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Abstract. The Android messaging system, called in-
tent, is a mechanism that ties components together to
build applications for smartphones. Intents are kinds of
messages composed of actions and data, sent by a com-
ponent to another component to perform several opera-
tions, e.g., launching a user interface. The intent mech-
anism o�er a lot of �exibility for developing Android
applications, but it might also be used as an entry point
for security attacks. The latter can be easily sent with
intents to components, that can indirectly forward at-
tacks to other components and so on. In this context, this
paper proposes APSET, a tool for Android aPplication
SEcurity Testing, which aims at detecting intent-based
vulnerabilities. It takes as inputs Android applications
and intent-based vulnerabilities formally expressed with
models called vulnerability patterns. Then, and this is
the originality of our approach, class diagrams and par-
tial speci�cations are automatically generated from ap-
plications with algorithms re�ecting some knowledge of
the Android documentation. These partial speci�cations
avoid false positives and re�ne the test result with spe-
cial verdicts notifying that a component is not compli-
ant to its speci�cation. Furthermore, we propose a test
case execution framework which supports the receipt
of any exception, the detection of application crashes,
and provides a �nal XML test report detailing the test
case verdicts. The vulnerability detection e�ectiveness of
APSET is evaluated with experimentations on randomly
chosen Android applications of the Android Market.
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1 Introduction

Security vulnerabilities are common issues in any com-
plex software system. Several recent security reports and
research papers [6,10] show that mobile device operat-
ing systems and applications are no exceptions. Smart-
phones can be customised by owners and enriched with a
large set of applications available from stores. These fea-
tures undeniably augment the exposure to attacks. This
is why more and more users also expect their personal
data to be protected and their applications to be iso-
lated from malicious ones. The Android platform, which
is often cited by the previous reports, introduces some
mechanisms to secure applications: it supports sandbox
isolation by launching applications in their own security
sandboxes and an application-level permissions model.
However, Android also opened the sandbox by adding
the possibility for applications to communicate with one
another. These applications consist of components that
are joined together by means of a composition mecha-
nism called intent, which corresponds to an inter-applica-
tion and intra-application communication mechanism us-
ed to send messages, to call or launch another compo-
nent. This mechanism, combined with permissions over
components, o�ers a lot of �exibility to develop appli-
cations. Nevertheless, some papers showed that permis-
sions can be bypassed. In this context, some tools have
already been proposed to check the permission validity
[10]. Even with the right permissions, applications can
be still vulnerable to malicious intents if incautiously
designed [6]. Indeed, the contents of intents can also be
sni�ed, or replaced by malicious applications to inject
incorrect data or attacks. Such intents become the key
to crash other applications, to inject or extract personal
data, to call paid services without user consent, etc.

Detecting and reducing the risk for Android applica-
tions of being vulnerable to malicious intents can be done
by testing. Whatever the testing technique employed, e.g
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Unit testing or Model-based testing, the detection of se-
curity �aws requires a signi�cant allocation of time and
resources to code test cases or to write formal speci�ca-
tions from which test cases can be automatically derived.
The use of e�ective tools can strongly decrease the test-
ing cost though. Clearly, only few tools are currently
available and these have limitations. In this context,
this paper presents APSET, a tool for Android aPpli-
cation SEcurity Testing, which aims at detecting intent-
based vulnerabilities. APSET takes vulnerability scenar-
ios, formally expressed with models called vulnerability
patterns. The latter are specialised ioSTS (input output
Symbolic Transition Systems [11]) which help de�ne test
verdicts without ambiguity. Given a set of vulnerability
patterns, APSET performs both the automatic test case
generation and execution. The test case construction is
achieved by automatically generating class diagrams and
partial speci�cations from the information provided in
the Android documentation, the component compiled
classes and the con�guration �les found in an Android
project. This class diagram and speci�cation generation,
which does not require human interaction, is an innova-
tive contribution of this paper. It helps automatically
determine the nature of each component and describe
the functional behaviour that should be observed from a
component after receiving intents. These partial speci�-
cations also re�ne the test result with special verdicts no-
tifying that a component is not compliant to its speci�ca-
tion. Furthermore, we propose a specialised framework
to execute test cases in isolation on real smartphones
or emulators. It supports the receipt of any exception,
the detection of application crashes, and provides a �nal
XML test report detailing the test case verdicts.

The paper is organised with four sections. The next
section presents the tool and gives some insight into its
design and architecture. We introduce the test case gen-
eration steps, the use of a Model-based technique and
the interest of generating partial speci�cations from An-
droid applications to generate test cases. We also present
the framework implemented to execute test cases and to
produce test reports. These di�erent steps and the the-
oretical background of the testing method are then de-
tailed in the remainder of the paper. In Section 3, we re-
call some de�nitions and notations related to the ioSTS
model. From these, we detail how vulnerability patterns
can be written with notations derived from the Android
documentation. In Section 4, we continue with the test
case generation from vulnerability patterns and partial
speci�cations. We show how partial speci�cations and
test cases are constructed. We also de�ne the test ver-
dict. Afterwards, we show some experimentation results
in Section 5 on Android applications developed by the
Openium company and on other popular applications
such as Google Maps. We show that our tool generates
and executes hundreds of test cases that detect secu-
rity �aws in a reasonable time delay. Finally, Section 6

compares our approach with some related work and we
conclude in Section 7.

2 Presentation of APSET

2.1 Android application overview

Android applications are written in the Java program-
ming language and are packaged under the form of an
.apk �le (possibly encrypted), composed of compiled classes
and con�guration �les. Particularly, theManifest �le de-
clares all application requirements, the components par-
ticipating in the application and the kinds of intents ac-
cepted by them. Android applications are built over a
set of reusable components, having a di�erent role in
the overall application behaviour and belonging to one
of the four basic types:

� Activities are the most common components that dis-
play user interfaces used to interact with an applica-
tion. An Activity is started with intents, displays a
screen and may eventually return a response to the
calling component,

� Services represent long tasks executed in the back-
ground. Services do not provide user interfaces to in-
teract with. They are started with intents by other
components (usually Activities) and are then bind to
them to perform several interactions,

� ContentProviders are dedicated to the management
of data stored in smartphones by means of �les or
SQLite databases. Although data could be directly
stored in raw �les or databases, the ContentProvider
component represents a more elegant and secure solu-
tion which makes data available with the proper per-
missions to applications through an interface. Con-
tentProviders are not launched by intents. Further-
more, without permission (the default mode), data
cannot be directly accessed by external applications,

� BroadcastReceivers are components triggered by in-
tents broadcasted in the Android system which run a
short-lived task accordingly in the background. They
often relay intents to other components e.g., Activi-
ties or Services.

The inter-component communication among Activi-
ties, Services and BroadcastReceivers is performed with
intents. An intent is a message gathering information for
a target component to carry out an operation. It is com-
posed by a component name, an action to be performed,
the URI of the data to be acted on, a category giving a
description of the kind of components that should han-
dle the intent, and extras that are additional informa-
tion. Intents are divided into two groups: explicit intents,
which explicitly target a component, and implicit intents
(the most generally ones) which let the Android system
choose the most appropriate component. Both can be
exploited by a malicious application to send attacks to
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components since any component may determine the list
of available components at runtime. As a consequence,
we consider both implicit and explicit intents in this
work. The mapping of an implicit intent to a compo-
nent is expressed with items called intent �lters stored
in Manifest �les.

Activities, Services and BroadcastReceivers are di-
rectly exposed to malicious intents and may be vulner-
able [6]. ContentProviders are not called with intents
and sounds more secure. Nevertheless, data can still be
exposed by the components which have a full access
to ContentProviders, i.e. those composed with Content-
Providers inside the same application. These components
can be attacked by malicious intents, composed of in-
correct data or attacks, that are indirectly forwarded to
ContentProviders. As a result, data may be exported or
modi�ed. The fact of considering the redirection of at-
tacks among components is also an original contribution
of this paper.

At the moment, the intent mechanism is the only
one available with Android for calling components on
unmodi�ed smartphones. In the paper, we assume that
the Android operating system is untouched (non rooted
for instance), hence the intent mechanism cannot be by-
passed.

2.2 The APSET tool

APSET (Android aPplication SEcurity Testing) is a tool,
publicly available in a Github repository 1, dedicated
to the detection of intent-based vulnerabilities in An-
droid applications. It explores an Android application
(uncompressed .apk �le) and tests all the Activities, the
Services and all the compositions of Activities or Ser-
vices with ContentProviders found in the application
since ContentProviders cannot directly be called by in-
tents but may expose personal data through other com-
ponents. Test cases are generated from Android applica-
tions (compiled components, Manifest �les) and vulner-
ability patterns, which are models describing vulnerabil-
ities.

Indeed, APSET is founded upon a model-based test-
ing method: test cases are derived from vulnerability pat-
terns, written with the ioSTS formalism [11]. These pat-
terns describe vulnerable and non vulnerable behaviours
of components by means of symbolic automata, com-
posed of variables and guards over variables which allow
to write constraints over the actions that can be per-
formed. Besides, APSET generates partial ioSTS speci-
�cations from Android applications with algorithms re-
�ecting the Android documentation. The bene�ts of us-
ing the ioSTS model are manifold: �rstly, we reuse some
existing ioSTS operators to generate test cases. These
operators also make simpler the de�nition of test re-
lations and test verdicts, which express the detection

1 https://github.com/statops/apset.git

Fig. 1. Test case generation

of vulnerabilities in a precise manner. Furthermore, the
partial ioSTS speci�cations help re�ne �nal test ver-
dicts by exhibiting if the tested components respect the
recommendation given in the Android documentation.
They avoid to give false positive verdicts (false alarms)
because each component is exclusively experimented with
the test cases generated from its speci�cation. Conse-
quently, test cases do not reject a non vulnerable and
compliant component. Last but not least, after discus-
sion with several Android developers and testers of the
Openium company, we concluded that the ioSTS model
is �exible enough to describe a large set of intent-based
vulnerabilities and is still enough user-friendly to express
vulnerabilities that do not require obligation, permis-
sion, and related concepts.

Once test cases are executed, APSET yields the ver-
dict VUL when it detects that a component is vulnerable
to attacks described in vulnerability patterns, NVUL if
no vulnerability has been detected or Inconclusive when
a vulnerability scenario cannot be tested. VUL/FAIL
and NVUL/FAIL are other specialised verdicts, which
still indicate whether a vulnerability has been detected
or not. These verdicts complete VUL and NVUL and are
assigned when a component under test does not respect
its partial speci�cation (hence the recommendations pro-
vided in the Android documentation). For instance, an
Activity, called by intents composed of the PICK action,
has to return a response. If no response is returned while
testing, this Activity does not meet the Android docu-
mentation. A verdict composed by FAIL is then given.

The tool architecture is based upon two main parts,
the test case generator and the test case execution frame-
work:

� Figure 1 depicts the main steps of the test case gen-
eration. APSET takes a set of vulnerability patterns
by means of the interface depicted in Figure 2. These
vulnerability patterns are provided by an Android ex-
pert or developer and stored in DOT �les. This ex-
pert can de�ne manually vulnerabilities from those
exposed, for instance, by the OWASP organisation
[24]. If the source code of the application is known,
precise vulnerability patterns composed of speci�c
values can be also given as inputs. We chose the DOT
format since it is a well-known plain text graph de-
scription language that can be translated into graph-
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Fig. 2. APSET interface

Fig. 3. Test case execution framework

ics formats. Vulnerability patterns can be then visu-
alised. From an Android application, APSET gener-
ates a partial class diagram by means of Java re�ec-
tion. This one lists the components, gives their types
and the associations among them. Furthermore, the
partial ioSTS speci�cations of components, are con-
structed from the class diagram. These are stored in
DOT �les and can be visualised as well. Intermediate
ioSTS, called vulnerability properties, are then de-
rived from the combination of vulnerability patterns
with partial speci�cations. These properties still ex-
press vulnerabilities that are re�ned with the implicit
and explicit intents accepted by a component. Test
cases are obtained by concretising vulnerability prop-
erties (the latter are completed with values). Finally,
the resulting ioSTS test cases, composed of transi-
tions, variables and guards, are translated into exe-
cutable JUNIT test cases,

� JUNIT test cases are executed with the framework
illustrated in Figure 3. It supports test execution on
Android devices or emulators. It is composed of the
Android testing execution tool provided by Google,
enriched with the tool PolideaInstrumentation 2 to
write XML test reports. The test case execution is
launched by an Android Service component which
displays test results on the device (or on the em-
ulator). The Test Runner starts a component un-
der test (CUT) and iteratively executes JUNIT test
cases provided by the previous Service in separate
processes. This procedure is required to catch the
exceptions raised by the Android system whenever a
component crashes.
Test cases are composed of guards written with the
SMT-LIB language. During the test case execution,
a solver as to be called to check their satis�abil-
ity. The test case execution framework can call two
solvers. The �rst one called tinysolver is bundled in-
side the framework and is used with only straightfor-
ward guards composed of conjunctions. Otherwise,
the guard solving is performed by the SMT (Sat-
is�ability Modulo Theories) solver Z3 [22], invoked
through a RESTWeb service deployed on an external
server. We augmented the SMT-LIB language with
new predicates to support String variables and the
vulnerability description language presented in Sec-
tion 3.3. Once all test cases have been executed, the
Service displays a screen which summarises the test
results and gives the XML test report which details
all the assertion results. In particular, the VUL and
VUL/FAIL messages exhibit the detection of vulner-
ability issues. These reports also o�er the possibility
of using continuous integration servers like Jenkins 3.
A test result screen obtained on a smartphone is il-
lustrated in Figure 4.

Example 1. A part of test report is illustrated in Fig-
ure 5. It results from the crash of a component with the
receipt of a NullPointerException exception. We obtain
a VUL/FAIL verdict directly deduced from the VUL/-
FAIL message (line 3).

In the next sections, we develop the theoretical back-
ground developed in APSET. We describe how to write
Android vulnerability patterns with ioSTS. Then, we de-
tail how test cases are derived from vulnerability pat-
terns and partial speci�cations. A user does not need to
be aware of this (hidden) theoretical background though.
He only has to write vulnerability patterns.

3 Vulnerability modelling

Several formalisms have been proposed to represent se-
curity policies, properties or vulnerabilities, e.g., regular

2 www.polidea.pl/
3 http://jenkins-ci.org/
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Fig. 4. Test results on a smartphone

1 <t e s t s u i t e e r r o r s="0" f a i l u r e s="1" name="
packagename . test . Intent . ContactActivityTest "
package=" packagename . test . Intent " t e s t s="1"
time=" 0.15 " timestamp=" 2013 -02 -13 T10:05:02 "

>
<t e s t c a s e classname=" packagename . test . Intent .

ContactActivityTest " name=" test1 " time="
0.15 ">

3 <f a i l u r e> VUL/FAIL
INSTRUMENTATION_RESULT: shortMsg=java . lang .

Nul lPo interExcept ion
5 INSTRUMENTATION_RESULT: longMsg=java . lang .

Nul lPo interExcept ion
INSTRUMENTATION_CODE: 0

7 </ f a i l u r e>
</ t e s t c a s e>

9 </ t e s t s u i t e>

Fig. 5. An XML test report

expressions [25], temporal and deontic logics [8], core
typed languages ([5]) or state machines. As stated in the
APSET presentation, we shall consider the input/out-
put Symbolic Transition Systems (ioSTS) model [11] to
represent vulnerabilities and to generate partial speci�-
cations of Android components. This formalism, widely
used in the veri�cation and testing areas, can model
large and complex systems, e.g., Web services compo-
sitions, Desktop or Web applications or critical systems.
Therefore, if the Android documentation is enriched or
if new vulnerabilities are discovered, the following ioSTS
related de�nitions could be adapted as well. Below, we
recall some de�nitions to be used throughout the paper.
Thereafter, we de�ne vulnerability patterns.

3.1 Model De�nition and notations.

An ioSTS is a kind of automata model which is extended
with two variable sets, internal variables to store data,
and parameters to enrich the actions. Transitions carry

actions, guards and assignments over variables. The ac-
tion set is separated with inputs beginning by ? to ex-
press actions expected by the system, and with outputs
beginning by ! to express actions produced by the sys-
tem. An ioSTS does not have states but locations.

Below, we give the de�nition of an extension, called
ioSTS suspension, which also expresses quiescence i.e.,
the authorised deadlocks observed from a location. For
an ioSTS S, quiescence is modelled by a new action !δ
and an augmented ioSTS denoted Sδ, obtained by adding
a self-loop labelled by !δ for each location where no out-
put action may be observed.

De�nition 1 (ioSTS suspension).
A deterministic ioSTS suspension Sδ is a tuple <

L, l0, V, V 0, I, Λ, →>, where:
� L is the �nite set of locations, l0 the initial location,
� V is the �nite set of internal variables, I is the �nite
set of parameters. We denoteDv the domain in which
a variable v takes values. The internal variables are
initialised with the assignment V 0 on V , which is
assumed to be unique,

� Λ is the �nite set of symbolic actions a(p), with p =
(p1, ..., pk) a �nite list of parameters in I

k(k ∈ N). p is
assumed unique. Λ = ΛI∪ΛO∪{!δ}: ΛI represents the
set of input actions, (ΛO) the set of output actions,

�→ is the �nite transition set. A transition (li, lj , a(p),
G,A), from the location li ∈ L to lj ∈ L, denoted

li
a(p),G,A−−−−−−→ lj is labelled by an action a(p) ∈ Λ. G

is a guard over (p ∪ V ∪ T (p ∪ V )) which restricts
the �ring of the transition. T is a set of functions
that return boolean values only (a.k.a. predicates)
over p ∪ V . Internal variables are updated with the
assignment function A of the form (x := Ax)x∈V Ax
is an expression over V ∪ p ∪ T (p ∪ V ),

� for any location l ∈ L and for all pair of transitions
(l, l1, a(p), G1, A1), (l, l2, a(p), G2, A2) labelled by the
same action, G1 ∧G2 is unsatis�able.

An ioSTS is also associated to an ioLTS (Input/Out-
put Labelled Transition System) to formulate its seman-
tics. In short, the ioLTS semantics corresponds to a val-
ued automaton without symbolic variable, which is often
in�nite: the ioLTS states are labelled by internal variable
valuations while transitions are labelled by actions and
parameter valuations. The semantics of an ioSTS S =<
L, l0, V, V 0, I, Λ,→> is the ioLTS JSK =< Q, q0,

∑
,→>

composed of valued states in Q = L×DV , q0 = (l0, V 0)
is the initial one,

∑
is the set of valued symbols and→ is

the transition relation. The complete de�nition of ioLTS
semantics can be found in [11]. Intuitively, for an ioSTS

transition l1
a(p),G,A−−−−−−→ l2, we obtain an ioLTS transition

(l1, v)
a(p),θ−−−−→ (l2, v

′) with v a set of valuations over the
internal variable set, if there exists a parameter value
set θ such that the guard G evaluates to true with v∪ θ.
Once the transition is executed, the internal variables are
assigned with v′ derived from the assignment A(v ∪ θ).
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Notation Meaning

AuthActtype action set of a component type
ACTr set of intent actions requiring a response
ACTnr set of intent actions which do not require

a response
?intent(Cp, a, d,
c, t, ed)

intent composed of: called component Cp,
action a, data d, action category c, data
type t, extra data ed

C set of Android categories
T set of Android types
URI set of URI found in an application com-

pleted with random URIs
RV set of prede�ned and random values
INJ set of SQL and XML injections
!Display display of a screen by an Activity
!Running Service under execution
!ComponentExp Exception raised by a component
!SystemExp Exception raised by the system
?call(Cp, requ
est, tableURI)

ContentProvider call with request on the
table tableURI

!callResp(Cp,
resp)

ContentProvider response with resp the
content of the response

Table 1. Android component notations

Below, we recall the de�nition of some classic opera-
tions on ioSTS. The same operations can be also applied
on underlying ioLTS semantics.

An ioSTS can be completed on its output set to ex-
press incorrect behaviour that are modelled with new
transitions to the sink location Fail, guarded by the nega-
tion of the union of guards of the same output action on
outgoing transitions:

De�nition 2 (Output completion).

The output completion of a deterministic ioSTS S =<
L, l0, V, V 0, I, Λ,→> gives the ioSTS S! =< L∪ {Fail},
l0, V, V 0, I, Λ,→ ∪{(l, Fail, a(p),

∧
(l,l′,a(p),G,A)∈→

¬G, (x

:= x)(x∈V )) | l ∈ L, a(p) ∈ ΛO} >

De�nition 3 (ioSTS product ×).
The product of the ioSTS S1 =< L1, l01, V1, V 01, I1,

Λ1,→1> with the ioSTS S2 = < L2, l02, V2, V 02, I2, Λ2,
→2>, denoted S1 × S2, is the ioSTS P =< LP, l0P, VP,
V 0P, IP, ΛP, →P> such that VP = V1 ∪ V2, V 0P =
V 01 ∧ V 02, IP = I1 ∪ I2, LP = L1×L2, l0P = (l01, l02),
ΛP = Λ1 ∪Λ2. The transition set →P is the smallest set
satisfying the following inference rules:

(1) l1
a(p),G1,A1−−−−−−−→S1

l2, l
′
1

a(p),G2,A2−−−−−−−→S2
l2′ `

(l1, l
′
1)

a(p),G1∧G2,A1∪A2−−−−−−−−−−−−−→P (l2, l
′
2)

(2) l1
a(p),G1,A1−−−−−−−→S1

l2, a(p) /∈ Λ2, l
′
1 ∈ L2 `

(l1, l
′
1)

a(p),G1,A1∪{x:=x}x∈V2−−−−−−−−−−−−−−−−→P (l2, l
′
1) (and symmetrically

for a(p) /∈ Λ1, l1 ∈ L1)

3.2 Android applications and notations

In this section, we de�ne some notations to model intent-
based behaviour of Android components with ioSTS.
These notations are also given in Table 1.

To ease the writing of vulnerability patterns, we de-
note AuthActtype the action set that can be used with
a type of component in accordance with the Android
documentation. The APSET tool currently takes the
types Activity, Service, Activity × ContentProvider
and Service×ContentProvider. The two last types al-
lows to model data vulnerabilities on Activities or Ser-
vices composed with ContentProviders managing per-
sonal data.

Components communicates with intents, denoted with
the action intent(Cp, a, d, c, t, ed) with Cp the called com-
ponent, a an action which has to be performed, d a data
expressed as a URI, c a component category giving addi-
tional information about the action to execute, t a type
specifying the MIME type of the intent data and �nally
ed which represent additional (extra) data [1]. Intent ac-
tions have di�erent purposes, e.g., the action VIEW is
given to an Activity to display something, the action
PICK is called to choose an item and to return its URI to
the calling component. Hence, we divided the action set,
denoted ACT , into two categories: the set ACTr gathers
the actions requiring the receipt of a response, ACTnr
gathers the other actions. We also denote C, the set of
prede�ned Android categories, T the set of types. For in-
stance, ?intent(Act, PICK,content://com.android/con-
tacts, DEFAULT�) represents the call of the Activity Act
which lets a user choose a contact initially stored in its
contact list.

Android components may raise exceptions that we
group into two categories: those raised by the Android
system on account of the crash of a component and the
other ones. This di�erence can be observed while testing
with our framework. This is respectively modelled with
the actions !SystemExp and !ComponentExp. Android
components reply to intents with di�erent actions in ref-
erence to their types. Activities, which are the most com-
mon Android components, display screens to let users
interact with programs. We denote !Display( A) the ac-
tion modelling the display of a screen for the Activity
A. Services are executed in background and usually aim
to return data. This is denoted with the action !Run-
ning(A).

With these notations, one can deduce that Auth−
ActActivity is the set {?intent(Cp, a, d, c, t, ed), !Display(
A), !SystemExp, !ComponentExp, !δ}. AuthActService
gathers the actions {?intent(Cp, a, d, c, t, ed), !Running(
A), !SystemExp, !ComponentExp, !δ}.

ContentProviders are components whose functioning
is slightly di�erent. ContentProviders do not receive in-
tents but SQL-oriented queries denoted ?call(Cp, request,
tableURI) with Cp, the called ContentProvider and request,
the query over the table tableURI. A response, denoted
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!callResp(Cp, cursor), is possibly returned. Consequently,
AuthActContentProvider is the set {?call(Cp, request, ta−
bleURI), !callResp(Cp, cursor), !δ, !ComponentExp,
!SystemExp}.

Any action de�ned in this section, has its correspond-
ing function coded in the tool. For instance, the action
!Display(A) is coded by the function Display() returning
true if a screen is displayed. This link between actions
and Java code makes easier the construction of �nal test
cases, which actually call Java sections of code that can
be executed. Naturally, this action set can be upgraded.

3.3 Vulnerability patterns and vulnerability status

Rather than de�ning the vulnerabilities of a speci�ca-
tion, (which have to be written for each speci�cation),
we chose de�ning vulnerability patterns for describing
intent-based vulnerabilities of an Android component
type. In general terms, a vulnerability pattern describes
a widespread vulnerability scenario that can be experi-
mented on several components. If required, a vulnerabil-
ity pattern can still be specialised to a speci�c compo-
nent though.

A vulnerability pattern, denoted V, is modelled with
a specialised ioSTS suspension. V has to be equipped of
actions used for describing Android components. Con-
sequently, the action set ΛV of V has to be equal to
AuthActtype.

A vulnerability pattern is also composed of two dis-
tinct �nal locations Vul, NVul which aim to recognise
the vulnerability status over component executions. In-
tuitively, vulnerability pattern paths starting from the
initial location and ended by Vul, describe the presence
of a vulnerability. By deduction, paths ended by NVul
express functional behaviours which show the absence
of the vulnerability. V is also output-complete to recog-
nise a status whatever the actions observed while testing.
Transition guards are composed of speci�c predicates to
falicitate their writing. In the paper, we consider some
predicates such as in, which stands for a Boolean func-
tion returning true if a parameter list belongs to a given
value set or streq which returns true if two String val-
ues are equals. Furthermore, we consider several value
sets to categorise malicious values and attacks: RV is
a set of values known for relieving bugs enriched with
random values. INJ is a set gathering XML and SQL
injections constructed from database table URI found
in the tested Android application. URI is a set gath-
ering the URI found in the tested Android application
completed with URI randomly constructed from the pre-
vious ones. These sets, written in XML, can be edited by
end-users, for instance in reference to values provided by
the OWASP organisation. APSET completes these sets
by performing a static analysis of the application code,
when this one is available. It also dynamically requests
ContentProviders to collect information about databases
to complete the set INJ. New sets can also be referred

Fig. 6. Vulnerability pattern example

in vulnerability patterns upon condition that real value
sets with the same names would be added to APSET.

De�nition 4 (Vulnerability pattern).
A vulnerability pattern is a deterministic and output-

complete ioSTS suspension V =< LV, l0V, VV, V 0V, IV,
ΛV,→V> composed of sink locations in LV which belong
to {V ul,NV ul}. type(V) is the component (or compo-
nent composition) type targeted by V. The action set
ΛV = AuthActtype where type is equal to type(V).

Example 2. Figure 6 illustrates a straightforward exam-
ple of vulnerability pattern, related to data integrity. It
aims to check whether an Activity, called with intents
composed of malicious data, cannot alter the content of a
database table managed by a ContentProvider. For read-
ability, the label !∗ is a shortcut notation for all valued
output actions that are not explicitly labelled by other
transitions. Guards are written with the SMT-LIB lan-
guage as in APSET. Intents are constructed with data
and extra data composed of malformed URI or String
values known for relieving bugs or XML/SQL injections.
If the called component crashes (!SystemExp) or is qui-
escent (!δ), it is considered as vulnerable. Once the in-
tent is performed, the ContentProvider is called with
the query function of the Android SDK to retrieve all
the data stored in a table whose URI is given by the
variable tableURI. If the result set is not composed of
test data given in the intent (checked with the predi-
cate isContained), then the component is not vulnerable.
Otherwise, it is vulnerable.

As stated previously, the sink locations V ul andNV ul
of a vulnerability pattern help recognise the status of
an ioSTS. Given an ioSTS S, its status can be checked
w.r.t. a vulnerability pattern V if and only if both are
compatible, i.e., they share the same action set, the same
parameters and have distinct internal variables:

De�nition 5 (Compatible ioSTS). An ioSTS S1 =
< L1, l

0
1, V1, V

0
1 , I1, Λ1,→1> is compatible with S2 =

< L2, l02, V2, V 02, I2, Λ2,→2> i�

� ΛI1 = ΛI2, Λ
O
1 = ΛO2 ,
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� V1 ∩ V2= ∅, I1 = I2.

The vulnerability status of an ioSTS S is de�ned over
its observable valued action sequences. The latter are
called traces and are extracted from ioLTS semantics:

De�nition 6 (Runs and traces).
For an ioSTS S = < L, l0, V, V 0, I, Λ,→>, inter-

preted by its ioLTS semantics JSK =< Q, q0,
∑
,→>, a

run q0α0...αn−1qn is an alternate sequence of states and
valued actions. Run(S) = Run(JSK) is the set of runs
found in JSK. RunF (S) is the set of runs of S �nished by
a state in F ×DV ⊆ Q, with F a location set in L.

It follows that a trace of a run r is de�ned as the pro-
jection proj∑(r) on actions. TracesF (S) = TracesF (JSK)
is the set of traces of all runs �nished by states in F×DV .

For example, the trace ?intent(Act, PICK, content :
//com.android/contacts,DEFAULT, , ))!δ is a trace of
the vulnerability pattern V of Figure 6, leading to the
V ul location. Now, if this trace is observed from the com-
ponent Act, then it reveals that the latter is vulnerable
to V. Intuitively, Trace sets can be employed to de�ne
vulnerability status:

De�nition 7 (Vulnerability status of an ioSTS).
Let S be an ioSTS, V be a vulnerability pattern such

that Sδ is compatible with V. We de�ne the vulnerability
status of S (and of its underlying ioLTS semantics JSK)
over V with:

� S is not vulnerable to V, denoted S |= V if Traces(Sδ)
⊆ TracesNV ul(V),

� S is vulnerable to V, denoted S 2 V if Traces(Sδ) ∩
TracesV ul(V) 6= ∅.

We assume here that vulnerability patterns are cor-
rectly modelled and express vulnerabilities. On the con-
trary, false positive status may appear, but these ones
do not re�ect the detection of vulnerabilities. Now that
we have a vulnerability pattern modelling language and
a vulnerability pattern status de�nition, we are ready
to detail the functioning of the security testing method
implemented in APSET.

4 Testing methodology

Assuming that we have a set of vulnerability patterns
modelled with ioSTS suspensions, we describe, in the
following, the automatic test case generation and execu-
tion based upon the generation of partial speci�cations
from an Android application.

4.1 Partial speci�cation generation (part A, Figure 1)

Directly experimenting Android components with vul-
nerability patterns would lead to several issues. For ex-
ample, an Activity which displays screens on a smart-
phone has a di�erent purpose than a Service which does

not interact directly with a user. Performing a kind of
blind testing without considering the component fea-
tures and type would often lead to false positive results.
Besides, Android applications and the Android docu-
mentation gather a lot of information that can be used
to produce partial models:

1. from an Android application packaged in a .apk �le,
APSET respectively calls the tool dextojar to pro-
duce a .jar package and the tool apktool to extract
the Manifest �le. A simpli�ed class diagram, depict-
ing the Android components of the application and
their types, is initially computed from the .jar pack-
age. Class methods and attribute names are retrieved
by applying reverse engineering based on Java re�ec-
tion. This class diagram also establishes the relation-
ships among components. In particular, we detect the
compositions of an Activity or a Service ct with a
ContentProvider cp. This relationship is established
when a component has a Contentresolver attribute.
From this diagram, we extract the list LC , composed
of the products ct× cp and the list of Activities and
Services of the application,

2. a partial speci�cation Scomp = (S1!comp, S2
!
comp) is

generated for each component comp (or component
composition) in LC . S1comp is an ioSTS suspension
generated from the implicit intents given in the Mani-
fest �le of the application. In contrast, S2comp is built
with the explicit intents. Both ioSTS are completed
on the output set to produce (S1!comp, S2

!
comp). This

separation shall be particularly useful to distribute
the test case set between implicit and explicit intents
when the number of test cases is limited.
The tuple (S1comp, S2comp) is constructed two with
algorithms based upon some knowledge of the An-
droid documentation. For sake of readability, Algo-
rithms 1 and 2 are simpli�ed versions of those used
in APSET. If comp is an Activity (resp. a Service),
Algorithm 1 (resp. Algorithm 2) constructs (S1comp,
S2comp) from the intent �lters IntentFilter(act,cat,
data) found in the Manifest �le MF. The action sets
of ΛSicomp(i = 1, 2) are equal to AuthActtype(comp)
with type(comp) the type of the component, e.g., Ac-
tivity. Algorithm 1 produces two ioSTS w.r.t. the in-
tent functioning described in the Android documen-
tation. Firstly, Algorithm 1 constructs S1comp with
the implicit intents found in the intent �lters (lines
6-16). Depending on the action type read, the guard
of the output action is completed to re�ect the fact
that a response may be received or not. If the action
of the intent �lter is unknown (lines 13,14), no guard
is formulated on the output action (a response may
be received or not). While the generation of S1comp,
the algorithm also produces a guard G equals to the
negation of the union of guards carried by the con-
structed ?intent actions (line 16). Afterwards, S2comp
is constructed by means of this guard: it models the
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sending of an intent with the guard G (intuitively,
any intent except the intents of S1comp) followed by a
transition carrying the action !Display without guard
and a transition labelled by !ComponentExp. If the
component is a Service, its partial speci�cation is ob-
tained with Algorithm 2 whose functioning is similar
(except for its action set).
If comp = ct × cp is a composition of an Activity or
a Service ct with a ContentProvider cp, the genera-
tion of (S1comp, S2comp) is slightly di�erent. As pre-
viously, a tuple (S1ct, S2ct) is produced either with
Algorithm 1 or Algorithm 2. (S1comp, S2comp) is con-
structed with the products Sict×Scp(i = 1, 2) where
Scp is an ioSTS suspension modelling the call of the
ContentProvider cp. Scp is derived from a generic
ioSTS where only the ContentProvider name and the
variable tableURI are updated from the information
found in the Manifest �le. An example is depicted
in Figure 8 for a ContentProvider, named Contacts,
managing contact information with the table "Con-
tactsContract.RawContacts". Naturally, this speci�-
cation is written in accordance with the set
AuthActContentProvider.
Finally, the partial speci�cation Scomp = (S1!comp,

S2!comp) is achieved by completing both S1comp and
S2comp on the output set with new transitions to the
Fail location. The latter shall be particularly useful
to re�ne the test verdict by helping recognise correct
and incorrect behaviours of an Android component
w.r.t. its speci�cation.
Correctness and completeness of Algorithms 1 and 2:
both algorithms are very similar, they mainly di�er
from the produced actions. Hence, we consider Al-
gorithm 1 below. Firstly, if no intent �lter is found
in the Manifest �le, S1comp is empty. S2comp is com-
posed of 3 transitions expressing that the component
accepts any explicit intent and returns either a screen
or an exception (not a crash). This corresponds ex-
actly to the Activity de�nition as referred in the An-
droid documentation. If it exists at least one intent
�lter, then S1comp is composed of a transition ex-
pressing the receipt of the corresponding intent fol-
lowed by transitions carrying actions related to the
intent action, e.g. PICK, VIEW, found in the intent
�lter. The behaviour inferred by this intent �lter is
"removed" from S2comp. All the intent actions found
in the Android documentation are categorised in the
sets ACTnr and ACTr. Hence, Algorithm 1 produces
ioSTS that correctly express the intent related be-
haviours of Activities. The algorithm is also complete
since it can take any Manifest �le (all the actions of
the Android documentation are supported).
Both algorithms are linear in time since they produce
some transitions for the �nite intent �lter set found
in the Manifest �le.

Algorithm 1: Partial Speci�cation Generation for
Activities
input : Manifest �le MF, Activity comp
output: Tuple (S1comp, S2comp)

1 Ai is the identity assignment
(x := x)x∈VSicomp

(i = 1, 2);

2 it := 0;G := ∅;
3 ΛSicomp(i = 1, 2) = AuthActtype(comp);
4 Add (l0Sicomp , l0Sicomp , !δ, , ) to →Sicomp (i = 1, 2);
5 foreach IntentFilter(act,cat,data) of comp in MF do

6 it := it+ 1 ;
7 Add (l0S1comp , lit,1, ?intent(Cp, a, d, c, t, ed),

[(and (streq(Cp, comp) true)G1)], A1) to
→S1comp with G1 : (and (streq(a, act) true)
(streq(d, data) true) (streq(c, cat) true));

8 if act ∈ ACTr then

9 Add (lit,1, l0S1comp , !Display(comp), [(streq(
comp.resp, null) false)], A1) to →S1comp ;

10 else if act ∈ ACTnr then

11 Add (lit,1, l0S1comp , !Display(comp), [(streq(
comp.resp, null) true)], A1) to →S1comp

12 else

13 Add (lit,1, l0S1comp , !Display(comp), , A1) to
→S1comp ;

14 Add (lit,1, l0S1comp , !ComponentExp, , ) to
→S1comp ;

15 G := G ∧ ¬G1;

16 Add (l0S2comp , l1, ?intent(Cp, a, d, c, t, ed), [(and
(streq(Cp, comp) true)G)], A2), (l1, l0S2comp ,
!Display(comp), , A2), (l1, l0S2comp , !ComponentExp
, , ) to →S2comp ;

1 <ac t i v i t y c l a s s=".A"
and r o i d : l a b e l=" @string / title_A ">

3 <intent− f i l t e r>
<act i on android:name=" android . intent .

action . PICK " />
5 <category android:name=" android .

intent . category . DEFAULT " />
<data android:scheme=" content "

andro id :ho s t=" com . android .
contacts "/>

7 </ intent− f i l t e r>
</ a c t i v i t y>

Fig. 7. The intent �lter section of the Manifest �le related to the
Activity A

Example 3. Figure 9 illustrates the resulting ioSTS sus-
pension S1!comp which stems from the product of one
Activity with the previous Contact-Provider depicted in
Figure 8. The part of the Manifest related to this activ-
ity is depicted in Figure 7. The Activity accepts intents
composed of the PICK action and data whose URI corre-
sponds to the contact list stored in the device. Basically,
this Activity aims to return the contact chosen by a user
in its contact list. The resulting ioSTS composition also
accepts requests to the Contact-Provider. Incorrect be-
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Algorithm 2: Partial Speci�cation Generation for
Services
input : Manifest �le MF, Service comp
output: Tuple (S1comp, S2comp)

1 Ai is the identity assignment
(x := x)x∈VSicomp

(i = 1, 2);

2 it := 0;G := ∅;
3 ΛSicomp(i = 1, 2) = AuthActtype(comp);
4 Add (l0Sicomp , l0Sicomp , !δ, , ) to →Sicomp (i = 1, 2);
5 foreach IntentFilter(act,cat,data) of comp in MF do

6 it := it+ 1 ;
7 Add (l0S1comp , lit,1, ?intent(Cp, a, d, c, t, ed),

[(and (streq(Cp, comp) true)G1)], A1) to
→S1comp with G1 : (and (streq(a, act) true)
(streq(d, data) true) (streq(c, cat) true));

8 if act ∈ ACTr then

9 Add (lit,1, l0S1comp , !Running(comp), [(streq(
comp.resp, null) false)], A1) to →S1comp ;

10 else

11 Add (lit,1, l0S1comp , !Running(comp), , A1) to
→S1comp ;

12 Add (lit,1, l0S1comp , !ComponentExp, , ) to
→S1comp ;

13 G := G ∧ ¬G1;

14 Add (l0S2comp , l1, ?intent(Cp, a, d, c, t, ed), [(and
(streq(Cp, comp) true)G)], A2), (l1, l0S2comp ,
!Running(comp), , A2), (l1, l0S2comp , !ComponentExp
, , ) to →S2comp ;

haviour, e.g., the display of a screen without the receipt
of response, are expressed with transitions to Fail.

As for vulnerability patterns, one can now de�ne the
status of an ioSTS S with a partial speci�cation Scomp.
We believe it would not be appropriate to discuss about
conformance or compliance with the Android documen-
tation since a non exhaustive part of this documentation
appears across Scomp. This is why we chose to talk about
non-compliance:

De�nition 8 (Compliance status).

Let S be an ioSTS and Scomp be a partial speci�cation
such that Sδ is compatible with Scomp. We de�ne the non
compliance of S (and of its underlying ioLTS semantics
JSK) over Scomp with:

S does not comply with Scomp, denoted S 2 Scomp if
Traces(Sδ)∩(TracesFail(S1!comp)∪TracesFail(S2!comp))
6= ∅.

For example, if we assume that the ioSTS Sδ is com-
patible with the partial speci�cation S1!comp of Figure 9
and if ?intent(Act, PICK, content : //com.android/con−
tacts,DEFAULT, , )!Display(Act,Act.resp = null) is a
trace of Sδ, then S does not comply with this speci�ca-
tion since this trace belongs to TracesFail(S1

!
comp).

Fig. 8. ContentProvider speci�cation

Fig. 9. A speci�cation example

4.2 Test case selection (part B, Figure 1)

Test cases stem from the combination of vulnerability
patterns with compatible partial speci�cations. This com-
bination is de�ned here with a parallel composition.

The parallel composition of two ioSTS is a specialised
product which illustrates the shared behaviour of two
original ioSTS that are compatible:

De�nition 9 (Parallel composition ||).
The parallel composition of two compatible ioSTS

S1, S2, denoted S1||S2, is the ioSTS P =< LP, l0P, VP, V 0P,
IP, ΛP,→P> such that VP = V1∪V2, V 0P = V 01∧V 02,
IP = I1 ∪ I2, LP = L1 × L2, l0P = (l01, l02), ΛP =
Λ1 ∪Λ2. The transition set →P is the smallest set satis-
fying the �rst rule of De�nition 3.

Lemma 1 (Parallel composition traces).
If S2 and S1 are compatible then TracesF1×F2

(S1||S2)
= TracesF1(S1) ∩ TracesF2(S2), with F1 ⊆ LS1 , F2 ⊆
LS2 .

Given a vulnerability pattern V and a partial spec-
i�cation Scomp = (S1!comp, S2

!
comp), the composition
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VPcomp = (V||S1!comp,V||S2!comp) is called a vulnerabil-
ity property of Scomp. These parallel compositions (V||
Sicomp)(i = 1, 2) produce new locations and in particu-
lar new �nal verdict locations:

De�nition 10 (Verdict location sets).
Let V be a vulnerability pattern and Scomp = (S1!comp,

S2!comp) a partial speci�cation such that Sicomp(i = 1, 2)

are compatible with V. (V||Si!comp)(i = 1, 2) are com-
posed of new locations recognising vulnerability status:

1. NVUL=NV ul×LSi!comp
.NVUL/FAIL= (NV ul,

Fail) ∈ NV UL aims to recognise non-compliance
w.r.t. the partial speci�cation Scomp and the non-
vulnerable status w.r.t. V,

2. VUL = V ul × LSi!comp
. VUL/FAIL = (V ul, Fail)

aims to recognise non-compliance w.r.t. Scomp and
the vulnerable status w.r.t. V,

3. FAIL = LV × Fail recognises incorrect behaviour
w.r.t. Scomp.

A vulnerability property only keeps the shared be-
haviour of a vulnerability pattern and of a partial spec-
i�cation to later produce executable test cases. If a vul-
nerability pattern is inconsistent with a component (in-
correct actions, etc.), the parallel composition of the vul-
nerability pattern with the component speci�cation gives
paths ended by locations that are not verdict locations.
In this case, the test case generation is stopped.

Thereafter, test cases are achieved with Algorithm 3
which performs the two following main steps on the vul-
nerability property V (Scomp) = (V||S1!comp, V||S2!comp).
Firstly, it splits (V||Si!comp)(i = 1, 2) into several ioSTS.
Intuitively, from a location l having k transitions car-
rying an input action, e.g., an intent, k new test cases
are constructed to experiment the component under test
with the k input actions and so on for each location l
having transitions labelled by input actions (lines 2-5).
A set of valuation tuples is computed from the list of un-
de�ned parameters found in the input action (line 6). For
instance, intents are composed of several variables whose
domains are given in guards. These ones have to be con-
cretised to obtain executable test cases (i.e. each unde-
�ned parameter of an input action is assigned to a value).
Instead of using a cartesian product to construct a tuple
of valuations, we adopted a Pairwise technique [7]. As-
suming that errors can be revealed by modifying pairs of
variables, this technique strongly reduces the coverage of
variable domains by constructing discrete combinations
for pair of parameters only. The set of valuation tuples
is constructed with the Pairwise procedure which takes
the list of unde�ned parameters and the transition guard
to �nd the parameter domain. If no domain is found, the
RV set is used instead. In the second step (line 7-23),
input actions are concretised and a reachability analysis
is performed to ensure that concretised actions can be
sequentially executed. Given a transition t and its set
of valuation tuples P (t), this step constructs a new test

case for each tuple pv = (p1 = v1, ..., pn = vn) ∈ P (t)
by replacing the guard G with G ∧ pv i� G ∧ pv is sat-
is�able. Finally, if the resulting ioSTS suspension tc has
verdict locations, then tc is added into the test case set
TC(V||Si!comp)

. Steps 1. and 2. are iteratively applied until
each combination of valuation tuples and each combina-
tion of transitions labelled by input actions are covered.
This algorithm may produce a wide set of test cases,
e.g., if the number of tuple of values given by the Pair-
wise function is large. This is why we added the end
condition of lines (18,19) to limit the test case number
but also to balance the generation of test cases built
with implicit intents (those obtained from S1!comp) with
the test cases executing explicit intents (obtained from
S2!comp).

Correctness and completeness of Algorithm 3: here
we assume that vulnerability patterns are correctly mod-
elled. Since it is assumed that the vulnerability V and the
partial speci�cation Scomp are compatible, Algorithm 3
takes vulnerability properties that are composed of in-
put actions (?intent) and output actions (at least ac-
tions modelling exceptions) and of locations in VUL and
NVUL. Thus, Algorithm 3 can concretise input actions
and extract test cases from these vulnerability proper-
ties. The test selection in Algorithm 3 is correct i� the
test case traces belong to the trace set of the vulnerabil-
ity property. This is captured by the following Proposi-
tion:

Proposition 1. Let VPcomp be a vulnerability property
derived from the composition of a vulnerability pattern
V and a partial speci�cation Scomp = (S1!comp, S2

!
comp).

TC is the test case set generated by Algorithm 3. We
have ∀tc ∈ TC, Traces(tc) ⊆ (Traces(V||S1!comp) ∪
Traces(V||S2!comp)).

Intuitively, in step 1, Algorithm 3 selects each transi-
tion (one after one) of the locations having several out-
going transitions carrying input actions. It builds test
cases composed of Si!comp paths starting from its initial
location. In step2, it concretises each transition labelled
by an input action with values satisfying its guard and
checks that the resulting transition can be reached from
the initial state of Si!comp. In short, the ioLTS semantics
of the resulting test case is only composed of paths of the
ioLTS semantics of Si!comp. As a consequence, the test
case traces belong to the trace set of the vulnerability
property.

Furthermore, Algorithm 3 takes �nite time to com-
pute test case sets. Indeed, step 1 constructs set of values
for each input action of Si!comp with a Pairwise technique
which is logarithmic in time. In the second step, transi-
tions of Si!comp are covered at most tcnb times (tcnb is
the maximum test case number). Each time an input ac-
tion is concretised, the new guard satis�ability is checked
with a solver whose complexity should be bounded (this
complexity depends on the solver choice).
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Algorithm 3: Test case generation

input : A vulnerability property VPcomp, tcnb the
maximal number of test cases

output: Test case set TC
1 foreach (V||Si!comp)(i = 1, 2) ∈ VPcomp do

2 Step 1. input action choice
3 foreach location l having outgoing transitions

carrying input actions do

4 Choose a transition

t = l
?a(p),G,A−−−−−−→(V||Si!comp)

l2;

5 remove the other transitions;
6 P (t) := Pairwise(p1, ..., pn, G) with (p1, ..., pn)

⊆ p the list of unde�ned parameters;

7 Step 2. input concretisation
8 G′ := V 0(V||Si!comp)

;

9 Call Reach(l0(V||Si!comp)
, G′);

10 Reach(l, G′):
11 begin

12 foreach t = l
a(p),G,A−−−−−−→(V||Si!comp)

l2 do

13 if a(p) is an input action then

14 Choose a valuation tuple
pv = (p1 = v1, ..., pn = vn) in P (t);

15 if G′ ∧G ∧ pv is satis�able then

16 Replace G by G ∧ pv in t;
17 Reach(l2, G

′ ∧G ∧ pv)
18 else

19 Choose another valuation in P (t);

20 else

21 Reach(l2, G
′ ∧G) ;

22 tc is the resulting ioSTS suspension;

23 Step 3.
24 if tc has reachable verdict locations in VUL and

in NVUL then

25 TC(V||Si!comp)
:= TC(V||Si!comp)

∪ {tc} ;

26 if Card(TC(V||Si!comp)
) ≥ tcnb then

27 STOP;

28 Repeat 1. and 2. until each each combination of
valuation tuples and combination of transitions
carrying input actions are covered;

29 TC =
⋃

i=1,2

TC(V||Si!comp)
;

4.3 Test case execution

A component under test (CUT ) is considered as a black
box whose only interfaces are known. However, one usu-
ally assumes the following test hypotheses to execute test
cases:

� the functional behaviour of the component under test,
observed while testing, can be modelled by an ioLTS
CUT . CUT is unknown (and potentially nondeter-
ministic). CUT is assumed input-enabled (it accepts

any of its input actions from any of its states). CUT δ

denotes its ioLTS suspension,
� to be able to dialog with CUT , one assumes that
CUT is a component whose type is the same as the
component type targeted by the vulnerability pattern
V and that it is compatible with V.

Thanks to these assumptions, De�nition 7 now cap-
tures that the vulnerability status of CUT against a vul-
nerability pattern V can be determined with the CUT
traces. These are constructed by experimenting CUT
with test cases. Usually, the execution of test cases is
de�ned by their parallel compositions with the imple-
mentation:

Proposition 2 (Test case execution).
Let TC be a test case set obtained from the vulner-

ability pattern V. CUT is the ioLTS of the component
under test, assumed compatible with V. For all test case
tc ∈ TC, the execution of tc on CUT is de�ned by the
parallel composition tc||CUT δ.

Remark 1. A test case tc obtained from a vulnerabil-
ity pattern V, can be experimented on CUT since tc
and CUT are compatible. Indeed, tc is produced from a
vulnerability property VPcomp = (V||S1!comp,V||S2!comp)
such that ΛSi!comp

(i = 1, 2) = AuthActtype(comp) (Algo-

rithm 3). The action set of V is also equal to
AuthActtype(comp). We deduce that tc is compatible with
V, which is also compatible with CUT (test hypothesis).

The above proposition leads to the test verdict of
a component under test against a vulnerability pattern
V. Originally, this one refers to the vulnerability status
de�nition and is completed by the detection of incor-
rect behaviour described in partial speci�cations with
the verdict locations VUL/FAIL and NVUL/FAIL. An
inconclusive verdict is also de�ned when a FAIL verdict
location is reached after a test case execution. This ver-
dict means that incorrect actions or data were received.
To avoid false positive results, the test is stopped with-
out completely executing the scenario given in the vul-
nerability pattern.

De�nition 11 (Test verdict).
Let TC be a test case set obtained from the vulner-

ability pattern V and the partial speci�cation Scomp =
(S1!comp, S2

!
comp) (with Sicomp(i = 1, 2) compatible with

V). CUT is the ioLTS of the component under test, as-
sumed compatible with V.

The execution of the test case set TC on CUT yields
one of the following verdicts:

1. V UL i� ∃tc ∈ TC, tc||CUT δ produces a trace σ
such that σ ∈ TracesV UL(tc) and ∀tc2 6= tc ∈ TC,
tc2||CUT δ produces σ /∈ TracesV UL/FAIL(tc2),

2. V UL/FAIL i� ∃tc ∈ TC, tc||CUT δ produces σ ∈
TracesV UL/FAIL(tc),
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3. NV UL i� ∀tc ∈ TC, tc||CUT δ produces σ ∈
TracesNV UL(tc),

4. NV UL/FAIL, i� ∃tc ∈ TC, tc||CUT δ produces σ ∈
TracesNV UL/FAIL(tc) and ∀tc2 6= tc ∈ TC, tc2||CUT δ
produces σ ∈ TracesNV UL(tc2)∪
TracesNV UL/FAIL(tc2),

5. Inconclusive, i� ∃tc ∈ TC, tc||CUT δ produces σ ∈
TracesFAIL(tc).

Proposition 3 (Test verdict correctness).
With the notations of Proposition 2 and De�nition

11, we assume having a test case set TC that returns a
verdict v to a component CUT . Consequently,

1. if v = V UL, then CUT is vulnerable to V,
2. if v = V UL/FAIL, then CUT is vulnerable to V

and CUT does not also respect the component normal
functioning expressed in Scomp,

3. if v = NV UL, then, CUT is not vulnerable to V,
4. if v = NV UL/FAIL, then, CUT is not vulnerable

to V. However, CUT does not respect the component
normal functioning expressed in Scomp,

5. if v = Inconclusive, then CUT has an unknown sta-
tus.

Sketch of proof of 1 and 2:
∃tc ∈ TC such that tc||CUT δ produces a trace σ ∈
TracesV UL(tc).
Thus, TracesV UL(tc) ∩ Traces(CUT δ) 6= ∅ (Lemma 1)
(TracesV UL(V||S1!comp) ∪ TracesV UL(V||S2!comp)) ∩
Traces(CUT δ) 6= ∅ (Proposition 1)
TracesV UL(V||Si!comp) = TracesV ul(V)∩TracesL

Si!comp

(Si!comp) since Si
!
comp is compatible with V (Algorithm

1 and Lemma 1)
We have (TracesV ul(V) ∩ (TracesL

S1!comp
(S1!comp) ∪

TracesL
S2!comp

(S2!comp))) ∩ Traces(CUT δ) 6= ∅. Hence,
TracesV ul(V) ∩ Traces(CUT δ) 6= ∅ (a) and
(TracesL

S1!comp
(S1!comp) ∪ TracesLS2!comp

(S2!comp)) ∩
Traces(CUT δ) 6= ∅ (b). From (a), we have CUT 2 V

(De�nition 4). Consequently, CUT is vulnerable to V.
If σ ∈ TracesV UL/FAIL(tc) then, from (b) we have

(TracesFail(S1
!
comp) ∪ TracesFail(S2!comp)) ∩ Traces(

CUT δ) 6= ∅. We obtain CUT 2 Scomp (De�nition 8).
The proofs of 3,4,5 are similar.

�

Example 4. A test case example, derived from the spec-
i�cation of Figure 9 and the vulnerability pattern of Fig-
ure 6 is depicted in Figure 10. Firstly, it stems from the
parallel product of the speci�cation and of the vulnera-
bility pattern which keeps the shared behaviours of the
two initial ioSTS and also composes their locations to-
gether. Then, this product is concretised with Algorithm
3 (with the String values carried out by the test case).
This test case re�ects the sending of an implicit intent
to an Activity with the extra data parameter composed

Fig. 10. A test case example

of an SQL injection. After receiving this intent, the Ac-
tivity behaves as expected if it produces an exception
or returns a screen with a response. Otherwise, the test
execution is terminated: if the Activity crashes (mod-
elled by !SystemExp) or if quiescence is observed, the
location (V ul, Fail), which belongs to the verdict loca-
tion set VUL/FAIL, is reached. This means the Activ-
ity is vulnerable and does not respect the Android doc-
umentation (verdict VUL/FAIL). The verdict is FAIL
when observing any other action (unexpected action,
response=null) since the location (C,Fail) ∈ FAIL is
reached. The test execution is stopped because the com-
ponent is not functioning correctly. Afterwards, the test
case checks if the data managed by the ContentProvider
Contacts have not been updated after the sending of
the intent. This is checked with the transitions carrying
the action ?call and !callResp. If the ContentProvider
does not return values which belong to the sets used for
testing (URI, RV,INJ ) then it is not vulnerable (loca-
tion (NV UL, l0l0) ∈ NV UL reached and test verdict
NVUL). If it crashes it is vulnerable and does not meet
its speci�cation as well (verdict VUL/FAIL). Otherwise,
it is vulnerable. A FAIL verdict is also given when an
abnormal action is received before calling the Activity
with an intent or just before calling the ContentProvider.
These extra actions should not be received and might
perturb the testing process. For instance, an Activity
cannot return an action without being called with any
intent before. If this really happens then the testing pro-



14 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

pub l i c void t e s t 1 ( ) {
2 a s s e r tFa l s e (FAIL , i sD i sp l ay ( ) ) ;

a s s e r tFa l s e (FAIL , hasResponseFrom
4 ContentProvider ( ) ) ;

6 // Intent
mIntent . s e tAct ion ( " android . intent . action .

PICK " ) ;
8 mIntent . addCategory ( " android . intent .

category . DEFAULT " ) ;
mIntent . setData ( Uri . parse ( " content: // com .

android . contacts " ) ) ;
10 mIntent . putExtra ( " contact " , "; INSERT

hello INTO ContactsContract .
RawContacts . ContentURI " ) ;

s e tAc t i v i t y I n t en t ( mIntent ) ;
12 t ry {

mActivity = ge tAc t i v i t y ( ) ;
14 as se r tNotNul l (VUL/FAIL , mActivity ) ;

a s se r tTrue (VUL/FAIL , i sD i sp l ay ( ) ) ;
16 // PICK : expect response

Act iv i tyResu l t re sponse = monitor .
ge tResu l t ( ) ;

18 asser tTrue (FAIL , s o l v e ( "( and (
isDisplay () true ) ( streq (
response . getResultData () , null )
false ))" ) ) ;

ge t Inst rumentat ion ( ) .
ca l lAct iv i tyOnStop ( mActivity ) ;

20 } catch ( Exception e ) {
asse r tTrue ( t rue ) ;

22 }
a s s e r tFa l s e (FAIL , i sD i sp l ay ( ) ) ;

24 a s s e r tFa l s e (FAIL ,
hasResponseFromContentProvider ( ) ) ;

26 /∗∗
∗ c a l l the ContentProvider

28 ∗/
try {

30 ca l lCp ( Uri . parse ( " content: //
ContactsContract . RawContacts .
ContentURI " ) ) ;

a s se r tTrue (VUL,
hasResponseFromContentProvider ( ) ) ;

32 asser tTrue (VUL, s o l v e ( "( and (
isContained ( cursor , URISet ) false )
( isContained ( cursor , RVSet ) false

) ( isContained ( cursor , INJSet )
false ))" ) ) ;

cu r so r = nu l l ;
34 } catch ( Exception e2 ) {

f a i l (VUL) ;
36 }

a s s e r tFa l s e (VUL, i sD i sp l ay ( ) ) ;
38 }

Fig. 11. A JUNIT test case

cess is abnormal and is terminated to avoid false posi-
tives.

ioSTS test cases are then converted into JUNIT test
cases in order to be executed with our framework. This
conversion can be summarised by the following steps:

� transitions labelled with input actions are converted
into component calls. For example, a transition l
?intent(Cp,a,d,c,t,ed),G,A−−−−−−−−−−−−−−−−−→ l2 is converted into the send-
ing of an intent composed of parameter values given
in the guard G,

� the transitions carrying output actions are translated
into Java code and JUNIT assertions. For an output
action !a(p) which does not correspond to the raise
of an exception, we assume having a corresponding

Boolean function a() which is called inside an asser-
tion. The verdicts VUL/FAIL, VUL and FAIL are
determined from assertions of the form Assert(mess,
expr) returning the message mess equal to the ver-
dict when expr is false. The NVUL/FAIL verdict is
obtained from the failed assertions that are not com-
posed of message. By deduction, the NVUL verdict
is set if there is no failed assertion during the testing
process.

� a transitions l
!ComponentExp−−−−−−−−−−−→ lf , is converted into

a try/catch statement composed of an assertion pro-
ducing the verdict carried by lf . A transition l
!SystemExp−−−−−−−−→ lf , modelling a component crash is not
converted into JUNIT code but is replaced by try/-
catch statements in the test runner call. If the test
runner catches an exception, the latter is converted
into an assertion composed of the messages VUL or
VUL/FAIL according to the label of the location lf .

Example 5. As an example, Figure 11 gives the JUNIT
test case derived from the ioSTS of Figure 10. For read-
ability, we removed the initial declarations and instan-
tiations. Initially, the incorrect receipt of output actions
is coded with the two assertions of lines (2-4) (and later
with lines (23-25)). The intent action is translated into
the call of the component mActivity (lines 7-11). Lines
(12-22) represent the assertions derived from the di�er-
ent output actions that may be received after the intent.
The transitions starting from (Bl11l0′) in the test case
of Figure 10 are translated by the assertions in lines (14-
18). For instance, the assertion in line 15 fails with the
VUL/FAIL message if Display() returns false. The next
assertion in line 18 fails with the FAIL message if a screen
is displayed and if a null response is provided by the ac-
tivity. This more complex guard is computed with the

solve function. The transition B(l11l0′)
!ComponentExp−−−−−−−−−−−→

(Cl0l0′) of the ioSTS test case is converted into the
catch block composed of an assertion always true (line
21). The ContentProvider Contacts is then called to ex-
tract all the data of the table RawContacts (line 30).
If these data are not composed of values which belong
to INJ ∪ RV ∪ URI (lines 31-32) and if no other ac-
tion (exception or screen) is observed (lines 34-37) then
no assertion fails. The verdict is NVUL. Otherwise, at
least one assertion of lines( 31-37) fails and the verdict
becomes VUL.

Once the test case execution is completed, an XML
report is written by the Test runner which lists all the
failed assertions. The report, we have depicted in Fig-
ure 5, were obtained after the execution of the previ-
ous JUNIT test case. After the intent call, the compo-
nent crashed with the NullPointerException exception.
An assertion failed with the message VUL/FAIL. Con-
sequently, the test verdict is VUL/FAIL.

The guard solving, used in Algorithm 3 and during
the test case execution, is performed by the Z3 solver
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Fig. 12. The satis�ability function

whose language is augmented with the predicates given
in Section 3. Below, we give more details about the guard
solving.

4.4 Satis�ability of guards

We have chosen the SMT (Satis�ability Modulo Theo-
ries) solver Z3 [22] for checking the satis�ability of guards
since it o�ers good performance, takes several variable
types (Boolean, Integer, etc.) and allows a direct use of
arithmetic formulae. However, it does not accept String
variables whereas the String type is widely used with
Android. We have chosen to extend the SMT-LIB lan-
guage used by Z3 with new predicates instead of using a
String constraint solver like Hampi [16]. After some ex-
perimentations, we indeed concluded that our extension
of Z3 o�ers better performance than using a combination
of solvers or even Hampi alone.

These new predicates stand for functions over in-
ternal variables and parameters which must return a
Boolean value. We implemented several predicates to
consider String variables e.g., streq(String,String) or con-
tains (String,String) to check the equality of two strings
or if the second string passed in is contained in the
�rst one. Users can update the current predicate list by
adding, for each new predicate, a method returning a
Boolean to the class APSETFunctions into the APSET
source code.

The call of Z3 is performed with a satis�ability func-
tion which takes an internal variable valuation set, the
parameter valuations received with messages and a guard
written with an enriched SMT-LIB expression. Its func-
tioning is summarised in Figure 12. Predicates referring
to Boolean functions are computed and replaced with
Boolean values. A Z3 script, composed of the internal
variable valuations, the parameter valuations received
with an action, is then dynamically written by the satis-
�ability function before calling Z3. If the guard is satis�-
able (not satis�able), Z3 returns sat (unsat respectively).
Z3 returns unknown when the satis�ability of a formula
is not decidable.

For instance, the guard (resp 6= Null) ∧ (resp =
”done”) is written with the expression (and (strneq(Resp,
Null) true) (streq(Resp,"done") true )). The predicates
strneq and streq are computed with the values of the

Fig. 13. Vulnerability pattern V1

Fig. 14. Vulnerability pattern V3

Fig. 15. Vulnerability pattern V4

variables resp and replaced by Boolean variables. Then,
a Z3 script is written and executed.

5 Experimentation

The experimentation was performed with the tool APSET
on 70 Android applications: 20 applications still under
development provided by the Openium company 4, and
50 popular applications randomly chosen in the Android
Market. Test cases were generated from four vulnerabil-
ity patterns. The �rst one V1 targets the availability
of Activities. The others aim at checking con�dentiality
and integrity:

� V1, illustrated in Figure 13, expresses that an Ac-
tivity is vulnerable when it becomes unavailable af-
ter the sending of intents composed of String values
known for relieving bugs (RV set) or of SQL injec-
tions. With this vulnerability pattern, an Activity is

4 http://www.openium.fr/
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vulnerable when quiescence is observed or when the
Activity crashes (action !SystemExp),

� the second vulnerability pattern V2 is the one taken
as example in Figure 6,

� V3, depicted in Figure 14, is an extension of the
previous vulnerability pattern that aims at checking
whether the structure of a database managed by a
ContentProvider is not altered (modi�cation of at-
tribute names, removal of tables, etc.) by SQL injec-
tions forwarded by an Activity receiving intents. The
main di�erence between V2 and V3 concerns the call
of the ContentProvider with the three �rst transi-
tions to extract the database structure that is stored
in the variable origin. After the sending of an intent
composed of SQL injections, the component is not
vulnerable if the database structure is equal to ori-
gin (use of a new predicate equalstructure),

� V4, illustrated in Figure 15, aims at checking that
incorrect data, already stored in a database, are not
displayed by an Activity after having called it with
an intent. Incorrect data (in the set RV(String) ∪
INJ ) are initially stored into the database (two �rst
transitions). Whatever the response provided by the
ContentProvider, the Activity is not vulnerable if the
content of its screen is not composed of the incorrect
data previously stored. The comparison of the con-
tent of the screen with the set RV(String) ∪ INJ is
performed with the predicate displaycontain.

With these vulnerability patterns, APSET detected
a total of 62 vulnerable applications (88 %) out of the
70 tested applications. Among the 50 tested applications
available on the Android market, 41 have security defects
which are more or less serious (from application crash up
to personal data extraction). APSET generated a aver-
age of 303 test cases per application and detected an
average of 70 VUL verdicts. Figure 16 illustrates the
test results of 30 randomly chosen applications among
the 50 of the Android Market. This histogram shows
the number of test cases executed per application and
the number of VUL verdicts obtained. Some application
test results revealed a high number of VUL verdicts. The
latter do not necessarily re�ect the number of security
defects though. Several VUL verdicts arised on account
of the same defect in the source code. The analysing of
XML reports should help developers localise these de-
fects by identifying the incriminated components, the
raised exceptions or the actions performed. Most of the
failed applications have a number of faulty components
varying between 1 and 5. The distribution of the number
of vulnerable components per application is depicted in
Figure 18. The radar chart of Figure 17 also depicts the
percentage of applications vulnerable to the vulnerabil-
ity patterns V1, ...,V4. Among the 62 vulnerable applica-
tions, 80 % have availability issues detected with V1. In
other words, they are no longer available when receiving
intents composed of incorrect values or SQL injections.

Fig. 16. Test results on 30 applications

Fig. 17. Percentage of vulnerable applications / vulnerability pat-
tern

36 % are vulnerable to SQL injections (V2 and V3). 26 %
of the applications are composed of Activities displaying
incorrect data without validation (V4).

We manually analysed the test reports of 18 appli-
cations for V1 and 10 applications for V2, ...,V4 and
checked these results with the source codes. The ap-
plications app1 to app14 are provided by the Openium
company.
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Fig. 18. Number of vulnerable components per application

Applications V1 test results
Name # com-

ponent
#vul/
#testcases

Time/
test

app 1 35 861/969 8s
app 2 6 95/147 12s
app 3 5 0/117 4s
app 4 24 52/545 0.15s
app 5 11 3/33 2s
app 6 11 11/120 3s
app 7 11 20/110 3s
app 8 11 20/110 3s
app 9 13 19/80 0.90s
app 10 16 15/105 2.1s
app 11 9 15/213 3.11s
app 12 7 66/311 2.7s
app 13 8 0/300 0.27s
NotePad 5 44/300 0.12s
SearchableDic
tionnary

3 34/288 0.97s

Google Maps 38 31/300 1.92s
Youtube 12 19/336 4.1s

Table 2. Experimentation Results with V1

Applications Test results

Name #com-
ponent

V2 V3 V4 #vul/#
testcases

Time/
test

app2 7 8 0 3 11/54 0,85

app5 15 10 2 5 17/102 2,3

app11 16 1 0 3 4/164 0,18

app12 9 2 0 9 11/97 1,56

app13 7 19 0 2 21/73 0,77

app14 8 0 0 4 4/71 1,05

NotePad 5 27 0 4 31/44 0,04

Search
ableDic
tionnary

3 10 0 3 13/22 1,02

Google
Maps

38 28 0 11 39/370 1,67

Youtube 12 3 0 0 3/131 3,21

Table 3. Experimentation results with V2,V3,V4

Table 2 summarises the results observed with V1. For
each application, Table 2 lists the number of tested com-
ponents, the number of vulnerability issues detected over
the test case number and the average test case execution
time delay. For instance, 969 test cases were generated
by our tool for app 1 and 861 revealed issues. All these is-
sues were essentially observed by Activity crashes when
receiving malicious intents (receipt of exceptions such
as NullPointerException). As expected, the use of the
Pairwise technique in Algorithm 3 helped to obtain a
reasonable test case number. For instance, with the ap-
plication NotePad, the total test case number would be
equal to 1E13. With the Pairwise technique, this number
drops to 2213. We limited to 300 test cases here, which
is su�cient since 44 VUL verdict were detected.

Table 3 depicts the results obtained on 10 applica-
tions extracted from Table 2 after having experimented
them with the vulnerability patterns V2, V3 and V4.
Table 3 shows respectively the number of tested com-
ponents, the number of issues detected with each vul-
nerability pattern and the total number of test cases
providing a vulnerable verdict. Table 3 does not list all
the applications of Table 2 since V2, V3 and V4 can
only be experimented on applications composed of Con-
tentProviders. For instance, with app5, 102 test cases
were generated and 17 showed vulnerability issues. 10
test cases showed that app5 is vulnerable to V2. More
precisely, we noticed that 1 test case showed that per-
sonal data can be modi�ed by using malicious intents.
app5 crashed with the other test cases, probably because
of the bad handling of malicious intents by the compo-
nents. 2 test cases also revealed that the structure of
the database can be modi�ed (V3). By analysing the
ContentProvider source codes of app5, we actually de-
tected that no ContentProvider methods were protected
against malicious SQL requests. Finally, 5 test cases re-
vealed the display of incorrect data stored in database
(V4). This means that the database content is straight
displayed into the user interface.

With the application Google Maps, 39 test cases re-
vealed vulnerability issues. 28 vulnerabilities were de-
tected with V2: 3 (resp. 1) test cases showed that data-
bases can be updated or modi�ed with incorrect data
through the component MapsActivity (resp. Resolver-
Activity). Personal data can be exposed and modi�ed
with SQL injections, therefore Google Maps has integrity
issues. The other failed test cases concern the crashes
of MapsActivity, with the exceptions NullPointerExcep-
tion or RuntimeException. For the vulnerability pattern
V4, the 11 detected defects also correspond to compo-
nent crashes. For Youtube, we obtained 3 VUL/FAIL
verdicts resulting from component crashes with the ex-
ception NullPointerException. No more serious vulnera-
bility were detected here.

Tables 2 and 3 also gives the average test case exe-
cution time, measured with Mid 2011 computer with a
CPU 2.1Ghz Core i5 and 4GB of RAM. Each test case
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execution took few seconds for most of them. Some re-
quired longer time processing than others though (some
milliseconds up to 12s). This di�erence comes from the
application code. For instance, for app 1, some Activi-
ties perform several successive tasks: the receipt of an
intent, the call of a ContentProvider to insert data into
database, the call of a remote Web Service via a Service
component and �nally the display of a screen. Testing
these Activities requires a longer execution time than
testing other components such as the Activities of app 4
which simply displays a screen. Nonetheless, the longer
test case execution times do not exceed few seconds.
These results are coherent with other available Android
application testing tools. For instance, Benli et al. [3]
showed in their studies that the execution time per test
case may be up to 17s. These results combined with the
number of vulnerability issues detected on real applica-
tions tend to show that our tool is e�ective and leads to
substantial improvement in security vulnerability detec-
tion.

6 Related work

Security testing and Android security improvements are
not new trends. Below, we compare our approach with
some recent works from the literature.

Originally, security testing, based upon formal mod-
els, has been studied in several works. For instance, Le-
traon et al. proposed a test generation technique to check
whether security rules modelled with the OrBAC lan-
guage hold on implementations under test [17]. A muta-
tion testing technique is considered for testing the access
control policy robustness. The method proposed in [20]
generates test cases from a speci�cation and invariants
or rules describing security policies. These two works as-
sume having a speci�cation or a test case set as inputs. In
contrast, these assumptions are not required in our pro-
posal. Instead, we propose a partial speci�cation genera-
tion for Android components. Mouelhi et al. introduced
a test case generation for Java applications from secu-
rity policies described with logic-based languages e.g.,
OrBAC, to describe access control properties [21]. Pol-
icy enforcement points are injected into the code which is
later tested with a mutation testing approach. Our work
is not dedicated to access control policy. We also do not
modify the original code. Furthermore, instead of con-
sidering a mutation technique to concretise test cases, we
combine the use of SQL, XML injections, values known
for relieving bugs and random testing. The use of these
sets should increase the defect detection rate.

Marback et al. proposed a threat modelling based
on trees in [19]. This method produces test cases from
threat trees and transforms them into executable tests.
Although the use of trees is intuitive for Industry, for-
mal models o�er several other advantages such as the
description of the testing verdict without ambiguity. Fur-

thermore, speci�cations are not considered in this work,
so false positive or negative results may be discovered
with a higher rate than with our method.

Other works, dealing with Android security, have been
also proposed recently. Some works focused on the de�-
nition of a more secure Android system. The approaches
proposed in [23,26] checks system integrity with moni-
toring techniques. The tool Pro�leDroid monitors several
layers (user interfaces, networks, etc.) and produces met-
rics on network tra�c, user events, OS system calls, etc.
This kind of tool helps uncover undesired behaviour and
some vulnerabilities e.g., unencrypted networks, that are
not considered in this paper.

More recently, several e�orts have been made to in-
vestigate privilege problems in Android applications [9,
10,4]. For instance, the tool Stowaway was also devel-
oped to detect over privilege in Android applications
[10]. It statically analyses application codes and com-
pares the maximum set of permissions needed for an ap-
plication with the set of permissions actually requested.
This approach o�ers a di�erent point of view, in compar-
ison to our work, since we focus on applications taking
place over the system. We assume that the right per-
missions are granted to components and that there is
no overprivilege issue. Amal�tano et al. proposed a GUI
crawling-based testing technique of Android applications
[2] which is a kind of random testing technique based on
a crawler simulating real user events on the user inter-
face and automatically infers a GUI model. The source
code is instrumented to detect defects. This tool can be
applied on small size applications to detect crashes only.
In contrast, APSET detects a larger set of vulnerabili-
ties since it takes vulnerability scenarios on Activities,
but also on Services and ContentProviders. However,
APSET does not directly handle sequences of Activities.

The analysis of the Android intent mechanism were
also studied in [6]. Chin et al. described the permis-
sion system vulnerabilities that applications may exploit
to perform unauthorised actions. Vulnerability patterns,
that can be used with our method, can be extracted
from this work. The same authors also proposed the tool
Comdroid which analyses Manifest �les and application
source codes to detect weak permissions and potential
intent-based vulnerabilities. Nevertheless, the tool pro-
vides a high rate of false negatives (about 75 %) since it
only warns users on potential issues but does not verify
the existence of security �aws. The tool Fuse, proposed
in [13], roughly o�ers the same features as Comdroid
and the same disadvantages. APSET actually completes
Comdroid and Fuse since it tests vulnerability issues on
blackbox applications. Another way to reduce intent-
based vulnerabilities is to modify the Android platform.
In this context, Kantola et al. proposed to upgrade the
heuristics that Android uses to determine the eligible
senders and recipients of messages [15]. Explicit intents
are passed through �lters to detect those unintentionally
sent to third-party applications. With a modi�ed version
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of Comdroid, the authors show that applications are less
vulnerable to attacks. It is manifest that all attacks are
not blocked by these �lters, so security testing is still
required here. Furthermore, ContentProviders and the
management of personal data is not considered. Other
studies deal with the security of pre-installed Android
Applications and show that target applications receiv-
ing oriented intents can re-delegate wrong permissions
[28,12]. Some tools have been developed to detect the
receipt of wrong permissions by means of malicious in-
tents. In our work, we consider vulnerability patterns
to model more general threats based on availability, in-
tegrity or authorisation, etc. Permissions can be taken
into consideration in APSET with the appropriate vul-
nerability patterns. The robustness of inter-component
communication in Android was studied in [18]. In short,
components are tested with intents composed of values
known for relieving bugs. Components are not robust
when observing crashes and bad exception handling. Our
approach includes this kind of robustness technique with
the vulnerability pattern V1 described in the experimen-
tation. Jing et al. introduced a model-based conformance
testing framework for the Android platform [14]. Like in
our approach, partial speci�cations are constructed from
Manifest �les. Nevertheless, the authors do not consider
the Android documentation to augment the expressive-
ness of these speci�cations and consider implicit intents
only. Test cases are generated, from these speci�cations,
to check whether intent-based properties hold. This ap-
proach lacks of scalability though since the set of prop-
erties, provided in the paper, is based on the intent func-
tioning and cannot be modi�ed. Our work takes as input
a larger set of vulnerability patterns.

Finally, in [27], we presented a rudimentary intro-
duction of this work by presenting the vulnerabilities
exposed by the Android intent mechanism and the in-
sight of this testing methodology.

7 Conclusion

In this paper, we presented APSET, an Android aPpli-
cations SEcurity Testing tool for detecting intent-based
vulnerabilities on Android components. This tool takes
vulnerability patterns proposed by an Android expert. It
automatically generates and then executes test cases on
smartphones or emulators. The main contribution of this
work resides in the test case generation by means of an
automatic generation of partial speci�cations from An-
droid applications. These are used to generate test cases
composed of either implicit or explicit intents. These
speci�cations also contribute to complete the test ver-
dict with the speci�c verdicts NVUL/FAIL and VUL/-
FAIL, pointing out that the component under test does
not meet the recommendations provided in the Android
documentation. They also reduce false positive verdicts
since each component is exclusively tested by means of

the vulnerability patterns that share behaviour with the
component speci�cation. Test cases, derived from vul-
nerability patterns, that cannot be theoretically experi-
mented on a component, are not generated nor executed.
APSET can also detect data vulnerabilities based on the
intent mechanism since it supports the testing of compo-
sitions of Activities or Services with ContentProviders.
We experimented APSET on 70 Android applications.
With only 4 vulnerability patterns, we detected that 62
applications have defects that can be exploited by at-
tackers to crash applications, to extract personal data
or to modify them.

This experimentation �rstly showed that APSET is
e�ective and can be used in practice. The APSET e�ec-
tiveness could be improved by using more vulnerability
patterns or eventually by generating more test cases per
pattern. Indeed, to limit the test cost, the test case num-
ber is bounded in APSET. This number can be modi�ed
in the tool.

Secondly, compared to the available intent-based test-
ing tools [6,14,15], APSET is scalable since existing vul-
nerability patterns can be modi�ed or new vulnerability
patterns can be proposed to meet the testing require-
ments. Value sets used for testing, e.g., the SQL injec-
tion set INJ and the set of predicates used in guards can
be updated as well.

Lastly, APSET is simple to use. Vulnerability pat-
terns are stored in DOT �les. Various tools can process
DOT �les and hence graphically represent vulnerability
patterns. Then, test cases are automatically generated
and executed. The intermediate models e.g., the partial
speci�cations, are stored in DOT �les and can be viewed
as well. XML reports, that can be used with continuous
integration tools, also list the issues encountered while
testing and give the number of vulnerabilities detected.

Nevertheless, APSET is only based on the intent
mechanism. So, any kind of vulnerability cannot be tested
with APSET. For instance, attack scenarios composed of
several actions performed on the application interface,
cannot be applied with our tool. The latter does not yet
consider the component type BroadcastReceiver. This
component type is also vulnerable to malicious intents
though. These drawbacks could be explored in future
works.

Another direction of future research concerns the gen-
eration of partial speci�cations from implementations
(classes, con�guration �les, etc.) or documentations or
expert knowledges. As stated previously, these partial
speci�cations can participate in the test case generation
to re�ne the test verdict and to reduce false positives.
They could also be exploited for generating documen-
tation. In this work, partial speci�cations, composed of
some actions, are built with algorithms derived from the
recommendations provided in the Android documenta-
tion. If the partial speci�cation construction algorithms
are upgraded with a lot of actions, the risk to produce
false speci�cations and hence false test cases could dras-



20 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

tically increase. We simply solved this problem here by
considering straightforward algorithms that were evalu-
ated by Android experts. A longer study could raise new
and more formal methods of partial speci�cation gener-
ation which could even take into consideration the risk
to produce incorrect models.
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