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Sébastien Salva1 and Elliott Blot1
1LIMOS - UMR CNRS 6158, Clermont Auvergne University, France

sebastien.salva@uca.fr, eblot@isima.fr

Keywords: Model learning, Passive learning, Component-based systems, Callable-EFSM.

Abstract: This paper addresses the problem of learning models of component-based systems. We focus on model learn-
ing approaches that generate state diagram models of software or systems. We present COnfECt, a method
that supplements passive model learning approaches to generate models of component-based systems seen
as black-boxes. We define the behaviours of components that call each other with Callable Extended FSMs
(CEFSM). COnfECt tries to detect component behaviours from execution traces and generates systems of
CEFSMs. To reach that purpose, COnfECt is based on the notions of trace analysis, event correlation, model
similarity and data clustering. We describe the two main steps of COnfECt in the paper and show an example
of integration with the passive model learning approach Gk-tail.

1 INTRODUCTION

Delivering high quality software to end-users has be-
come a high priority in the software industry. To help
develop high quality products, the software engineer-
ing field suggests to use models, which can serve as
documentation, for verification or testing. But mod-
els are often written by hand, and such a task is dif-
ficult and error-prone, even for experts. To make this
task easier, model learning approaches have proven
to be valuable for recovering the model of a system.
In this paper, we consider one specific type of formal
models, namely state machines, which are crucial for
describing system behaviours. In a nutshell, model
learning approaches infer a behavioural formal model
of a system seen as a black-box, either by interacting
with it (active approaches), e.g., with test cases, or by
analysing a set of execution traces resulting from the
monitoring of the system (passive approaches).

Although it is possible to infer models from some
realistic systems, several points require further inves-
tigation before entering in an industrial phase. Among
them, we observed that the current approaches con-
sider a black-box system as a whole, which takes in-
put events from an external environment and produces
output events. Yet, most of the systems being cur-
rently developed are made up of reusable features or
components that interact together. The modelling of
these components and of their compositions would
bring a better readability and understanding of the
functioning of the system under learning.

We focus on this open problem in this paper
and propose a method called COnfECt (COrrelate
Extract Compose) for learning a system of CEF-
SMs (Callable Extended FSMs), which describes a
component-based system. COnfECt aims at com-
pleting the passive model learning approaches, which
take execution traces as inputs. The fundamental
idea considered in COnfECt is that a component of
a system can be identified from the others by its be-
haviour. COnfECt analyses execution traces, detects
sequences of distinctive behaviours, extracts them
into new trace sets from which CEFSMs are gener-
ated. To do this, COnfECt uses the notions of event
correlation, similarities of models and data clustering.
More precisely, the contributions of our work are:

• the definitions of the CEFSM model and of a
system of CEFSMs allowing to express the be-
haviours of components calling each other;

• COnfECt, a method supplementing the passive
model learning approaches that generate EFSMs
(Extended FSMs). COnfECt consists of two steps
called Trace Analysis & Extraction and CEFSM
Synchronisation. The first step splits traces into
event sequences that are analysed to build new
trace sets and to prepare the CEFSM synchroni-
sation. The second step proposes three strategies
of CEFSM synchronisation, which help manage
the over-generalisation problem, i.e., the problem
of generating models expressing more behaviours
than those given in the initial trace set. This step
returns a system of CEFSMs. We briefly show



how COnfECt can be combined with the passive
approach Gk-tail (Lorenzoli et al., 2008). We call
the new approach Ck-tail. We show how to ar-
range the steps of Gk-tail and COnfECt to gen-
erate a system of CEFSMs from the traces of a
black-box system.

The remainder of the paper is organised as fol-
lows: Section 2 presents some related work. Section
3 provides some definitions about the CEFSM model.
The COnfECt method is presented in Section 4. We
finally conclude and give some perspectives for future
work in Section 6.

2 RELATED WORK

We consider in this paper that model learning is de-
fined as a set of methods that infer a specification by
gathering and analysing system executions and con-
cisely summarising the frequent interaction patterns
as state machines that capture the system behaviour
(Ammons et al., 2002). Models can be generated
from different kinds of data samples such as affir-
mative/negative answers (Angluin, 1987), execution
traces (Krka et al., 2010; Antunes et al., 2011; Durand
and Salva, 2015), or source code (Pradel and Gross,
2009). Two kinds of approaches emerge from the lit-
erature: active and passive model learning methods.

Active learning approaches repeatedly query sys-
tems or humans to collect positive or negative obser-
vations, which are studied to build models. Many ex-
isting active techniques have been conceived upon the
L∗ algorithm (Angluin, 1987). Active learning can-
not be applied on all systems though. For instance,
uncontrollable systems cannot be queried easily, or
the use of active testing techniques may lead a sys-
tem to abnormal functioning because it has to be reset
many times. The second category includes the tech-
niques that passively generate models from a given
set of samples, e.g., a set of execution traces. These
techniques are said to be passive since there is no in-
teraction with the system to model. Models are often
constructed with these passive approaches by repre-
senting sample sets with automata whose equivalent
states are merged. The state equivalence is usually de-
fined by means of event sequence abstractions or state
based abstractions. With event sequence abstractions,
the abstraction level of the models is raised by merg-
ing the states having the same event sequences. This
process stands on two main algorithms: kTail (Bier-
mann and Feldman, 1972) and kBehavior (Mariani
and Pezze, 2007). Both algorithms were enhanced to
support events combined with data values (Lorenzoli
et al., 2008; Mariani and Pastore, 2008). In particu-

lar, kTail has been enhanced with Gk-tail to generate
EFSMs (Lorenzoli et al., 2008; Mariani et al., 2017).
The approaches that use state-based abstraction, e.g.,
(Meinke and Sindhu, 2011), adopted the generation of
state-based invariants to define equivalence classes of
states that are combined together to form final mod-
els. The Daikon tool (Ernst et al., 1999) were orig-
inally proposed to infer invariants composed of data
values and variables found in execution traces.

None of the current model learning approaches
support the generation of models describing the be-
haviours of components of a system under learning.
This work tackles this research problem and proposes
an original method for inferring models as systems
of CEFSMs. Our main contribution is the detection
of component behaviours in an execution trace set by
means of trace analysis, event correlation, model sim-
ilarity and data clustering.

3 CALLABLE EXTENDED
FINITE STATE MACHINE

We propose in this section a model of components-
based systems called Callable Extended Finite State
Machine (CEFSM), which is a specialised FSM in-
cluding parameters and guards restricting the firing of
transitions. Parameters and symbols are combined to-
gether to constitute events. A CEFSM describes the
behaviours of a component, which interacts with the
external environment, accepting input valued events
(i.e. symbols associated with parameter assignments)
and producing output valued events. In addition, the
CEFSM model is equipped by a special internal (un-
observable) event denoted call(CEFSM) to trigger the
execution of another CEFSM. This event means that
the current CEFSM is being paused while another
CEFSM C2 starts its execution at its initial state. Once
C2 reaches a final state, the calling CEFSM resumes
its execution after the event call(CEFSM). We do not
consider in this paper that a component is able to pro-
vide results to another one.

Before giving the CEFSM definition, we assume
that there exist a finite set of symbols E, a domain of
values denoted D and a variable set X taking values
in D. The assignment of variables in Y ⊆ X to ele-
ments of D is denoted with a mapping α : Y −→D. We
denote DY the assignment set over Y . For instance,
α= {x := 1,y := 3} is a variable assignment of D{x,y}.
α(x) = {x := 1} is the variable assignment related to
the variable x.

Definition 1 (CEFSM) A Callable Extended Finite
State Machine (CEFSM) is a 5-tuple 〈S,s0,Σ,P,T 〉



where :

• S is a finite set of states, SF ⊆ S is the non-empty
set of final states, s0 is the initial state,

• Σ ⊆ E = ΣI ∪ΣO ∪{call} is the finite set of sym-
bols, with ΣI the set of input symbols, ΣO the set
of output symbols and call an internal action,

• P is a finite set of parameters, which can be as-
signed to values of DP,

• T is a finite set of transitions. A transition

(s1,e(p),G,s2) is a 4-tuple also denoted s1
e(p),G−−−→

s2 where :
– s1,s2 ∈ S are the source and destination states,
– e(p) is an event with e ∈ Σ and p = 〈p1, ..., pk〉

a finite tuple of parameters in Pk(k ∈ N),
– G : DP→{true, f alse} is a guard that restricts

the firing of the transition.

A component-based system is often made up of
several components. This is why we talk about sys-
tems of CEFSMs in the remainder of the paper. A
system of CEFSMs SC consists of a CEFSM set C
and of a set of initial states S0, which also are the
initial states of some CEFSMs of C. SC is assumed to
include at least one CEFSM that calls others CEFSMs
and whose initial state is in S0:

Definition 2 (System of CEFSMs) A System of
CEFSMs is a 2-tuple 〈C,S0〉 where :

• C is a non-empty and finite set of CEFSMs,
• S0 is a non-empty set of initial states such that
∀s ∈ S0,∃C1 = 〈S,s0,Σ,P,T 〉 ∈C : s = s0.

We also say that a CEFSM C1 is callable-complete
over a system of CEFSMs SC, iff the CEFSMs of SC
can be called from any state of C1:

Definition 3 (Callable-complete CEFSM) Let SC
= 〈C, S0〉 be a system of CEFSMs. A CEFSM
C1 = 〈S,s0, Σ,P,T 〉 is said callable-complete over

SC iff ∀s ∈ S,∃s2 ∈ S : s
call(EFSM),G−−−−−−−−→ s2, with

G :
∨

C2∈C\{C1}
CEFSM =C2

A trace is a finite sequence of observable valued
events in (E×DX )

∗. We use ε to denote the empty
sequence.

4 THE CONFECT APPROACH

COnfECt (COrrelate Extract Compose) is an ap-
proach for learning a system of CEFSMs from the

execution traces of a black-box system. COnfECt
analyses traces and tries to detect components and
theirs respective behaviours, which are modelled with
CEFSMs. COnfECt aims to complement the passive
model learning methods and requires a trace set to
analyse them and identify the components of a black-
box system. And the more traces, the more correct the
component detection will be.

The system under learning SUL can be indeter-
ministic, uncontrollable (it may provide output valued
events without querying it with a valued input event)
or can have cycles among its internal states. How-
ever, SUL and its trace set denoted Traces have to
obey certain restrictions to avoid the interleaving of
events. We consider that SUL is constituted of com-
ponents whose observable behaviours are not carried
out in parallel. One component is executed at a time;
a caller component is being paused until the callee ter-
minates its execution. Furthermore, we consider hav-
ing a set Traces composed of traces collected from
SUL in a synchronous manner (traces are collected
by means of a synchronous environment with syn-
chronous communications). Traces can be collected
by means of monitoring tools or extracted from log
files. Furthermore, we do not focus this work on the
trace formatting, hence, we assume having a mapper
(Aarts et al., 2010) performing abstraction and return-
ing traces as sequences of valued events of the form
e(p1 := d1, . . . , pk := dk) where p1 := d1, . . . , pk := dk
are parameter assignments.

Figure 1: The COnfECt approach overview

As depicted in Figure 1, COnfECt is composed
of two main stages called Trace Analysis & Extrac-
tion and CEFSM Synchronisation. The former tries
to detect components in the traces of Traces and seg-
ments them into a set of trace sets called STraces. The
second stage proposes three CEFSM synchronisation
strategies and provides a system of CEFSMs SC. The-
ses stages are presented below. We believe they can
be interleaved with the steps of several passive model
learning techniques, e.g., (Mariani and Pastore, 2008;
Lorenzoli et al., 2008).



4.1 Trace Analysis & Extraction

This stage tries to identify components in the traces
of Traces by means of Algorithm 1. This algorithm
is based on three notions implemented by three pro-
cedures. It analyses every trace of Traces with In-
spect, it segments them and builds the new trace sets
T1, . . . ,Tn with Extract. Finally, it analyses the first
trace set T1 to detect other components with Separate.
The algorithm returns the set STraces, which is it-
self composed of trace sets. Each will give birth to a
CEFSM.

Algorithm 1: Inspect&Extract Algorithm
input : Traces = {σ1, . . . ,σm}
output: STraces = {T1, . . . ,Tn}

1 T1 = {};
2 STraces = {T1};
3 foreach σ ∈ Traces do
4 σ′1σ′2 . . .σ

′
k=Inspect(σ);

5 STraces=Extract(σ′1σ′2 . . .σ
′
k ,T1,STraces);

6 STraces=Separate(T1,STraces);
7 return STraces;

4.1.1 Trace analysis

We assume that a component can be identified by
its behaviour, which is materialised by valued events
composed of symbols and data. We also observed
in many systems, in particular in embedded devices,
that the observation of controllability issues, i.e., ob-
serving output events without giving any input event
before, is often the result of a component interacting
with the external environment.

From these observations, we firstly analyse traces
by means of a Correlation coefficient. This coefficient
aims to evaluate the correlation of successive valued
events, in other words, their links or relations. We
define the Correlation coefficient between two val-
ued events by means of a utility function, which in-
volves a weighting process for representing user pri-
orities and preferences, here towards some correla-
tion factors. We have chosen the technique Simple
Additive Weighting (SAW) (Yoon and Hwang, 1995),
which allows the interpretation of these preferences
with weights:

Definition 4 (Correlation coefficient) Let e1(α1),
e2(α2) be two valued events of (E × DX ), and
f1(e1(α1),e2(α2)), . . . fk(e1(α1),e2(α2)) be correla-
tion factors.
Corr(e1(α1),e2(α2)) is a utility function,
defined as: 0 ≤ Corr(e1(α1),e2(α2)) =

∑
k
i=1 fi(e1(α1),e2(α2)).wi ≤ 1 with wi ∈ R +

0
and ∑

k
i=1 wi = 1.

The factors must give a value between 0 and 1.
They can have a general form or be established with
regard to the system context and addressed by an ex-
pert. We give below two general factor examples:

• f1(e1(α1),e2(α2)) = freq(e1e2)
freq(e1)

+ freq(e1e2)
freq(e2)

with
freq(e1e2) the frequency of having the two sym-
bols one after the other in Traces and freq(e) the
frequency of having the symbol e. This factor,
used in text mining, computes the frequency of the
term e1e2 in Traces over e1 and over e2 to avoid
the bias of getting a low factor when e1 is greatly
encountered (resp. e2);

• f2(e1(α1),e2(α2)) = |param(α1) ∩ param(α2)|
/min(|param(α1)|, |param(α2)|) with param(α)
= {p | (p := v) ∈ α} is the overlap of the
shared parameters between two valued events
e1(α1),e2(α2). We have chosen the Overlap coef-
ficient because it is more suited for comparing sets
of different sizes. We recall that the overlap of two
sets X and Y is defined by |X ∩Y |/min(|X |, |Y |).

From this Correlation coefficient, we define two
relations to express what a strong and weak event cor-
relations are. Unfortunately, experts in data mining
often claim that this depends on the considered con-
text. This is why we use two thresholds X and Y in the
following. Both are factors between 0 and 1, which
need to be appraised, for instance after some iterative
attempts.

Definition 5 (Strong and Week event Correlations)
Let e1(α1), e2(α2) be two valued events of (E×DX )
such that e1 6= call and e2 6= call.
e1(α1) weak-corr e2(α2) ⇔de f Corr(e1(α1),
e2(α2))< X.
e1(α1) strong-corr e2(α2) ⇔de f Corr(e1(α1),
e2(α2))> Y .

These relations are specialised on two valued
events. We complete them to formalise the strong
correlation of valued event sequences. We say that
strong-corr(σ1) holds when σ1 has successive valued
events that strongly correlate. We are now ready to
identify the behaviours of components. We define the
relation σ1 mismatch σ2, which holds when the last
event of σ1 weakly correlates with the first one of σ2
or when a controllability issue is observed between σ1
and σ2:

Definition 6 (Valued event sequence correlation)
strong-corr(σ) iff



 σ = e(α) ∈ (E×DX ),
σ = e1(α1) . . .ek(αk)(k > 1),∀(1≤ i < k) :
ei(αi) strong-corr ei+1(αi+1)

Let σ1 = e1(α1) . . .ek(αk), σ2 = e′1(α
′
1) . . .e

′
l(α
′
l) ∈

(E×DX )
∗. σ1 mismatch σ2 iff σ2 = ε,

ek(αk) weak-corr e′1(α
′
1),

e′1 is an output symbol∧ ek is an output symbol

The trace analysis is performed with the proce-
dure Inspect given in Algorithm 2, which covers ev-
ery trace σ of Traces and tries to segment σ into sub-
sequences such that each sub-sequence has a strong
correlation and has a weak correlation with the next
sub-sequence. We consider that these sub-sequences
result from the execution of components.

4.1.2 Trace extraction

Every trace σ ∈ Traces was segmented into
σ′1σ′2 . . .σ

′
k by means of the relations strong-corr and

mismatch. Every time σ′i mismatch σ′i+1 holds be-
tween two successive sub-sequences, we consider
having the call of other components by the current
one because both sub-sequences exhibit different be-
haviours. σ is modified by the procedure Extract to
express these calls.

The procedure Extract(σ,T,STraces), given in
Algorithm 2, takes the trace σ = σ1 . . .σk, transforms
it and then adds the new trace into the trace set T . For
a sub-sequence σid of the trace σ = σ1 . . .σk, the pro-
cedure Extract tries to find another sub-sequence σi
such that strong-corr(σidσi) holds (lines 10,11). The
sequence σid+1 . . .σi−1 or σid+1 . . .σk (when σi is not
found) exposes the behaviour of other components
that are called by the current one. If this sequence
is itself composed of more than two sub-sequences,
then the procedure Extract is recursively called (lines
13,14). Otherwise, the sequence is added to a new
trace set Tn. In σ, the sequence σid+1 . . .σi−1 (or
σid+1 . . .σk) is removed and replaced by the valued
event call(CEFSM := Cn) (lines 12,19). Once, the
sequence σ is covered by the procedure Extract, it is
placed into the set T .

Let us consider the example of Figure 2, which
illustrates the transformation of a trace σ. This
trace was initially segmented into 6 sub-sequences.
A) We start with σ1. We suppose the first se-
quence that is strongly correlated with σ1 is σ5.
σ is transformed into σ1call(CEFSM := C2)σ5σ6.
Recursively, Extract(σ2σ3σ4,T2) is called to split
σ′ = σ2σ3σ4. B) We suppose σ2σ4 strongly cor-
relates, hence, σ′ is modified and is equal to σ′ =
σ2call(CEFSM :=C3)σ4. The sequence σ3 is a new
trace of the new set T3. As σ′ is completely covered,

Figure 2: Sequence extraction example

Figure 3: Component call example

σ′ is added to the new trace set T2. C) We go back
to the trace σ at the sub-sequence σ5. As there is no
more sub-sequence that strongly correlates with σ5,
the end of the sequence σ, i.e., σ6, is extracted and
placed into the new trace set T4. The trace σ is now
equals to σ1call(CEFSM := C2)σ5call(CEFSM :=
C4). This trace is placed into the trace set T1. At the
end of this process, we have recovered the hierarchi-
cal component call depicted in Figure 3. And we get
four trace sets.

When the procedure Extract terminates, Algo-
rithm 1 yields the set Straces = {T1,T2, . . . ,Tn} with
T2, . . . ,Tn some sets including one trace and T1 a set
of modified traces, originating from Traces. As we
do not suppose that Traces expresses the behaviours
of only one component, T1 may include traces result-
ing from different components. Hence, T1 needs to be
analysed as well and possibly partitioned.

4.1.3 Trace clustering

The trace set T1 is analysed with the procedure Sep-
arate, which returns an updated set STraces. The
procedure aims at partitioning T1 into trace sets ex-
clusively composed of similar traces. We consider
that similar traces exhibit a behaviour provided by
the same component. We evaluate the trace similar-
ity with regard to the symbols and parameters shared



between pairs of traces. Several general similarity
coefficients are available in the literature for compar-
ing the similarity and diversity of sets, e.g., the well-
known Jaccard coefficient. We have once more cho-
sen the Overlap coefficient because the symbol or pa-
rameter sets used by two traces may have different
sizes.

Definition 7 (Trace Similarity coefficient) Let σi
(i = 1,2) be two traces in (E×DX )

∗.
Σ(σi) = {e | e(α) is a valued event of σi} is the sym-
bol set of σi.
P(σi) = {p | e(α) is a valued event of σi,(p := v) ∈
α} is the parameter set of σi.
SimilarityTrace(σ1,σ2) = Overlap(Σ(σ1),Σ(σ2)) +
Overlap(P(σ1),P(σ2))/2.

With this coefficient, the procedure Separate
builds the sets of similar traces from T1 by means
of a clustering technique. In short, the coefficient is
evaluated for every pair of traces to build a similarity
matrix, which can be used by several clustering al-
gorithms to find equivalence classes. The clustering
techniques here return the clusters of similar traces
T S

11, . . .T
S

1k. These sets are added into STraces. The
sets T S

1i are marked with the exponent S to denote they
are composed of execution traces observed from com-
ponents that were not called by other components at
the beginning of these executions.

4.2 The CEFSM Synchronisation Stage

This stage aims to organise the component synchro-
nisation with regard to the event call(CEFSM). The
choice of integration of this stage within an exist-
ing model learning approach mainly depends on the
steps of this approach. But it sounds natural to fo-
cus on models, here CEFSMs, for applying differ-
ent synchronisation strategies. Thus, we consider that
the set STraces has been lifted to a system of CEF-
SMs SC = 〈C,S0〉 by means of a passive learning
method, e.g., (Lorenzoli et al., 2008). C is composed
of the CEFSM Ci such that Ci is derived from a trace
Ti ∈ STraces. In particular, a marked set T S

j (com-
posed of traces observed from components that were
not called by other components) gives the CEFSM
C j= 〈S j,s0 j,Σ j,Pj,Tj〉 whose initial state s0 j is also
an initial state of the system of CEFMs SC (s0 j ∈ S0).

We propose three general CEFSM synchronisa-
tion strategies in the paper, which provide systems
of CEFSMs having different levels of generalisation.
These strategies are implemented in Algorithm 3 and
described below:

Strict synchronisation (Algorithm 3 lines(1,2)).
We want a system of CEFSMs SC in such a way

Algorithm 2: Procedures Inspect, Extract and
Separate
1 Procedure Inspect(σ) : σ′1σ′2 . . .σ

′
k is

2 Find the no-empty sequences σ′1σ′2 . . .σ
′
k such that:

σ = σ′1σ′2 . . .σ
′
k , strong-corr(σ′i)(1≤i≤k), (σ′i mismatch

σ′i+1)(1≤i≤k−1);

3 Procedure Extract(σ = σ1σ2 . . .σk ,T,STraces): STraces is
4 id := 1;
5 while id < k do
6 n := |STraces|+1;
7 Tn := {};
8 STraces := STraces∪{Tn};
9 σp is the prefix of σ up to σid ;

10 if ∃i > id: strong-corr(σid σi) then
11 σi is the first sequence in σid . . .σk such that

strong-corr(σid σi);
12 σ := σpσid call(CEFSM :=Cn)σi . . .σk ;
13 if (i− id)> 2 then
14 Extract(σid+1 . . .σi−1,Tn);

15 else
16 Tn := Tn ∪{σid+1};

17 id := i;

18 else
19 σ := σpσid call(CEFSM :=Cn);
20 if (k− id)> 1 then
21 Extract(σid+1 . . .σk ,Tn);

22 else
23 Tn := Tn ∪{σk};

24 id := k;

25 T := T ∪{σ};
26 return STraces;

27 Procedure Separate(T , STraces): STraces is
28 ∀(σi,σ j) ∈ T 2 Compute SimilarityTrace(σi,σ j);
29 Build a similarity matrix;
30 Group the similar traces into clusters {T11, . . .T1k};
31 STraces = STraces\{T1}∪{T S

11, . . . ,T
S

1k};

that a CEFSM of SC cannot repetitively call another
CEFSM. The callee CEFSM must be composed of
one acyclic path only (one behaviour). This strategy
aims to limit the over-generalisation problem, i.e. the
fact of generating models expressing more behaviours
than those given in the initial trace set Traces. This
strategy was already almost achieved by the previous
stage Trace Analysis & Extraction. Indeed, each sub-
sequence extracted from a trace is placed into new
trace set Ti and is replaced by one valued event of
the form Call(CEFSM := Ci). Hence, it remains to
transform the trace sets of STraces into CEFSMs for
obtaining a system of CEFSMs organised with a strict
synchronisation.

Weak synchronisation (Algorithm 3 lines(3-
16)). This strategy aims at reducing the number of



components and allows repetitive component calls.
The previous stage has possibly created too much
trace sets, therefore the system of CEFSMs SC may
include several similar CEFSMs modelling the func-
tioning of the same component. The similarity notion
is once more defined and evaluated by a Similarity
coefficient.

Definition 8 (CEFSM Similarity coefficient) Let
Ci = 〈Si,s0i,Σi,Pi,Ti〉 (i = 1,2) be two CEFSMs.
SimilarityCEFSM(C1,C2) = Overlap(Σ1,Σ2) +
Overlap(P1,P2)/2.

The similar CEFSMs of SC are once more
grouped by means of a clustering technique, which
uses the Similarity coefficient. The CEFSMs of
the same cluster are joined by means of a disjoint
union. Furthermore, the guards of the transitions

s1
call(CEFSM),G−−−−−−−−−→ s2 are updated accordingly so that

the correct CEFSMs are being called. In addition,

every transition s1
call(CEFSM),G−−−−−−−−−→ s2 is replaced by a

self loop (s1,s2)
call(CEFSM),G−−−−−−−−−→ (s1,s2) by merging the

states s1 and s2.
Strong synchronisation (Algorithm 3 lines(4-

20)). This strategy provides more over-generalised
models by generating callable-complete CEFSMs. It
is based on the previous strategy: we join the similar
CEFMSs of SC into bigger CEFSMs and we trans-
form the transitions labelled by call as previously. In
addition, we complete every state s with new self-

loop transitions of the form s
call(CEFSM),G−−−−−−−−−→ s so that

all the CEFSMs become callable-complete over the
system of CEFSMs SC. This strategy seems particu-
larly interesting for modelling component-based sys-
tems having independent components that are started
any time.

We studied the integration of COnfECt with sev-
eral passive learning approaches. We have imple-
mented a combination of the approach with kTail
to generate Labelled Transition Systems (LTS). The
source code as well as examples are available in
(Salva et al., 2018).

We are also studying the integration of COnfECt
with Gk-tail to generate systems of CEFSMs. Fig-
ure 4 illustrates how the COnfECt and Gk-tail steps
can be organised. The COnfECt steps are given with
white boxes. We call the resulting approach Ck-tail.
Step 2 corresponds to the first step of COnfECt. We
placed it after Step 1 (trace merging) to have less trace
to analyse, and before Step 3 (guard generation) to
measure the event correlation on symbols and real
values. The CEFSM Synchronisation step of COn-
fECt is the fifth step of Ck-tail. It is performed af-

Algorithm 3: CEFSM synchronisation strate-
gies

input : System of CEFSMs SC = 〈C,S0〉, strategy
output: System of CEFSMs SC f = 〈C f ,S0 f 〉

1 if strategy = Strict synchronisation then
2 return SC;

3 else
4 ∀(Ci,C j) ∈C2 Compute SimilarityCEFSM(Ci,C j);
5 Build a similarity matrix;
6 Group the similar CEFSMs into clusters {Cl1, . . .Clk};
7 foreach cluster Cl = {C1, . . . ,Cl} do
8 CCl :=Disjoint Union of the CEFSMs C1, . . . ,Cl ;
9 if s0i ∈ S0(1≤ i≤ l) then

10 S0 f = S0 f ∪ s0Cl ;

11 C f =C f ∪{CCl};

12 foreach Ci = 〈S,s0,Σ,P,V,T 〉 ∈C f do

13 foreach s1
call(CEFSM),G−−−−−−−−→ s2 ∈ T with G : CEFSM =Cm

do
14 Find the Cluster Cl such that Cm ∈Cl;
15 Replace G by G : CEFSM =CCl ;
16 Merge (s1,s2);

17 if strategy = Strong synchronisation then
18 foreach Ci = 〈S,s0,Σ,P,T 〉 ∈C f do
19 Complete the states of S with self-loop transitions

so that Ci is callable-complete;

20 return SC f

ter the CEFSM tree generation, and before Step 6
(state merging) because it sounds more interesting to
group the similar CEFMS and to merge their equiv-
alent states after, as more equivalent states should be
merged if we follow this step order. We illustrate this
integration with a example based upon a real system
(an IOT (Internet Of Things) thermostat) in (Salva
et al., 2018).

Figure 4: Ck-tail: Integration of COnfECt with Gk-tail

5 ACKNOWLEDGMENT
Research supported by the French Project VASOC

(Auvergne-Rhne-Alpes Region) https://vasoc.
limos.fr/



6 CONCLUSION

We have presented COnfECT, a method that com-
plements existing passive model learning approaches
to infer systems of CEFSMs from execution traces.
COnfECT is able to detect component behaviours by
analysing traces by means of a Correlation coeffi-
cient and a Similarity coefficient. In addition, COn-
fECT proposes three model synchronisation strate-
gies, which help manage the over-generalisation of
systems of CEFSMs.

In future work, we intend to carry out more evalu-
ations of COnfECT on several kinds of systems. The
main issue concerns the implementation of monitors
and mappers, which are required to format traces. We
also intend to tackle the raise of the abstraction level
of CEFSMs. Indeed, while the trace analysis, the
successive computations of the Correlation coefficient
could also be used to perform event aggregation in
accordance with event correlation and some CEFSM
structural restrictions.
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