree equal to 1 (lines 2-3). Then, we call the TGGen
procedure (line 5) which extracts a decomposed test case TCd

n(li
op
=⇒ lj)

with the keep operation (line 9). We repeat the process for each ope-
ration invocation lk

op′
=⇒ ll found in the path p such that the depen-

dency degree of op′ is equal to d. So, the algorithm constructs a ses-
sion identification set from operations in lk

op′
=⇒ ll having a dependency

degree equal to d + 1 (line 13). TCGen is recursively called (line 14)
to produce TCd+1

n (lk
op′
=⇒ ll). The algorithm ends when each invoca-

tion li
op
=⇒ lj , with op a dependent operation, has its own test case

TCd
n(li

op
=⇒ lj). So, the test case TCn ∈ TS is decomposed by TC ′

n =

{TC1
n(∅)} ∪ {TCd

n(li
op
=⇒ lj) | d > 1, op is a dependent operation}.

From the initial test case given in Figure 5, we obtain the test case
set TC ′ illustrated in Figure 7. The first test case TC1(∅) gathers
the operations having a dependency degree equal to 1 (PHRP.connect,
PHRP.Record). The second test case TC2(l1

PHRP.connect
========⇒ l4) invokes

directly the operation DA.check. The last test case TC3(l4
PHRP.Record
========⇒

l8) aims to invoke the operation RS.patientRecord. The order of the
actions is kept in comparison with the initial test case. Thus, when
these decomposed test cases will be executed, we will obtain incom-
plete traces which will be overlaid to produce final ones. The request
of the operations DA.check and RS.patientRecord which were expres-
sed by output actions in the specification and in the initial test case, are
now modelled with inputs thanks to the keep operation (rule R2). This
modification means that the operations will be invoked directly by the
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tester. Since these ones are translated into inputs, self-loop transitions
labelled by δ are added to express quiescence.

input : A test suite TS
output: A test suite TS ′

foreach test case TCn ∈ TS do
TCpass is the acyclic path of TCn finished by pass;
ID = {session(op) | li

op
=⇒ lj ∈ TCpass, opd1};

TC ′
n := ∅;

TCGen(TCpass, ID, ∅, 1);
TS ′ := TS ′ ∪ {TC ′

n};
end
TCGen(STS path p, instance identification set ID, operation
invocation li

op
=⇒ li, degree d)

//extract a decomposed test case with the keep operation;
TCd

n(li
op
=⇒ lj) := keep ID in TCn;

TC ′
n := TC ′

n ∪ TCd
n(li

op
=⇒ lj);

foreach operation invocation lk
op′
=⇒ ll ∈ p with op′dd do

if op′ is a dependent operation then
ID = {session(op) | lq

op
=⇒ lr ∈ lk

op′
=⇒ ll, opdd+1};

TCGen(lk
op′
=⇒ ll,ID, lk

op′
=⇒ ll, d+ 1);

end
end

Algorithm 1: Test suite decomposition

5. The ioco satisfiability with decomposed test cases

The previous section showed how to decompose an initial test case
according to the operation dependency. However, each decomposed
test case will provide a partial trace only, while testing. These partial
traces are not sufficient to conclude whether the implementation is ioco-
conforming to its specification. This section presents how to recompose
these partial traces to recover complete traces. Then, we show that the
resulting traces can be used to check the ioco relation satisfiability.
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Figure 7 – A decomposed test case
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5.1. Test execution and trace recomposition

To reason about conformance, we assume that an implementation un-
der test I is modelled by a suspension LTS and should behave as its spe-
cification (∆(||S||)). During the test execution, the tester aims to recom-
pose STraces(I) by executing the test suite TS ′ = {TC ′

1, ..., TC
′
m}

where TC ′
n is a decomposed test case.

The trace recomposition is done in referring to the operation depen-
dency. Nevertheless, the dependency between operations cannot be ex-
plicitly observed since the messages exchanged between the compo-
nents are not observable. However, if we assume that any dependent
operation of the specification is one-to-one, we can affirm that an ope-
ration op is probable dependent on a relation R, if op responds correctly
during the test.

Definition 5.1 Let TC be a test case composed of the invocation li
op
=⇒

lj ∈→TC such that ∃R, op ← R. If op is one-to-one and if the imple-
mentation under test I passes TC then op is said probable dependent
on R.

The relation R is a composition over OP(S) ∪ {δ}. Each relation in
OP(S) ∪ {δ} is one-to-one, so R is one-to-one. op ← R corresponds
to opReq;R; opResp. So, Let w, x, y, z ∈ DV ∪I such that w opReq x,
xRy and y opResp z. I passes TC implies that the operation op has
given a correct response. So, We suppose that we call opReq(w) and that
we observe opResp(z). opReq is functional thus it exists an unique x′ ∈
DV ∪I such that w opReq x′. opResp is injective thus it exists an unique
y′ ∈ DV ∪I such that y′ opResp z. Thereby, op sounds to be dependent
on the relation R such that x′Ry′ with x = x′ and y = y′.

The trace recomposition, performed by a tester, is described in Al-
gorithm 2. For a decomposed test case TC ′

n = {TC1
n(∅)}∪{TCd

n(li
op
=⇒

lj) | d > 1, op is a dependent operation}, the tester tries to assemble
a trace tracen(I) with the Exec procedure (line 3). It begins to test
TC1

n(∅) on I. For instance, if this one is composed of the invocation

li
op
=⇒ lj = li

?opReq(p),ϕ,"−−−−−−−−→ li+1
τ−→ li+2...lj−2

τ−→ lj−1
!opResp(p),ϕ′,"′−−−−−−−−−→ lj ,

the tester invokes the operation op, then ignores the actions τ and waits
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for a response or observes quiescence (the lack of response). The resul-
ting actions are injected into tracen(I) (lines 6-8). For each test case
invocation lk

op′
=⇒ ll ∈ TCd

n(li
op
=⇒ lj), if I passes TCd

n(li
op
=⇒ lj), then

the operation op′ has responded correctly. According to Definition 5.1,
if op′ ← R, op′ sounds probable dependent on R. Thereby, the tester
executes the test case TCd+1

n (lk
op′
=⇒ ll) to test and to retrieve the traces

of the operations invoked by op′ (lines 10-11). The process continues
for each dependent operation to finally recompose tracen(I). If an ope-
ration does not return a correct response then the trace reconstruction is
stopped (line 13).

input : A test suite TS ′

output: STraces(I)
foreach test case TC ′

n ∈ TS ′ do
tracen(I) = t0...tk is a trace;
Exec(TC1

n(∅), tracen(I));
STraces(I) := STraces(I) ∪ tracen(I);

end

Exec(test case TCd
n(li

op
=⇒ lj), trace tracen(I))

trace′(I) = Test(TCd
n(li

op
=⇒ lj));

foreach t′k ∈ trace′(I) ,= τ , i < k < j − 1 do
tk := t′k;

end
foreach invocation lk

op′
=⇒ ll ∈ TCd

n(li
op
=⇒ lj) with op′ a dependent

operation do
if I passes TCd

n(li
op
=⇒ lj) (op′ is probable dependent) then

Exec(TCd+1
n (lk

op′
=⇒ ll), tracen(I));

end
else

Stop;
end

end
Algorithm 2: Tester algorithm
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5.2. Ioco satisfiability

Let S be an STS and I an implementation under test. We suppose that
we have I ioco S and a test case TC which produces the trace t1...tn
with a classical ioco-oriented testing method. If we apply Algorithms 1
and 2 on TC and I, we obtain the same trace t1...tn. The sketch of proof
is the following :

TC is transformed by Algorithm 1 into {TC1(∅)}∪{TCd(li
op
=⇒ lj) |

op is dependent, d > 1}. TC1(∅) = p.l1
op1=⇒ l2...li

opi=⇒ lj...lk
opk=⇒ ln

with opd1i (1 ≤ i ≤ k) (Algorithm 1 and the keep operation). p is a
path which calls services in {component(opi) | 1 ≤ i ≤ k} from their
initial states. Since the dependency degree of each operation invocation
is equal to 1, p = ∅ here. Consider the invocation li

opi=⇒ lj with c =
component(opi) the service which is called :

– if opi is not dependent, li
opi=⇒ lj corresponds to one of the follo-

wing TC1(∅) paths : li
opiReq−−−−→ li+1, li

δ−→ li+1, li
opiReq opiResp
========⇒ li+2 or

li
opiReqδ...δopiResp
==========⇒ lj (We have supposed that operations are synchro-

nous and that STSs are deterministic). From these cases, Algorithm 2,
produces respectively t′i, δ, t′it′i+1 or t′iδ...δtj−1 with t′i = ti, t′i+1 = ti+1

and t′j−1 = tj−1 since the service c is called from its initial state and
since the keep operation keeps the order of the initial test case transi-
tions. So, we obtain the same observable events as those produced by a
ioco based method,

– if opi is dependent, li
opi=⇒ lj corresponds to li

opiReq−−−−→ li+1
τ−→

li+2...lj−2
τ−→ lj−1

opiResp−−−−→ lj (keep operation). Algorithm 2 produces
the partial trace t′iτ...τ t

′
j−1 with t′i = ti and t′j−1 = tj−1 since the

service c is called from its initial state and since the keep operation
keeps the order of the initial test case transitions. Since we suppose that
I ioco S, I passes TC1(∅) and opi is probable dependent (Algorithm
2 line 10). Thereby, it exists a decomposed test case TC2(li

opi=⇒ lj)

(Algorithm 1 lines 12-14) such that TC2(li
opi=⇒ lj) = p′.li+1

opi+1Req
=====⇒

lk...lo
opo=⇒ lp...lq

opq
=⇒ lj−1, with p′ a path which aims to call services in

{component(opo) | i+ 1 ≤ o ≤ q} from their initial states.
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We can recursively apply the same reasoning on TC2(li
opi=⇒ lj) and

on each dependent and independent operation until there is no operation
to call. Since the keep operation produces paths with the same transi-
tion order as the initial test case and since the decomposed test cases
always call components from their initial states, we finally obtain a ioco
compatible trace t1...tn.

If we suppose now that ¬(I ioco S), we may obtain a trace t1...tn
either composed of incorrect responses or of τ symbols with Algorithm
2. For both cases, the application of t1...tn on the initial test case TC
leads to a fail location. In other terms, t1...tn ∈ TracesFAIL(TC).

So, let S be an STS, I an implementation under test and TC ∈ TS a
test case :

I ioco S ⇒ the application of Algorithms 1 and 2 on TC produces a
trace t ∈ STraces(I) such that t /∈ TracesFAIL(TC)

¬(I ioco M) ⇒ the application of Algorithms 1 and 2 on TC pro-
duces a tracet ∈ STraces(I) such that t ∈ TracesFAIL(TC)

6. Discussion

Both the test case decomposition and the test execution described
above cost time. The time complexity remains reasonable though, since
it is proportional to O((k + 1)n2) with k the number of test cases and n
the highest transition number in a test case. For comparison purposes,
executing test cases on an architecture where all the messages can be
observed is O(kn). From an initial test case TC of n transitions, we
have at most n operation invocations. In the worst case, we construct
one test case per invocation by covering TC two times (Algorithm 1).
So, for k test cases, the time complexity is O(kn2). We have at most
(n + 1) test cases generated from TC whose length cannot exceed n
transitions. So, the test execution is proportional to O(n2).

This time complexity may be reduced by considering the na-
ture of the tested system. Indeed, we consider services which could
be called separately in parallel by several testers. For a decom-
posed test case TC ′

n = {TC1
n(∅)} ∪ {TCd

n(li
op
=⇒ lj) | d >

1, op is a dependent operation}, each test case TCd
n calls instances of
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Web services from their initial states. So, a tester could execute each
TCd

n in parallel by using its own Web service instances, in condition
that there is one unique instance per Client application (no shared ses-
sion). The test execution is then proportional to O(n).

The second point of attention concerns the composition of
STraces(I) while testing. Once we have STraces(I), we check for any
test case TC whether STraces(I)∩TracesFail(TC) ,= ∅ and finally we
conclude whether S ioco I. This raises the following question : should
we still name the test relation ioco ? Test cases are generated by ioco
based methods and we reconstruct complete traces in STraces(I). Ne-
vertheless, we recompose traces by supposing that operations are pro-
bable dependent whereas this property does not exist in the ioco theory.
So, is it required to redefine a weakest relation ? We do not think so for
the following reason : if we have one-to-one operations and op ← R
in the specification, and if the implementation of op responds correctly
during the test, we are faced with the following choices : 1) op is inde-
pendent but simulates the relation R and gives the correct response, 2)
op is dependent on other operations op ← R′ which have exactly the
same behaviour as R, 3) op is really dependent on R. Implementing the
two first cases from a given specification sounds unlikely since they cor-
respond to nonsense modifications of the specification. This is why we
believe that only the last case is reasonable. Nevertheless, it is manifest
that proposing a test relation based on the trace composition would be
still interesting.

7. Conclusion

This paper proposes a method for testing Web service compositions
deployed inside a partially open environment where the messages pas-
sing between the components are hidden. This method tests the compo-
sition behaviour and does not assume that each component is tested and
conform. To retrieve all the traces of the composition, the test case set
is firstly decomposed over the operation dependency degree which mo-
dels the interleaving between the Web services of the composition. By
assuming that each of them (or an exact copy) can be invoked directly
by a client application, the tester executes the decomposed test cases,



Modelling and testing of service... 181

retrieves local traces from services and recomposes them to produce the
suspension traces STraces. Then, it becomes possible to check whe-
ther the implementation is ioco-conforming to its specification. We are
currently implementing the method. We have experimented it with suc-
cess on two available services of the health record application. From an
initial set of twenty test cases formulated manually, the test case decom-
position algorithm has generated roughly fifty decomposed test cases.
These ones have been executed by a second preliminary tool which im-
plements the tester algorithm (Algorithm 2). To execute the decompo-
sed test cases, we have manually translated them into the SOAPUI for-
mat. Then, the tester uses the SOAPUI tool [Evi11] whose purpose is to
experiment Web services with unit test cases.

An immediate line of future work is to reduce the time complexity of
the method either by proposing optimized algorithms or by proposing
pragmatic solutions such as testing components in parallel. We have
also set several assumptions on the specification, in the paper. These
ones are required to decompose and to execute a test suite. For ins-
tance, we suppose that specifications are deterministic. However, non-
deterministic specifications may be taken into account, in a future work,
with some restrictions [JMR06]. As a consequence, asynchronous ope-
rations could be tested too. Other assumptions sound more difficult to
remove. For instance, an operation cannot be said probable dependent
on another one, if it is not one-to-one (Definition 5.1).

This notion of probable dependency is the weak part of the test exe-
cution and need to be investigated in future works. It would be very
interesting to guarantee that an operation is dependent and not only
probable dependent. Nevertheless, we cannot observe the internal mes-
sages of the composition since these latter are assumed hidden. A trivial
solution could be proposed by implementing in each service a king of
historical log which could be easily available. Nevertheless, this kind of
technical solution cannot be generalized and is useless if we wish to use
existing components. A formal solution would be more relevant.
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