
A pragmatic approach for testing stateless
and stateful Web Service Robustness

Sébastien Salva * — Antoine Rollet **

* LIMOS - CNRS UMR 6158
Université d’Auvergne, Campus des Cézeaux,

Aubière, France

sebastien.salva@u-clermont1.fr
** LABRI CNRS UMR 5800

University of Bordeaux
33405 Talence cedex, France

rollet@labri.fr

RÉSUMÉ. L’intérêt dans les méthodes de test dédiées aux Services Web croı̂t autant que l’uti-

lisation massive de ces composants. Du fait que les Services Web sont hétérogènes par nature

et prennent place dans l’élaboration de processus complexes de type Business, le test de robus-

tesse, qui correspond au sujet principal de cet article, est une étape majeure pour développer

des services fiables. Dans une première étape, nous nous focalisons sur l’environnement SOAP

qui est utilisé pour appeler des opérations dans un format XML. Nous montrons que le protocole

SOAP doit être pris en compte lors du test car il modifie de façon substantielle le comportement

observable d’un Service Web mais aussi bloque certains tests. Ensuite, nous proposons deux

approches: la première a pour objectif de test des Services Web sans état (stateless) formalisés

par des modèles relationnels. La seconde est dédiée aux services à états (stateful) modélisés

par des systèmes à transitions symboliques (STS). Pour ces deux méthodes, l’environnement

SOAP est pris en compte en filtrant les réponses reçues ou en complétant la spécification. Ces

méthodes ont été expérimentées au moyen d’un outil académique sur de nombreux Services

Web déployés sur Internet. Cette expérimentation montre que plusieurs services comportent des

failles de robustesse et que notre méthode est capable de les détecter.

ABSTRACT. The interest in testing methodologies dedicated to Web Services is soaring as

much as the massive use of these components. Since Web Services are heterogeneous in nature

and take part in complex Business processes, robustness testing which is the topic of this paper,

Studia Informatica Universalis.

2 Studia Informatica Universalis.

is an important step to build them with confidence. Firstly, we focus on the SOAP environment

which is used to call Web Service operations in an XML format. We show that SOAP must

be taken into account in testing methods because it substantially modifies the Web Service ob-

servable behaviour and blocks many classical hazards used for testing. Then, we propose two

approaches: the first one aims to test stateless Web Services, represented by relational models.

The second approach is dedicated to stateful ones modelled with Symbolic Transition Systems.

For both methods, the SOAP environment is taken into account by filtering the messages or by

completing the specification. These methods have been experimented with an academic tool

on many Web Services deployed on the Internet. This experimentation shows that several ones

have robustness issues and that our methods are able to detect them.

MOTS-CLÉS : Test de robustesse; Services Web stateless et stateful; plateforme de test

KEYWORDS: Robustness testing; stateless, stateful Web Services; testing framework

A pragmatic approach for testing... 3

1. Introduction

The last three years mark a peak in Web Service development with
almost all well-known companies are tending to model or to implement
Web Service-based applications. These self-contained components of-
fer many advantages such as, developing and deploying Business pro-
cesses or externalizing functional code in a standardized way. Web Ser-
vices can also be the foundation stones of large and complex Business
applications such as BPEL processes [OC07].

Besides the Web Service tendency, there is currently a significant in-
terest in the study of Web Service testing methodologies. Indeed, the
standards proposed by the W3C and the WS-I consortiums, such as the
WS-I basic profile [WI06], ensure interoperability but not reliability or
robustness, which is the topic of this paper. A robust system is defi-
ned in [IEE90] as able to function properly in the presence of faults or
stressful environments. Web Services are distributed in nature and he-
terogeneous. So, to trust them in an environment like the Internet, they
need to behave correctly even they receive unspecified events. So, in
other words, they need to be robust.

This paper tackles the robustness of stateless and stateful Web Ser-
vices. Unlike stateless ones, stateful Web Services are persistent through
a session and have an internal state which evolves over operation call
sequences. For instance, all the Web Services using shopping cart soft-
ware or beginning with a login step are stateful. Our approach is black
box-based, so we have no knowledge of the Web Service internal struc-
ture. The benefit is to test deployed Web Services in the SOAP envi-
ronment [Wc03], by calling operations and by observing the resulting
reactions. We also show, in the paper, that taking into consideration the
SOAP environment while testing is necessary, since SOAP modifies the
messages by serializing them, and adds new messages which change the
Web Service observable behaviour. For instance, when a Web Service
is not available, the SOAP layer usually responds instead with a spe-
cific message. This one is received by testers but not generated by the
Web service under test. In the same way, if a Web Service crashes, we
may observe a SOAP response or not, according to the chosen SOAP
framework.

4 Studia Informatica Universalis.

Consequently, the Web Service behaviour is firstly analyzed in the
presence of the SOAP environment. We filter the SOAP messages to re-
cognize only those which are constructed by the Web Service under test.
The other messages may falsify the test verdict and must be ignored.
Then, we check if the classical hazards, used in software testing, can
be still applied through the SOAP environment. In robustness testing, a
hazard denotes an unusual and severe event e.g., an abnormal action or
environmental influence [SKRC07]. Hazards are not faults but are ac-
tions used to stimulate the implementation under test. Hazards are not
chosen while modeling but are usually combined with the specification
to produce test cases which can be experimented on the implementation.
These ones contain unexpected actions according to the specification.
We study well-known hazards based on parameter and interface modi-
fications. Network based hazards (random message modification etc.)
are not considered in the paper. We show that only few hazards provide
significant observable reactions while the testing process, because most
of them are blocked by a component called SOAP processor.

This analysis leads to two testing methods : the first method tests sta-
teless Web Services and gives a verdict by filtering the SOAP messages.
The second one, dedicated to stateful Web Services, completes the spe-
cification according to the SOAP environment and the relevant hazard
set before generating test cases. These methods have been implemented
in an academic tool called WSAT (Web Service Automatic Testing). We
experimented both methods, thanks to WSAT, on real implementations
such as the Amazon E-commerce Web Service (AWSECommerceSer-
vice) [Ama09]. Our results reveal that many of them have robustness
issues.

This paper is structured as follows : Section 2 provides an overview
of the Web Service paradigm. We give some related works about Web
Service testing and the motivations of our approach. Stateless and sta-
teful Web Service modelling is described in Section 3. Section 4 ana-
lyzes the Web Service robustness over the SOAP layer. This leads to
Section 5, which presents the testing methods and details the test case
generation. We describe the testing framework and some experimenta-
tion results in Section 6. Finally, Section 7 gives some perspectives and
conclusions.

A pragmatic approach for testing... 5

2. Web Service Overview

2.1. Web Service

Web Services are self contained, self-describing modular appli-
cations that can be published, located, and invoked across the Web
[Tid00]. To ensure and to improve their interoperability, the WS-I or-
ganization has proposed profiles, and especially the WS-I basic profile
[WI06], composed of four major axes :

– the Web Service description models how to invoke a Service
set, called enpoints, and defines their interfaces and their parame-
ter/response types. This description, called WSDL (Web Services Des-
cription Language) file [Wc07], also shows how messages must be
structured by giving the type and message structures. WSDL is often
used in combination with SOAP,

– the definition and the construction of XML messages, based on
the Simple Object Access Protocol (SOAP) [Wc03]. SOAP is used
to invoke Service operations (object methods) over a network by se-
rializing/deserializing data (parameter operation and responses). SOAP
takes place over different transport layers such as HTTP or SMTP,

– the discovery of the Service in UDDI registers. Web Service des-
criptions are gathered into UDDI (Universal Description, Discovery In-
tegration [Oc02]) registers, which can be consulted manually or auto-
matically by using dedicated APIs to find dynamically specific Web
Services,

– the security of the Service, which is obtained by using the HTTPS
protocol or XML encryption based protocols.

2.2. Related work on Web Service testing

There are many research papers concerning Web Service testing, and
some of them are summarized below.

Some works consider compositions, where the components are Web
Services. System specifications, often expressed by the UML or BPEL
languages, describe the global system functioning by showing the pos-
sible interactions between the Services. In [GFTdlR06], the BPEL spe-

6 Studia Informatica Universalis.

cification is translated into PROMELA in order to be used by the SPIN
model checking tool. In [DYZ06], the authors use BPEL specifications
which are translated into Petri nets. Then, standard Petri net tools are
applied to study verification, testing coverage and test case generation.
In [TFM05], the system is represented by a Task Precedence Graph
and the behaviour of the composed components is represented by a Ti-
med Labelled Transition System. Test cases are generated from these
graphs and are executed by using a specific framework over SOAP. In
[LZCH08], the BPEL specification is translated into an IF model, which
enables modelling of timing constraints. Test case generation is based
on simulation where the exploration is guided by test purposes.

Other works focus on Web Services seen as black boxes. In
[FTdV06], the specification describes some successive calls of different
operations which belong to the same Web Service. The specification
is translated into the LTS model and test cases are generated accor-
ding to the ioco implementation relation [Tre96]. In [BDTC05], Web
Services are automatically tested by using only the WSDL description.
Test cases are generated for two perspectives : test data generation (ana-
lysis of the message data types) and test operation generation (operation
dependency analysis). In [BFPT06], the authors test the interoperability
between Web Services. They propose to augment the WSDL description
with a UML2.0 Protocol State Machine (PSM) diagram which models
the possible interactions between the Service and a client. Test cases
are then generated from the PSM. A framework, called the Audition
framework, is proposed for executing these test cases in [BP05]. The
tool WS-TAXI is proposed in [BBMP09] : it integrates the tool SOA-
PIU which performs manual operation testing on Web Services, and
integrates the tool TAXI which allows to define XML instances from an
XSD file. The WS-TAXI tool generates test cases to automatically test
all operations referred in the WSDL description.

There are few papers dealing with Web Service robustness testing.
Most of them consider stateless ones. Robustness is then tested by hand-
ling WSDL descriptions [MX06, HM09, SR09] or by injecting hazards
into SOAP messages [OX04, VLM07]. In [MX06], the method uses
the Axis 2 framework to generate a class composed of methods allo-
wing to call Service operations. Then, test cases are generated with the

A pragmatic approach for testing... 7

tool Jcrasher, from the previous class. Finally, the tool Junit is used to
execute test cases. If fact, this does not test directly Web Services but
rather client methods which call them. Another method is proposed in
[HM09], which is based on the WSDL analysis to identify which faults
could affect the robustness attribute and then test cases were designed
to detect those faults. In [OX04], the Web Service robustness is tested
by applying some mutations on the request messages and by analyzing
the obtained responses. In [VLM07], fault injection techniques are em-
ployed to create diverse fault-trigging test cases in order to display some
possible robustness problems in the Web-Service code. We also propo-
sed in [SR09] a Web Service robustness testing method, which automa-
tically assesses the stateless Web Service robustness by using WSDL
descriptions. The method performs random testing, improved by the use
of the hazard Using unusual values. A tool has been developed and tes-
ted on real Web Services. By comparison to the previous works, we take
into consideration the notion of SOAP processor. These components fil-
ter the requests and sometimes create responses instead of the service
itself. As a consequence, our method detects more robustness issues.

We describe briefly this testing method in this paper and we go fur-
ther by proposing a robustness testing method for stateful Web Services.
To the best of our knowledge, testing the stateful Web Service robust-
ness has not been studied before. On the one hand, some works have
been proposed on control software system robustness [MS09], model-
led with symbolic specifications. However, robustness is tested, in this
work, with small input perturbations. Web Services are composed of
operations, of variables with different type and depend of the SOAP en-
vironment. Testing their robustness raises new issues. On the other hand
some works focus on WS-BPEL robustness [BCM09, ES06]. BPEL
processes aim to orchestrate different Web Service partners. The partner
internal states are not tested here. Moreover, BPEL robustness methods
are currently passive i.e. faults are injected in SOAP messages passing
through the network and results are monitored during a long period of
time.

Unlike these works, we begin to evaluate which hazards are relevant
for testing. We show that many are blocked by SOAP processors and
are useless. We complete the specification to consider the observable

8 Studia Informatica Universalis.

actions spawned by SOAP processors and the SOAP protocol. Our me-
thod is also active and offers a better test coverage by testing all the
operation call instances of the specification.

Furthermore, we use our own low level test framework to increase the
message observability. Our platform directly calls Web Service opera-
tions and analyzes the SOAP responses, and especially the SOAP faults.
So, it can detect if the exception management (error recovery) is not
implemented by the Web Service under test but managed by the SOAP
processor which responds with SOAP faults instead of the Web Service.

3. Web Service modelling

3.1. Stateless Web Service

We consider in this paper black box Web Services, from which we
can only observe SOAP messages. Other messages, such as database
connections and the Web Service internal code are unknown. So, the
Web Service definition given below describes the Web service interface
only i.e., the available operations, the parameter and response types.
We also use the notion of SOAP fault. As defined in the SOAP v1.2
specification [Wc03], a SOAP fault is used to warn a client that an error
has occurred. A SOAP fault is composed of : a fault code, a message,
a cause, and XML elements gathering the parameters and more details
about the error. Typically, a SOAP fault is obtained, in object-oriented
programming, after the raise of an exception by the Web Service. SOAP
faults are not consistently described in WSDL files.

Definition 3.1 Let X be a variable set and T be a set of types (Integer,
String, Object, SOAPfault, etc.). A variable set is associated to a type
set with the function type : Xn → T n.

A Web Service WS is a component which can be called over an
operation set OP (WS) = {op1, ..., opk}.

Each opi is defined by the relation opi : from(opi) → to(opi)
with from(opi) = (x1, ..., xn) ∈ Xn and to(opi) = (x′

1, ..., x
′
m) ∈

Xm. The parameter types (the response types) are type(from(opi))
(type(to(opi)) resp.).

A pragmatic approach for testing... 9

Let U be a value set. A valuation val is a relation val: Xn → Un

giving a value set from a variable set. A valuation of a variable x with
type(x) = SOAPfault, is denoted val(x) = (c, soapfault) with c the
fault cause message. For simplicity, we also denote the type of a value
set v, type(v) with v = val(x) and type(v) = type(x).

We define the restriction E|Xn = {val ∈ E | val: Xn → E}.
The latter leads to the operation invocation definition with the mapping
invopi such that invopi: U

n
|from(opi)

7→ Um
|to(opi) ∪{(c, soapfault)}∪ {ϵ}.

ϵ models an empty response. To ease notation, invopi is also denoted
opi.

The parameter types are either simple (integer, float, String, etc.) or
complex (trees, tabular, objects composed of simple and complex types,
etc.). Similarly, rhe response types are simple (integer, float, String,
etc.), or complex or may be a SOAP fault. We denote a SOAP fault with
(c,soapfault) to differentiate the SOAP cause in the testing methods. For
instance (”Client”,soapfault) illustrates a SOAP fault composed of the
”Client” cause which means that the client request form is incorrect.

Some operations may be called without parameter and/or do not re-
turn any response. With or without parameter, an operation is always
called with a SOAP message. However, if an operation does not pro-
duce any response, no SOAP message is sent to the client. We define
that an operation which always returns a response is said observable :

Definition 3.2 Let WS be a Web Service. An operation opi ∈
OP (WS) is observable if ∀(p1, ..., pn) ∈ Un

|from(opi)
, opi(p1, ..., pn) ̸=

ϵ.

In the remainder of the paper, we assume that Web Service opera-
tions are observable only. Without response that is without observable
event, it becomes difficult to conclude whether an operation is robust or
crashes and is faulty :

Web Service observable operation hypothesis : We suppose that each
Web Service operation, given in WSDL descriptions, is observable.

Figure 1 illustrates, with UML sequence diagrams, a Web Service
example which has two available operations : getPerson takes a String

10 Studia Informatica Universalis.

value and returns a Person object and divide returns the integer result of
a division. The WSDL description of the getPerson operation is given
in Figure 2. It provides the exchanged message form. For a request, the
message is composed of two elements ”getPerson” and ”String”. The
response message is composed of two elements ”getPersonResponse”
and ”Person”.

i n t

d iv ide (in t , i n t)

c l i e n t S e r v i c e

P e r s o n p

g e t P e r s o n (S t r i n g)

P e r s o n

+ g e t _ n a m e () : S t r i n g

+ g e t _ l o c a t i o n () : S t r i n g

+ g e t _ a g e () : i n t

c l i e n t S e r v i c e

Figure 1 – Web Service UML specification

3.2. Stateful Web Service modelling

A stateful Web Service WS has an internal state which evolves over
the operation call sequences. Its interface, which describes the available
operations and parameters, is still formulated with Definition 3.1. We
propose to also formalize its internal state with deterministic STS (Sym-
bolic Transition Systems [FTW05]). This model corresponds to a kind
of extended automaton model composed of transitions labelled by sym-
bols combined with communication parameters, and of two sets of in-
ternal and external variables which may be used to evaluate guards and
which may be updated. We briefly recall the STS definition below.

Definition 3.3 A Symbolic Transition System STS is a tuple <
L, l0, V ar, var0, I, S, →>, where :

– L is the finite set of locations, with l0 the initial one,
– V ar is the finite set of internal variables, while I is the finite set

of external or interaction ones. We denote Dv the domain in which a

A pragmatic approach for testing... 11

<types> <schema>

<element name="Person">

...

</element>

<element name="getPerson">

<complexType>

<sequence>

<element name="x" type="xsd:string"/>

</sequence>

</complexType>

</element>

<element name="getPersonResponse">

<complexType>

<sequence>

<element name="y" type="Person"/>

</sequence>

</complexType>

</element>

</element>

</schema> </types> <message name=

"getPersonRequest">

<part name="parameters" element=

"getPerson"/>

</message> <message name=

"getPersonResponse">

<part name="parameters" element=

"getPersonResponse"/>

</message>

Figure 2 – WSDL description of the getPerson operation

12 Studia Informatica Universalis.

variable v takes values. The internal variables are initialized with the
assignment var0, which is assumed to take an unique value in DV ar,

– S is the finite set of action labels, partitioned by S = SI ∪ SO :
inputs, beginning with ?, are provided to the system, while outputs (be-
ginning with !) are observed from it,

– → is the finite transition set. A transition (li, lj, a(p), φ, ϱ), from

the location li ∈ L to lj ∈ L, also denoted li
a(p),φ,ϱ−−−−→ lj is labelled by

a(p) ∈ S × Inn>0, φ ⊆ DV ar ×Dp is a guard which restricts the firing
of the transition. Internal variables are updated with the assignment
ϱ : DV ar ×Dp → DV ar once the transition is fired.

The STS model is not specifically restricted to Web services.
This is why we assume, in accordance with the Web service inter-
face definition, that an action a represents either the invocation of
an operation op which is denoted ?op or the return of an opera-
tion with !op return. An operation call is denoted by the transition
(l, l′, ?opi(from(opi)), φ, ϱ), with ϱ the assignment of the parameter
values to interval variables in V ar. A response sending is modelled by
a transition (l, l′, !op return(to(opi)), φ, ϱ) composed of the guard φ
describing e.g., a choice or a restriction depending on the parameter va-
lues used to call op. The observable operation assumption involves that
each STS operation call (input) is followed by an operation response
(output).

The STS example, given in Figure 3, describes a specification part of
the Amazon Web Service devoted for E-commerce (AWSECommerce-
Service). We begin to search for items (ItemSearch operation), to look
for item details (ItemLookUp operation). Then we create a cart (Cart-
Create operation), which may be filled in with items (CartAdd ope-
ration) and purchased (Purchase operation). Note that we do not in-
clude all the parameters for readability reasons. A symbol table is gi-
ven in Figure 4. Some parameters (BD.item.ASIN, BD.item.Quantity,
BD.account.KeyID), given in the Amazon documentation, refer to
Amazon database items. We only illustrate in Figure 5 the database part
used in our example.

A pragmatic approach for testing... 13

1 2
?a

4
!b

3

!c

5?d

6

?f

!e

7!i

8

!g 9?h

10

?l

!k

11
!m

Figure 3 – The Amazon AWSECommerceService specification

Symbol Message Guard Update

?a ItemSearch<String AWSAccess-
KeyID,String SearchIndex,String
KeyWords>

id :=AWSAccessKeyID

?d ItemLookUp<String AWSAccess-
KeyID,String RequestID>

id :=AWSAccessKeyID

?f CartCreate<String AWSAccess-
KeyID,String ItemASIN,Integer
Quantity>

id :=AWSAccessKeyID,
q :=Quantity, item :=ItemA-
SIN

?h CartAdd<String AWSAccess-
KeyID,String ItemASIN,Integer
Quantity>

id :=AWSAccessKeyID,
q :=Quantity, item :=ItemA-
SIN

?l Purchase<String CartId,String
CustomerInfos>

[CartId==cart]

!c ItemSearchResponse< String Er-
rors,String IsValid>

[IsValid==”false” ∧ id ̸=
BD.account.KeyID]

!b ItemSearchResponse< String
Items,String IsValid>

[IsValid==”true” ∧ id==
BD.account.KeyID]

!e ItemLookUpResponse< String
Items, String IsValid>

[IsValid==”true” ∧ id==
BD.account.KeyID]

!i CartCreateResponse< String Er-
rors, String IsValid>

[IsValid==”false” ∧ (q≥
BD.Item.Quantity ∨item
̸=BD.Item.ASIN)]

!g CartCreateResponse< String Car-
tId, String IsValid>

[IsValid==”true” ∧
q<BD.Item.Quantity ∧
item== BD.Item.ASIN]

cart :=CartId

!k CartAddResponse<String
IsValid>

[IsValid==”true”
∧ Quantity<
BD.Item.Quantity ∧
item== BD.Item.ASIN]

!m PurchaseResponse<String
IsValid>

[IsValid==”true”]

Figure 4 – Specification symbol table

14 Studia Informatica Universalis.

account
KeyID
”ID”

ItemASIN
ASIN Quantity

”43451” ”5”
”66405” ”30”

Figure 5 – The Amazon AWSECommerceService Database

4. Web Service robustness study

As many works referring to robustness testing, we consider that a
Web Service is robust if it is able to function properly in the presence of
faults or stressful environments [IEE90]. Although this sentence sounds
usual, Web services are specific components which can be invoked
through a SOAP environment only. The latter may modify messages
and may also block some invocations. So, we analyze below the kind
of SOAP messages which may be received and the hazards which can
be used with Web service invocations to improve the robustness issue
detection and to reduce the test cost by filtering out the useless hazards.

4.1. Web Service observable event analysis and robustness

We consider, in this paper, black box Web Services from which only
SOAP requests and responses can be sent and received respectively. The
SOAP layer, mainly used to serialize the invocations, substantially mo-
difies the observed behaviour too. It is manifest that data, requests and
responses are XML encoded, but the SOAP layer can also construct
messages instead of Web Services. This analysis aims to describe these
messages and to take them into account later in the testing steps.

As in the WS-I basic profile [WI06], we consider that a receiver,
in a Web server, is a software that consumes a message (SOAP pro-
cessor + Web Service). The SOAP processor is often a part of a more
complete framework like Apache Axis or Sun Metro JAXWS, which
receives all the requests, instantiates the corresponding operations and
returns a SOAP response to Client applications. This is specifically this

A pragmatic approach for testing... 15

component which modifies the observable event set. Below, we summa-
rize the significant modification involved by SOAP processors that we
have collected :

– Calling an unavailable operation : this action produces the re-
ceipt of a SOAP fault, constructed by the SOAP processor, composed
of the cause ”the endpoint reference is not found”,

– Calling an available operation with incorrect parameter types :
this action produces also the receipt of a SOAP fault, composed of the
cause ”Client”. This latter means that the Client request does not match
the Web Service WSDL description,

– Exception management : by referring to the WS-I basic profile,
when an exception is triggered by an operation, it should to be trans-
lated into a SOAP fault and sent to the Client application. However,
this feature needs to be implemented by hands in the operation code.
So, when the exception management is implemented, the SOAP fault
cause is usually equal to SoapFaultException (in Java or C# implemen-
tations). Otherwise, the operation crashes and the SOAP processor may
construct itself a SOAP fault (or does nothing, depending on the chosen
Web Service framework). In this case, the SOAP fault cause is different
from SoapFaultException. Figures 6 and 7 depict two divide operations
written in Java, which illustrate this exception management difference.
When the first divide operation is called to divide an integer by 0, the
operation crashes and some SOAP processors return a SOAP fault com-
posed of the cause ”java.lang.ArithmeticException” since exceptions
are not managed in the code. With other SOAP processors, no SOAP
message is returned. For the second divide operation, the exception is
spread until the Client application thanks to the piece of code ”throw
new SoapFaultException(”error divide”+x+” by ”+y) which produces a
SOAP fault, composed of the cause ”SoapFaultException”. In this case,
the operation manages itself the exception.

Class Service { public int divide(int x, int y) {

return (x/y); }

}

Figure 6 – Example I

16 Studia Informatica Universalis.

Class Service { public int divide (int x, int y)

throws SOAPFaultException {

try{

int result=x/y; return result;}

catch (Exception e) {

throw new SOAPFaultException(

"error divide"+x+" by "+y); }

}

Figure 7 – Example II

This analysis helps to propose a Web Service operation robustness
definition which removes the events constructed by SOAP processors.
This definition implies that a robust operation can catch any exception
and constructs itself SOAP faults composed of the SOAPFaultExcep-
tion cause only.

Definition 4.1 Let WS be a Web Service. An operation
opi: from(opi) → to(opi) ∈ OP (WS) is robust, iff ∀v ∈ Un

|from(opi)
,

r = opi(v) ∈ Um
|to(opi) ∪ {(SOAPFaultException, soapfault)}.

4.2. Hazard acceptance assessment for stateless Web Services

We analyzed in [SR09] the Web Service operation behaviour in
the presence of hazards. The obtained results are summarized below.
This analysis helps to separate the hazards which can test operations,
to those which are blocked by SOAP processors. For an operation
op : from(op) → to(op), we focused on the following hazards based
on the parameter modification [KKS98, CS04]. Note that the WS-I ba-
sic profile does not permit operation overloading. So, overloading is not
considered here.

– Replacing parameter types : one or more variable types in
from(op) are replaced by other types. With this hazard, we always ob-
tain a SOAP fault composed of the cause Client. This means that the
given parameter values are incorrect and that the invocation is blocked
by the SOAP processor. So, this hazard is not relevant for testing the
Web Service robustness,

A pragmatic approach for testing... 17

– Adding/injecting parameters : adding parameters in the begin-
ning of the request or between existing parameters is equivalent to re-
placing parameter types and we have seen previously that this hazard
is useless. When, we call an operation by adding parameters at the
end of the existing ones with op(p1, ..., pn, pn+1, ..., pn+k), the values
pn+1, ..., pn+k are not read by the SOAP processor and not given to the
Web Service. Therefore, this hazard is not relevant,

– Deleting parameters : as previously, deleting parameters in the
beginning or between existing parameters is comparable to the hazard
replacing parameter types and is not relevant. When, we call an opera-
tion with less parameter values than required with op(p1, ..., pk), (k <
n), we obtain two kind of responses according to the WSDL description.
If the option ”nillable=true” is used in the WSDL file, this is equivalent
to calling op with null values (p1, ..., pk, null, ..., null). We consider that
”null” is an unusual value (see below). Otherwise, the SOAP processor
returns a SOAP fault composed of the cause Client which means that
the invocation is blocked. Thereby, this hazard is either comparable to
the hazard Using unusual values or is unnecessary,

– Inverting parameters : this hazard is comparable to Replacing
parameter types,

– Using unusual values : this hazard, well-known in software tes-
ting [KKS98], aims to call op with values (p1, ..., pn) ∈ Un

|from(opi)
,

satisfying its WSDL description (so, pi = val(xi), and type(xi) equals
to the type given in the WSDL description). But these predefined va-
lues are assumed to have a high bug-revealing rate when used as inputs.
For instance, null ; ”” ; ”$” ; ”*” are some unusual String values. The
requests composed of such values are not rejected by SOAP processors
since the WSDL description is respected by these. Therefore, this ha-
zard can be used for Web Service robustness testing.

Consequently, only the last hazard Using unusual values is not blo-
cked in the SOAP environment and can be used for testing.

4.3. Hazard acceptance assessment for stateful Web Services

We extend here the previous study on stateful Web Services. We
focus on the following hazards modifying the Web Service interface

18 Studia Informatica Universalis.

[KKS98, CS04] : Changing operation name, Replacing /Adding ope-
ration name in addition to the previous ones. Let WS be a Web Service
and STS be its specification :

– Changing the operation name : this hazard aims to randomly
modify an operation name op ∈ OP (WS) to op modif such that
op modif is not an existing operation (op modif /∈ OP (WS)). When
this hazard is put into practice, we always receive a SOAP fault com-
posed of the cause Client, which means that the client request is faulty.
This hazard produces requests which are always blocked by SOAP pro-
cessors since the WSDL description is not satisfied by these. So, be-
cause the test cannot be performed, we consider that this hazard is use-
less,

– Replacing /Adding operation calls : Let l be a loca-
tion with the outgoing transitions (l, l1, ?op1(p11, ..., p1n), φ1, ϱ1), ...,
(l, lk, ?opk(pk1, ..., pkn), φk, ϱk) modelling operations calls. If it exists
an operation op : from(op) → to(op) such that op /∈ {op1, ..., opk}, this
hazard aims to replace/add the call of an operation opi ∈ {op1, ..., opk}
by op. Since this hazard satisfies the Web Service WSDL description,
it is not blocked by SOAP processors. However, when op is invoked,
we can only receive a response from op. We cannot just replace/add
a name in the specification. For instance, if we replace the operation
ItemSearch by AddCard, in our example of Figure 15, we do not re-
ceive a response from ItemSearch but from AddCard. So, If the ope-
ration op is robust, according to Definition 4.1, the expected response
from any invocation op(p1, ..., pn) is either a response (r1, ..., rn) with
type((r1, ..., rn)) = type(to(op)), or a SOAP fault (SOAPFaultExcep-
tion,soapfault).

This hazard involves to complete the specification on the operation
calls for each location. This modification is detailed in Section 5.2.

There exist of course other hazards based on the SOAP message mo-
dification, such as replacing the port name or modifying SOAP mes-
sages randomly. These hazards are usually used for testing Web Service
compositions in order to observe partner behaviours. Concerning state-
ful Web Services, either the message random modification is equivalent
to a previous hazard (parameter, operation modification) or gives an in-

A pragmatic approach for testing... 19

consistent SOAP message which is always blocked by SOAP processors
since it does not satisfy the Web Service WSDL description.

Consequently, the two hazards using unusual values and replacing
/adding operation names can be used for testing stateful Web Services
since these are not blocked by SOAP processors.

5. Web Service robustness testing methods

Prior to describing the two robustness testing methods, we define the
test case modelling, with STS :

Definition 5.1 A test case T =< L, l0, V ar, var0, I, S,→> is
an STS tree where each final location is labelled by a verdict in
{pass, fail/available, fail}.

For a Web Service WS, branches are labelled either by
(?opi(from(opi)), φ, ϱ, λ) or by (!opi return((to(opi)), φ, ϱ, ∅) or by δ
where opi is an operation in OP (WS) and δ represents quiescence. In-
tuitively, the pass verdict means that the test is successful, fail/available
means that the WS operations can be called as it is described in the
WSDL file (the operations exist and take the correct parameter types)
and that WS is not robust. With fail, at least one operation is unavai-
lable and WS is not robust. The two last verdicts refine the classic fail
case by distinguishing the case where the implemented operation do not
match the WSDL description.

For example, l0
?getPerson(Strings)−−−−−−−−−−−−→

s:=”12345”
l1

!getperson return(Strings2)−−−−−−−−−−−−−−−−→ pass

is a test case which invokes the getperson operation with the parameter
value ”12345”. The response must be a String value.

5.1. Stateless Web Service automatic robustness testing

For a stateless Web Service WS, our method aims at testing these
two features :

– Existence of all Service operations : for each operation opi:
from(opi) → to(opi) ∈ OP (WS), we construct test cases to check

20 Studia Informatica Universalis.

whether the implemented operation corresponds to its description in
the WSDL file. So, test cases call the operation opi with several va-
lues (p1, ..., pn) ∈ Un

|from(opi)
. opi exists if opi(p1, ..., pn) returns a res-

ponse r such that r is either a specified response (r ∈ Um
|to(opi)), or

r = (c, soapfault) is a SOAP fault where the cause c is different from
Client and the endpoint reference not found. The first cause means the
operation is called with bad parameter types. The second cause means
that the operation name does not exist (see Section 4.1). Otherwise, opi
does not exist as described in the WSDL file,

– Web Service operation robustness : for each operation opi:
from(opi) → to(opi) ∈ OP (WS), we construct test cases to check
if opi does not crash or hang by calling it with hazards. As stated in
Section 4.2, we use the hazard Using unusual values which means that
opi is called with unusual parameter values (p1, ..., pn) ∈ Un

|from(opi)
.

According to the operation robustness definition (Definition 4.1), ei-
ther opi(p1, ..., pn) should return a specified response r ∈ Um

|to(opi) or a
SOAP fault (SOAPFaultException, soapfault). We consider that a
Web Service is not robust if quiescence (no response received after a
timeout) is observed or if any other response is received.

W S D L
d e s c r i p t i o n

ope ra t i on l i s t
p a r s i n g

V
s e t o f u n u s u a l

v a l u e s

T e s t c a s e
g e n e r a t i o n

T e s t c a s e s e t
T C

Figure 8 – Stateless Web Service test case generation

The test case generation is illustrated in Figure 8. We parse the Web
Service WSDL file to list the operation set. Then, we use a predefined
set of values V to generate test cases. This set contains for each type, an
XML value list used for calling each operation. Theses values have been
chosen after the Web Service response analysis of Section 4.2 in order
to check that operations exist, and to construct requests with unusual
values.

We denote V (t) the set of specific values for the type t which can be
a simple type or a complex one. Figures 9, 10 and 11 show some values

A pragmatic approach for testing... 21

used for the type Int, String and for tabular of simple type. For a tabular
composed of String elements, we use the empty tabular, tabulars with
empty elements and tabulars of String constructed with V (String).

<type id="Int">

<val value=null />

<val value="0" />

<val value="-1" />

<val value="1" />

<val value="MIN" />

<val value="MAX" />

<val value=RANDOM" /> <!-- a random Int-->

</type>

Figure 9 – V(Int)

<type id="String">

<val value=null />

<val value="" />

<val value=" " />

<val value="\$" />

<val value="*" />

<val value="&" />

<val value="hello" />

<val value=RANDOM" /> <!-- a random

String-->

<val value=RANDOM(8096)" />

</type>

Figure 10 – V(String)

For a Web Service WS, the test case generation is composed of the
following steps :

1) The WSDL description is parsed to produce the operation list L =
{op1, ..., opl},

2) for each operation opi ∈ L : from(opi) = (p1, ..., pn) → to(opi)
= (r1, ..., rm), we construct the tuple set V alue(opi) = {(v1, ...,
vn) ∈ V (p1) × ... × V (pn)}. If the parameter types are complex (ta-
bular, object, etc.), we compose them with other ones to obtain the final
values. Since V alue(opi) is constructed by means of a cartesian pro-
duct, the number of values used for testing may manifestly explode. So,

22 Studia Informatica Universalis.

<type id="tabular">

<val value=null /><!-- an empty

tabular-->

<val value= null null /><!--tabular

composed of two empty elts-->

<val value= simple-type />

</type>

Figure 11 – V(tabular)

we use a heuristic to estimate and eventually to reduce the V alue(opi)
cardinality : if card(V alue(opi)) > Max, V alue(opi)) is reduced by
removing successively one value of V (p1), then one of value of V (p2),
and so on up to card(V alue(opi)) <= Max,

3) for each operation opi ∈ L, we construct the test case set TC(opi)
with :
TC(opi) =

∪
v∈V alue(opi)

{(l0, l1, ?opi(X), [X = v], ∅),

(l1, pass, !opi return(r), φ1, ∅), (l1, pass, !opi return(r), φ2, ∅),
(l1, fail/available, !opi return(r), φ3, ∅), (l1, fail, δ, ∅, ∅),
(l1, fail, !opi return(r),¬(φ1 ∨ φ2 ∨ φ3), ∅)}
where φ1 = [type(r) = type(to(opi))], φ2 = [val(r) =
(SOAPFaultException, soapfault)], φ3 = [val(r) =
(c, soapfault), c /∈ {Client, SOAPFaultException, the endpoint
reference not found],

4) and finally, the test case set TC =
∪

opi∈L

{TC(opi)}.

For more readability, we illustrate two test case schema : one for
the operation existence testing (Figure 12) and one for the robustness
testing (Figure 13). In TC, each test case calls one operation. If the
response is not a SOAP fault and if the response type matches the one
described in the WSDL file, the local verdict is pass. If the response is
a SOAP fault with the cause SOAPFaultException, then the operation
manages itself exceptions and the local verdict is pass. If the response
is a SOAP fault whose cause is not in {SOAPFaultException,client, the
endpoint reference not found} then the operation exists but does not ma-
nage exceptions. The operation crashed and the SOAP fault is returned

A pragmatic approach for testing... 23

by the SOAP processor. Thus, this operation is not robust and the local
verdict is fail/available. Otherwise, the local verdict is fail.

δ

fail

op(v)

otherwise

pass failpass

op_return(r)
[type(r)=
SOAP fault
cause=
"SOAPFault
Exception"]

fail/available

op_return(r)
[type(r)=SOAP fault

cause<>"client" or
cause<>"the endpoint

reference...
not found" or

cause<>
"SOAPFault
Exception"]

op_return(r)
[type(r)=
type(to(op))]

Figure 12 – Test case schema for testing the operation existence

δ

fail

op(v)

op_return(r)
[type(r)=
SOAP fault
cause=
"SOAPFault
Exception"]

op_return(r)
[type(r)=
type(to(op))

otherwise

pass failpass

Figure 13 – Test case schema for testing robustness

5.2. Stateful Web Service robustness testing method

This method checks whether a stateful Web Service behaves cor-
rectly despite the use of the hazards Using unusual values and Repla-
cing /Adding operation names, previously described in Section 4.

The test case generation method is illustrated in Figure 14. First,
the specification locations are completed on the input set to apply the
hazard Replacing /Adding operation names. The specification is also
completed to model the incorrect behaviour (incorrect responses) and

24 Studia Informatica Universalis.

S p e c i f i c a t i o n C o m p l e t e
S p e c i f i c a t i o n

V a l u e s e t
V

T e s t C a s e
G e n e r a t i o n

T e s t c a s e
s e t T C

Figure 14 – Stateful Web Service test case generation

quiescence. So, the test cases generated from the complete specification,
will describe both the correct behaviour and the incorrect behaviour of
a Web Service.

These steps are detailed below.

5.2.1. Specification completeness

As stated previously, we complete the specification to apply the Re-
placing /Adding operation name hazard and to append the incorrect
Web Service behaviour.

Let WS be a Web Service and STS be its specification, with
STS =< L, l0, V ar, var0, I, S,→>. STS is completed with the follo-
wing steps :

– Replacing the terms referring to database items with database
values,

– Operation call completion : locations preceding an operation re-
quest and end locations are completed to be input enabled and to take
into account the hazard Replacing /Adding operation names.

So, ∀l ∈ L such that l is a end location or has the outgoing transitions
(l, l1, ?op1(p11, ..., p1n), φ1, ϱ1), ..., (l, lk, ?opk(pk1, ..., pkn, φk, ϱk), we
add :
∀opi : from(opi) → to(opi) ∈ OP (WS)/{op1, ..., opk},
(l, li, ?opi(pi1, ..., pin), ∅, ∅), (li, l, !opi return(r1), φ1, ∅), (li, l, !opi
return(r2), φ2, ∅), with
φ1 = [type(r1) = type(to(opi)], φ2 = [val(r2) = (SOAPFault
Exception, soapfault)]. From l, any operation opi can be invoked. We
also add the possible responses which can be received if opi is robust as
described in Definition 4.1,

A pragmatic approach for testing... 25

– pass verdict addition, each specification location is labelled by
pass. These labels will be transferred into the test cases and mean that
to reach a pass location while testing, a specification behaviour has been
executed.

– Incorrect behaviour completion : the specification is comple-
ted on the incorrect response set with the following transitions. As
previously, the states labelled by fail, will be transferred into the
final test cases. ∀l ∈ L such that l has the outgoing transitions
(l, l1, !opi return(r1), φ1, ϱ1), ..., (l, lk, !opi return(rk) , φk, ϱk), we
add :

- (l, fail, δ, ∅, ∅), with δ expressing quiescence,
- (l, fail, !opi return(r), φ1, ∅) with φ1 = [r = (Client,

soapfault) ∨ r = (the endpoint... found, soapfault)]. The called
operation is not robust and not available if it returns a SOAP fault com-
posed of the cause Client or the endpoint reference is not found, (see
Section 4.1),

- (l, fail/available, !opi return(r), φ′, ∅), φ′ = [¬(φ1∨...∨φk∨
φ)]. If the operation returns any other response, then the Web Service
is not robust in the presence of hazards but the operation is available.
Thus a fail/available verdict is reached.

The STS of Figure 15 illustrates a completed specification, obtained
from the STS of Figure 3. The dotted transitions represent the operation
call completion while those illustrated with dashed lines model the in-
correct behaviour addition. The new symbol table is given in Figure 16.
For instance, from location 1 any operation can now be invoked. When
an operation different from ItemSearch is called with ?v1, the service
is robust if a specified response or a SOAP fault with the cause SOAP-
FaultException is received.

5.2.2. Test case generation

Test cases are constructed with Algorithm 1. Firstly, Algorithm 1 re-
fers to the PathFinding procedure given in Algorithm 2. This latter
is classically based on the transition exploration with backtracking. But
it also solves the constraints of the current path p on the fly to ensure
that p can be completely executed (line 4). It calls the Solving proce-

26 Studia Informatica Universalis.

pass

7

fail

fail

fail/aiv

fail/aiv

1

2 11

4

44

5

6

8

9

10

88 ?y

?a ?v1

!c

!u2||!u1

!b !n2|| !n1

!v2

?p

?d

?f

!x1

!q

!o2||!o1

!e

!i

!t2||!t1

!g

?h ?l

?z

!s2||!s1

!k

!m

!j1

!r2||!r1

!w

?y2

!y3||!y4

δ

δ

!x2||δδ

!j2||δ δ

δ

δ

δ

Figure 15 – The Amazon AWSECommerceService specification

A pragmatic approach for testing... 27

Symbol Message Guard/Update

?v1 ItemLookUp||CartCreate||
CartAdd||Purchase

!v2 [R=String∨R=(SOAPFaultException, soapFault)]
!n1 ItemLookUpResponse<R>

||CartCreateResponse<R>
||CartAddResponse<R>
||PurchaseResponse<R>

[¬(φ(!v2) ∨ φ(!n2)]

!n2 [R== (Client,soapFault)∨ R==(The end-
point...,soapFault)]

!u1 ItemSearchResponse<R> [¬(φ(!b) ∨ φ(!c) ∨ φ(!u2)]
!u2 [R== (Client,soapFault)∨ R==(The end-

point...,soapFault)]
?p ItemSearch||CartAdd|| Pur-

chase
!q [R=String∨(R=(SOAPFaultException,soapFault)]

!x1 ItemSearch<R>
||CartAddResponse<R>
||PurchaseResponse<R>

[¬(φ(!q) ∨ φ(!x2)]

!x2 [R== (Client,soapFault)∨ R==(The end-
point...,soapFault)]

!o1 ItemLookUpResponse<R> [¬(φ(!e) ∨ φ(!o2)]
!o2 [R== (Client,soapFault)∨ R==(The end-

point...,soapFault)]
?z ItemSearch||ItemLookUp||

CartCreate
!w [R=String∨(R=(SOAPFaultException, soapFault)]
!r1 ItemLookUpResponse<R>

||ItemSearchResponse<R>
||CartCreateResponse<R>

[¬(φ(!w) ∨ φ(!r2)]

!r2 [R== (Client,soapFault)∨ R==(The end-
point...,soapFault)]

!t1 CartCreateResponse<R> [¬(φ(!g) ∨ φ(!i) ∨ φ(!t2)]
!t2 [R== (Client,soapFault)∨ R==(The end-

point...,soapFault)]
!s1 CartAddResponse< R > [¬(φ(!k) ∨ φ(!s2)]
!s2 [R==(Client,soapFault)∨ R==(The end-

point...,soapFault)]
!j1 PurchaseResponse<R> [¬(φ(!m) ∨ φ(!j2)]
!j2 [R== (Client,soapFault)∨ R==(The end-

point...,soapFault)]
?y ItemSearch||ItemLookUp||

CartCreate||CartAdd||
Purchase

!y2 [R=String∨(R=(SOAPFaultException, soapFault)]
!y3 ItemLookUpResponse<R>

||ItemSearchResponse<R>
||CartCreateResponse<R>
||CartAdd<R>
||Purchase<R>

[R== (Client,soapFault)|| R==(The end-
point...,soapFault)]

!y4 [¬(φ(!y3) ∨ φ(!y2)]

Figure 16 – Complete specification symbol table

28 Studia Informatica Universalis.

dure, which takes a test case path p and returns an external variable
assignment λ which satisfies the firing of the transitions of p. If the
constraint solvers [ES04, KGG+09] cannot compute a value set allo-
wing to execute p, then Solving returns an empty set (lines 18-19). The
constraint solvers construct values satisfying the guards of a specifica-
tion path and hence satisfying its execution. We use the solvers [ES04]
and [KGG+09] which work as external servers that can be called by the
test case generation algorithm. The solver [KGG+09] manages String
types, and the solver [ES04] manages most of the other simple types.
The time complexity of these solvers is polynomial.

Algorithm 1 constructs test cases with the following steps. For a tran-
sition t modelling the call of the operation op, a preamble p is construc-
ted with the PathFinding procedure (lines 3-5). Then, this preamble
is completed with its incorrect behaviour (lines 6-8). A value set over V
is constructed according to the op parameter types (line 9). As in Sec-
tion 5.1, an heuristic is used to estimate and eventually to reduce the
number of tests according to the cardinality of V alue(op). The test case
tc′ is reset with tc, its variables are initialized with ϱ0, and the transi-
tion t id added to the transition set (lines 11-13). The external variable
assignment λtc′ is used to test op with unusual values. Then, each next
transition tf from the location lk+1, labelled by an output, is added to
the test case (lines 14-15). tc′ is finally added to the test case set (line
16).

The time complexity of Algorithm 1 is O(n(n + m +
card(V alue(op))n)). This time complexity is obviously not polyno-
mial when considering card(V alue(op)) which represents the tuple of
values used for testing. If we suppose that any operation has at most
p parameters and that we have k values for each variable type, the
number of tuples becomes kp. To solve this issue, we currently bound
card(V alue(op)) in our algorithm implementation. Nevertheless, there
are more elegant solutions which help to reduce this number. For ins-
tance, pairwize testing is a testing criterion which requires that for each
pair of input parameters every combination of values of these two para-
meters are covered by a test case. It has been show in [CSD+97] that the
number of tuples grows at most logarithmically in p and quadratically
in k. But, such a method is still in debate because it supposes that bugs

A pragmatic approach for testing... 29

fail/av fail

1

2

pass

ItemSearch(String ID,String S,String K)
 [ID:="&", S:="&", K:="&"] id:=ID

otherwise [r==(Client,soapFault)||
 r==(The endpoint...,soapFault)]

ItemSearchResponse(String r)
 [r="false"&& id<>"ID"]

δ
||ItemSearchResponse(String r)

Figure 17 – Test case 1

can be triggered by either one parameter or by the interactions between
pairs of parameters. Moreover, the value tuple set requires a significant
time to construct.

Figures 17 and 18 illustrate two test case obtained from the com-
plete specification of Figure 15. In the first example, the operation Item-
Search is called with the values ”&” ;”&” ;”&”. If the response is equal
to ”false” (only possible response with the given values) then the ver-
dict is pass. If either a SOAP fault composed of the cause Client or the
endpoint... is received or if quiescence is observed, the operation is not
available (verdict fail). If another response is produced, the operation is
available but not robust (verdict fail/available). In the second test case,
the operation ItemLookUp is called instead of ItemSearch. The Service
is robust if it responds with an expected response type or with a SOAP
fault composed of the cause SOAPFaultException and if it is always
possible to call the operation ItemSearch to reach a pass location (cor-
rect behaviour). Otherwise, the verdict is fail or fail/available and the
Web Service is not robust.

30 Studia Informatica Universalis.

fail/av fail

fail/av fail

1

2

3

4

pass

ItemLookUp(String ID,String Req)

 [ID:="QYH2ZQXA",Req:="1112")]

otherwise

||ItemLookUpResponse(Resp r)

 [r==(Client,soapFault)||

 r==(The endpoint...,soapFault)]

ItemLookUpResponse(Resp r)

 [r=(SOAPFaultException,

 soapFault)]

ItemSearch(String ID,String S,String K)

 [ID:="&", S:="&", K:="&"] id:=ID

otherwise

||ItemSearchResponse(String r)

 [r==(Client,soapFault)||

 r==(The endpoint...,soapFault)]

ItemSearchResponse(String r)

 [r="false"&& id<>"ID"]

δδ

δ

Figure 18 – Test case 2

W S t e s t e r W e b
S e r v i c e

C l i e n t

r e q u e s t s

r e s p o n s e s

v e r d i c t
+

r e p o r t

w e b s e r v i c e U R L
+

s p e c i f i c a t i o n

Figure 19 – Test architecture

A pragmatic approach for testing... 31

Algorithm 1: Test case generation
1 Testcase(STS) : TC;

input : An STS s =< Ls, ls0, V ars, vars0, I
s, Ss,→s>

output : A Test case suite TC

2 foreach transition t = (lk, lk+1, ?ak(p), φk, ϱk) ∈→s labelled by an input ?ak(p) =
?op(p1, ..., pn) do

// in search of an executable preamble which reaches lk
3 tc is a new test case < Ltc, ltc0 , V artc, vartc0 , Itc, Stc,→tc> with

vartc0 := vars0;
4 p := ∅ is a tc path;
5 p := PathFinding(l0, lk, p,s);
6 foreach location l of p do

// the incorrect behaviour of the preamble is added

7 if it exists a transition (l, l′, a(p), φ, ϱ) ∈→s from l to a location l′ labelled
by fail then

8 →tc:=→tc ∪(l, l′, a(p), φ, ϱ);

9 V alue(op) = {(v1, ..., vn) ∈ V (type(p1))× ...× V (type(pn)};
// test case construction for each value in V alue(op)

10 foreach (v1, ..., vn) ∈ V alue(op) do
11 tc′ := tc;
12 λtc′ := [p1 := v1, ..., pn := vn];
13 →tc′ :=→tc ∪(lk, lk+1, ?ak(p), φk ∧ λtc′ , ϱk) is the transition set of tc′;

// addition of all executable transitions labelled by an

output

14 foreach transition (lk+1, lf , !a(p), φk+1, ϱk+1) ∈→s with !a ∈ Ss
O do

15 →tc′=→tc′ ∪(lk+1, lf , !a(p), φk+1, ϱk+1);

16 TC := TC ∪ tc′;

32 Studia Informatica Universalis.

Algorithm 2: PathFinding algorithm
1 PathF inding(location l, location lf , test case path p, STS s) : p;

2 if l ̸= lf then
3 foreach ti = (l, li, ai(p), ϱi, φi) ∈→s do
4 if Solving(p.(l, li, ai(p), ϱi, φi)) := λ ̸= ∅ then
5 label(ti) := visited;
6 if ai(p) ∈ Ss

I then
7 t := (l, li, ai(p), φi ∧ λ, ϱi)

8 else
9 t := (l, li, ai(p), φi, ϱi);

10 PathF inding(li, lf , p.t, s);
11 label(ti) := unexplored;

12 else
13 return (p);

14 Solving(test case path p) : λ;
15 p = (l1, l2, a1(p), φ1, ϱ1)...(lk, lk+1, ak(p), φk, ϱk);
16 c = φ1(var

s
0) ∧ φ2(ϱ1) ∧ ... ∧ φk(ϱk−1);

17 (x1, ..., xn) = solver(c) //solving of the guard c composed of the external
variables (X1, ..., Xn) such that c(x1, ..., xn) true;

18 if (x1, ..., xn) == ∅ then
19 λ := ∅
20 else
21 λ := {X1 := x1, ..., Xn := xn}

A pragmatic approach for testing... 33

6. Test Verdict and experimentation

6.1. Test case execution

Test cases are generated and executed with an academic tool which
is available in [Sal11]. The tester, illustrated in Figure 19, corresponds
to a classical Java application or a Web Service which receives the URL
of the Web Service to test and eventually its STS specification. The tes-
ter constructs test cases, as described previously, by means of an XML
file modelling the unusual value set V . This file can be updated easily.
While the test cases are executed, it analyzes the SOAP responses and
finally gives a test verdict. A more complete report is also produced to
show the obtained responses after each call. With this framework, we
do not need a specific test platform where Web Services should be de-
ployed. The tester can call them on any accessible server.

The tester yields the final verdict after having executed each test
case : it successively calls an operation with parameters and waits for
a response while following the corresponding test case branch. When
a branch is completely executed, a local verdict is reached. We also
set that quiescence (blocking state after a timeout) is observed af-
ter a timeout of 60s. For a test case t, we denote the local verdict
trace(t) ∈ {pass, fail, fail/available}. The final verdict is given by :

Definition 6.1 Let WS be a Web Service and TC be a test case set.
The verdict of the test over TC, denoted V erdict(WS)/TC is

– pass, if for all t ∈ TC, trace(t) = pass. The pass verdict means
that the WS operations exit and are robust over TC,

– fail/available, if it exists t ∈ TC such that trace(t) =
fail/available, and it does not exists t′ ∈ TC such that trace(t′) =
fail. This verdict means that the Web Service is not robust but all its
operations are available,

– fail, if it exists t ∈ TC such that trace(t) = fail.

34 Studia Informatica Universalis.

Web Service operations parameters tests faults
primeNumbersGen 1 1 10 7
youtubeDownloader 1 1 10 9

sendSMS 2 2,4 22 0
mapIPtoCountry 2 1,1 20 4
numberToWords 1 1 10 6

localTimeByZipCode 1 1 10 0
textToBraille 2 2,2 22 20
tConvertions 2 1,2 22 11

strikeIron 1 3 12 0
svideoWs 1 3 12 12

yellowPagesLookup 1 5 12 0
codeLookup(BLZ) 1 1 9 9

textCasing 2 1,2 19 0
dateFunctions 2 3,3 20 13

koVidya 2 3,3 20 0
postML 4 1,6,5,2 40 40

ServiceObjects 5 2,3,1,4,1 50 0

Figure 20 – Stateless Web Service robustness testing results

6.2. Results and discussion

We experimented the first testing method on several stateless Web
Services proposed by the provider Xmethods [Xme10]. Most of them
have revealed robustness issues (results given in Figure 20). In most
cases, operations do not catch the triggered exceptions, and crash wi-
thout constructing and returning any SOAP fault.

We applied the second method on two versions of the AWSECom-
merceService Service (see Figures 21, 22). Roughly 30 percent of the
tests provided unexpected responses. With the hazard Using unusual
values, and despite that all the requests satisfy the WSDL description,
we obtained some SOAP faults composed of the cause Client, meaning
that the request is incoherent. The receipt of this cause may be due to
security rules (firewalls, etc.). We also received unspecified messages
corresponding to errors composed of a wrong cause. For instance, we
received the response ”Your request should have at least 1 of the fol-
lowing parameters : AWSAccessKeyId, SubscriptionId when we called
the operation CartAdd with a quantity equal to ”-1”, or when we sear-
ched for a ”Book” type instead of the ”book” one, whereas the two
parameters AWSAccessKeyId, SubscriptionId were right. We also ob-

A pragmatic approach for testing... 35

09/03 09/10
Number of tests 100 100
Using unusual values 75 75
Replacing/Adding operation names 25 25
Fails 34 34
Unspecified messages 28 28
Unspecified SOAP faults 6 6

Figure 21 – Test results on the Amazon AWSECommerceService Ser-
vices

Operation ItemSearch ItemLookup CartCreate CartAdd
Number of tests 35 25 20 20
Using unusual values 29 19 14 13
Replacing/Adding 6 6 6 7
operation names
Fails 29 1 2 2
Unspecified messages 28 0 0 0
Unspecified SOAP faults 1 1 2 2

Figure 22 – Detailed Test results

served the same situation with the hazard Replacing /Adding operation
names only when the operation CreateCard is replaced by another one.
So, by referring to the test results and by supposing there is no security
rule modifying the tests, the AWSECommerceService service seems to
be not robust.

These results have confirmed the following advantages :

– effectiveness : using the tester is quite easy since it can test auto-
matically most of Web Services deployed over the Internet with only
the WSDL description URL (of course those which do not use security
layers). Formally, the test coverage of both methods is quite simple : for
the first one, we check that after calling an operation with hazards, this
latter does not hang or crash. The second method tests whether a Web
Service behaves correctly despite the use of hazards. But, both methods
can detect many other problems, like operation accessibility (operation
does not exist, does not take the good parameter types), exception mana-
gement problems (lack of ”try...catch” code, SOAP faults not sent), and
observability problems (operations which do not respond). The methods

36 Studia Informatica Universalis.

are also scalable since the predefined set of values V can be upgraded
easily,

– test cost : the test case number depends mainly on the parameter
number, the operation number and the specification state set. So, the
test case set may manifestly explode, especially when operations are
called with a large variable set. This is why we implemented a heuristic
which limits the test case set, by limiting the value number used for
testing (see Section 5.1. When the number of test cases is limited to
200, testing one Web Service with our tool takes at most some minutes.
The execution of 1500 tests require less than one hour. The whole test
cost naturally depends on the test case number, but also on the time
required to observe quiescence. We have set arbitrarily this time to 60s
but it may be necessary to augment it.

– test coverage : the test coverage of the stateless Web service tes-
ting method depends on the Max parameter which represents the test
number per operation. The higher the number of parameters is, the more
difficult it will be to cover the variable space domain. This corresponds
to a well-known issue in software testing. So, we have chosen a straight-
forward solution by bounding the test case number per operation. The
Max value limits must be chosen according to the available time for test
execution and also according to the number of parameters used with the
Web service operations so that each parameter ought to be covered by a
sufficient value set. For instance, for one operation composed of 4 para-
meters, each covered with at least 6 values, the Max parameter must be
set to 1300 tests. Nevertheless, as it is illustrated in our results, a lower
test case number (100 tests) is sufficient to discover robustness issues.
However, it sounds more interesting to combine this approach with ano-
ther solution such as pairwize testing which requires that for each pair of
input parameters every combination of values of these two parameters
are covered by a test case. With the stateful Web service testing method,
according to Algorithm 1, all the operation invocations found in the ini-
tial Web service specification are covered by the tests. Nevertheless, the
parameter coverage raises the same issue as previously.

We also experimented the stateless Web Service method on stateful
ones. As it might be expected, only a part of the specification is co-
vered, and usually this corresponds to the first Web Service location.

A pragmatic approach for testing... 37

Pragmatically, we can test some specification locations with random
parameter values until specific values would be required to reach other
locations. With the Amazon Web Service, the stateless Web Service tes-
ting method is able to cover the specification until the CartCreate action,
which is based on an authentication process. So, with this Web Service,
roughly half of the specification is tested.

7. Conclusion

The WS-I basic profile, which gathers the SOAP protocol and the
WSDL language, reduces the Web Service observability and leads to
new issues for robustness testing. We have shown, in this paper, that few
hazards can be really used : for stateless Web Services, only the hazard
Using unusual values is relevant, whereas stateful Web Services can
be tested with the hazard Replacing name/Adding operation too. The
other ones are blocked by SOAP processors. These latter also change
the observable Web Service behaviour by constructing messages instead
of Web Services. So it is essential to take into consideration the SOAP
environment while testing. This is what we did, with the two previous
robustness testing methods.

Several issues remain open, especially when considering the test case
generation algorithm. Our implementation can only handle collections
of simple types (tabular, object composed of String, double, etc.) with
simple guards and variable updates. Currently, constraint solvers give
results only on simple types. Thus, if the parameter/response variable
types are complex objects, a solution would be to spread and transform
them into simple type lists. But this requires to manually transform the
specification and the test cases.

Other perspectives could be considered, especially in relation to the
set of unusual values V . This set can be manually modified but stays
static during the test case generation. Furthermore, to avoid a test case
explosion, the cardinality of V is reduced independently of the Web
Service under test. It could be more interesting to propose a dynamic
analysis of the parameter types to build a list of the most adapted values.
The use of Web Service ontology, which describes the service semantic,

38 Studia Informatica Universalis.

may help. It could be also interesting to analyze the values leading to
more errors while testing and to set a weighting at each of them.

We have also supposed that the observable messages are the SOAP
responses. However, Web Services depend often on other servers, like
database ones. These other messages are not currently considered in
most of testing methods and in this work. However, taking into account
such messages augments the Web Service observability and could help
to refine the testing process.

Références

[Ama09] Amazon. Amazon e-commerce service (ecs), 2009.

[BBMP09] Cesare Bartolini, Antonia Bertolino, Eda Marchetti, and
Andrea Polini. Ws-taxi : A wsdl-based testing tool for
web services. In ICST ’09 : Proceedings of the 2009 In-
ternational Conference on Software Testing Verification
and Validation, pages 326–335, Washington, DC, USA,
2009. IEEE Computer Society.

[BCM09] Fayçal Bessayah, Ana Cavalli, and Eliane Martins. A for-
mal approach for specification and verification of fault
injection process. In ICIS ’09 : Proceedings of the 2nd
International Conference on Interaction Sciences, pages
883–890, New York, NY, USA, 2009. ACM.

[BDTC05] Xiaoying Bai, Wenli Dong, Wei-Tek Tsai, and Yinong
Chen. Wsdl-based automatic test case generation for
web services testing. In SOSE ’05 : Proceedings of the
IEEE International Workshop, pages 215–220, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[BFPT06] A. Bertolino, L. Frantzen, A. Polini, and J. Tretmans. Au-
dition of web services for testing conformance to open
specified protocols. In R. Reussner, J. Stafford, and
C. Szyperski, editors, Architecting Systems with Trustwor-
thy Components, volume 3938/2006 of LNCS, pages 1–
25. Springer-Verlag, 2006.

A pragmatic approach for testing... 39

[BP05] Antonia Bertolino and Andrea Polini. The audition fra-
mework for testing web services interoperability. In 31st
EUROMICRO Conference on Software Engineering and
Advanced Applications, pages 134–142, 2005.

[CS04] Christoph Csallner and Yannis Smaragdakis. Jcrasher :
An automatic robustness tester for java. In Software –
Practice & Experience, volume 34, pages 1025–1050,
2004.

[CSD+97] David Cohen, Ieee Computer Society, Siddhartha R. Da-
lal, Michael L. Fredman, and Gardner C. Patton. The
aetg system : An approach to testing based on combinato-
rial design. IEEE Transactions on Software Engineering,
23 :437–444, 1997.

[DYZ06] Wen-Li Dong, Hang Yu, and Yu-Bing Zhang. Testing
bpel-based web service composition using high-level petri
nets. edoc, 0 :441–444, 2006.

[ES04] Niklas Een and Niklas Sörensson. An extensible sat-
solver. In Enrico Giunchiglia and Armando Tacchella,
editors, Theory and Applications of Satisfiability Tes-
ting, volume 2919 of Lecture Notes in Computer Science,
pages 333–336. Springer Berlin / Heidelberg, 2004.

[ES06] Onyeka Ezenwoye and Seyed Masoud Sadjadi. Enabling
robustness in existing bpel processes. In Yannis Manolo-
poulos, Joaquim Filipe, Panos Constantopoulos, and José
Cordeiro, editors, In Proceedings of the 8th International
Conference on Enterprise Information Systems (ICEIS-
06), pages 95–102, 2006.

[FTdV06] Lars Frantzen, Jan Tretmans, and René de Vries. Towards
model-based testing of web services. In Antonia Bertolino
and Andrea Polini, editors, In Proceedings of Internatio-
nal Workshop on Web Services Modeling and Testing (WS-
MaTe2006), pages 67–82, Palermo, Sicily, ITALY, June
9th 2006.

40 Studia Informatica Universalis.

[FTW05] L. Frantzen, J. Tretmans, and T.A.C. Willemse. Test Ge-
neration Based on Symbolic Specifications. In J. Gra-
bowski and B. Nielsen, editors, Formal Approaches to
Software Testing – FATES 2004, number 3395 in Lecture
Notes in Computer Science, pages 1–15. Springer-Verlag,
2005.

[GFTdlR06] José Garcı́a-Fanjul, Javier Tuya, and Claudio de la Riva.
Generating test cases specifications for compositions of
web services. In Antonia Bertolino and Andrea Polini,
editors, in Proceedings of International Workshop on Web
Services Modeling and Testing (WS-MaTe2006), pages
83–94, Palermo, Sicily, ITALY, June 9th 2006.

[HM09] Samer Hanna and Malcolm Munro. An approach for
wsdl-based automated robustness testing of web services.
In Information Systems Development, Challenges in Prac-
tice, Theory, and Education, volume 2, pages 493–504.
Springer-Verlag, 2009.

[IEE90] IEEE. Ieee standard glossary of software engineering
terminology. In IEEE Standards Software Engineering
610.12-1990. Customer and terminology standards, vo-
lume 1. IEEE Press, 1990.

[KGG+09] Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooi-
meijer, and Michael D. Ernst. Hampi : a solver for string
constraints. In ISSTA ’09 : Proceedings of the eighteenth
international symposium on Software testing and analy-
sis, pages 105–116, New York, NY, USA, 2009. ACM.

[KKS98] N. P. Kropp, P. J. Koopman, and D. P. Siewiorek. Auto-
mated robustness testing of off-the-shelf software compo-
nents. In FTCS ’98 : Proceedings of The Twenty-Eighth
Annual International Symposium on Fault-Tolerant Com-
puting, page 230, Washington, DC, USA, 1998. IEEE
Computer Society.

[LZCH08] Mounir Lallali, Fatiha Zaidi, Ana Cavalli, and Iksoon
Hwang. Automatic timed test case generation for web

A pragmatic approach for testing... 41

services composition. ECOWS08, European Conference
on Web Services, pages 53–62, 2008.

[MS09] Rupak Majumdar and Indranil Saha. Symbolic robust-
ness analysis. In 30th IEEE Real-Time Systems Sympo-
sium (RTSS 2009), pages 105–116. IEEE Computer So-
ciety, December 2009.

[MX06] Evan Martin and Tao Xie. Automated test generation for
access control policies. In Supplemental Proc. 17th IEEE
International Conference on Software Reliability Engi-
neering (ISSRE 2006), Nov 2006.

[Oc02] OASIS-consortium. Uddi (universal description, disco-
very and integration) specification. 2002.

[OC07] OASIS-Consortium. Ws-bpel v2.0 specification. apr
2007.

[OX04] Jeff Offutt and Wuzhi Xu. Generating test cases for
web services using data perturbation. In ACM SIGSOFT
Software Engineering Notes, volume 29(5), pages 1–10.
ACM, 2004.

[Sal11] Sébastien Salva. Wsat, web service automatic testing,
2011.

[SKRC07] F. Saad Khorchef, Antoine Rollet, and Richard Castanet.
A framework and a tool for robustness testing of commu-
nicating software. In ACM SAC 2007, pages 1461 – 1466,
Corée, République de, mar 2007.

[SR09] Sebastien Salva and Issam Rabhi. Automatic web service
robustness testing from wsdl descriptions. In 12th Euro-
pean Workshop on Dependable Computing, EWDC 2009,
June 2009.

[TFM05] Abbas Tarhini, Hacène Fouchal, and Nashat Mansour. A
simple approach for testing web service based applica-
tions. In 5th International Workshop IICS, Paris, France,
pages 134–146, June 2005.

42 Studia Informatica Universalis.

[Tid00] D. Tidwell. Web services, the web’s next revolution. In
IBM developerWorks, Nov 2000.

[Tre96] Jan Tretmans. Test generation with inputs, outputs and
repetitive quiescence. Software - Concepts and Tools,
17(3) :103–120, 1996.

[VLM07] Marco Vieira, Nuno Laranjeiro, and Henrique Madeira.
Assessing robustness of web-services infrastructures. De-
pendable Systems and Networks, International Confe-
rence on, 0 :131–136, 2007.

[Wc03] WWW-consortium. Simple object access protocol v1.2
(soap). World Wide Web Consortium, June 2003.

[Wc07] WWW-consortium. Web services description language
(wsdl). World Wide Web Consortium, 2007.

[WI06] WS-I. Ws-i basic profile. WS-I organization,, 2006.

[Xme10] Xmethods. The Xmethods provider.
http ://www.xmethods.net, 2010.

ANNEXE POUR LA FABRICATION
A FOURNIR PAR LES AUTEURS AVEC UN EXEMPLAIRE

PAPIER
DE LEUR ARTICLE

1. ARTICLE POUR LA REVUE :

Studia Informatica Universalis.

2. AUTEURS :

Sébastien Salva * — Antoine Rollet **

3. TITRE DE L’ARTICLE :

A pragmatic approach for testing stateless and stateful Web
Service Robustness

4. TITRE ABRG POUR LE HAUT DE PAGE MOINS DE 40 SIGNES :

A pragmatic approach for testing...

5. DATE DE CETTE VERSION :

22 septembre 2011

6. COORDONNES DES AUTEURS :

– adresse postale :
* LIMOS - CNRS UMR 6158
Université d’Auvergne, Campus des Cézeaux,
Aubière, France
sebastien.salva@u-clermont1.fr
** LABRI CNRS UMR 5800
University of Bordeaux
33405 Talence cedex, France
rollet@labri.fr

– tlphone : 01 44 10 84
– tlcopie : 00 00 00 00
– e-mail : ivan.lavallee@gmail.com

7. LOGICIEL UTILIS POUR LA PRPARATION DE CET ARTICLE :

LATEX, avec le fichier de style studia-Hermann.cls,
version 1.2 du 03/12/2007.

SERVICE ÉDITORIAL – STUDIA

UNIVERSALIS

41 rue Gay Lussac, 75005 Paris
Tl : 01-44-10-84/83

mel : contact@complexica.net
Serveur web :

http://studia.complexica.net

