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Abstract This paper presents a model learning ap-

proach to recover models from event logs for commu-

nicating systems. We refer here to systems made up of

components interacting with each other by data net-

works and whose communications can be monitored, e.g.,

Internet of Things (IoT) systems, distributed applica-

tions or Web service compositions. Our approach, called

CkTailv2, is specialised in the generation of behavioural

models along with dependency graphs. It generates one

Input Output Labelled Transition System (IOLTS) for

every component participating in the communications

and one graph illustrating the directional dependen-

cies with the other components. These models can help

engineers better and quicker understand how a commu-

nicating system behaves and is structured. They can also

be used for bug detection or for test generation. Com-
pared to other model learning approaches specialised for

communicating systems, CkTailv2 improves the preci-

sion of the generated models by integrating algorithms

that better recognise sessions in event logs. CkTailv2

revisits and extends a first approach by simplifying the

set of requirements and assumptions in order to increase

its applicability on communicating systems. It now inte-

grates two new trace extraction algorithms: the former

segments event logs into traces by trying to detect ses-

sions; the latter assumes event logs to include session

identifiers and allows to quicker generate models. We re-

port experimental results obtained from 10 case studies
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and show that CkTailv2 has the capability of producing

precise models in reasonable time delays.

Keywords Model learning; Event logs; Communicat-

ing systems; IOLTS; Dependency graphs.

1 Introduction

Generally speaking, behavioural models are abstract

representations of systems, which describe how a sys-

tem responds to external and internal events. It is well-

established that such models offer a lot of benefits such

as, improving system understanding, preserving knowl-

edge, simulating systems before the code generations,

detecting bugs, or automating the test case generation.
In the Industry, models are often neglected though. The

main concerns are often related to the difficulty of writ-

ing models, which is known as a hard and error-prone

task, and to the problem of keeping these models up-to-

date, especially over the long term.

Model learning is receiving growing attention as a

solution to help device models as state machines. These

models, which capture system behaviours, can be con-

sidered as documentation or exploited in some software

engineering stages, e.g. robustness or security testing.

Over the last decade, there has been an extensive body

of work in this field, making emerge two main categories

of approaches called active and passive model learning.

Such approaches infer behavioural models of systems

seen as a black-boxes, either by interacting with them

(active approaches) or by analysing a set of execution

traces resulting from monitoring (passive approaches).

More recently, some papers proposed innovative model

learning algorithms and tools, which have the capabili-

ties to infer symbolic models [28], resource-aware models
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[8, 30], timed models [31], and which can be applied to

more and more complex systems.

We however observed that a few works [9, 26, 32]

focused on the learning of models for communicating

systems. Yet, these systems are more and more om-

nipresent in our daily life, especially with the emergence

of Internet of Things (IoT) systems. Model learning
would greatly ease the understanding and analysis of

communicating systems. For instance, the generation of

models expressing the behaviours of every component

could help engineers to quicker understand the function-

ing of the whole system and would assist them in the

bug or vulnerability detection. We also noticed that sev-

eral issues remain open in the previous approaches. For

instance, the active technique given in [32] requires to

know the system topology in advance and only supports

accessible and testable components to build models.

But, we have often observed that many communicat-

ing systems integrate untestable components. For in-

stance, an autonomous component that continuously

delivers messages is uncontrollable and hence cannot

be experimented to get observations. The two other

papers propose passive approaches, which do not rely

on these requirements. Instead, they analyse execution

traces to recover behaviours. In order to build precise

models, one key point is to be able to recognise ses-

sions in event logs, i.e. a temporary message interchange

among components forming a behaviour of the whole

system from one of its initial states to one of its final

states. Unfortunately, these approaches cannot extract

sessions. These observations motivated us to present a

first approach and tool called Communicating system

k-Tail, shortened CkTailv1 [36]. To design it, we choose

to extend the k-Tail learning algorithm [10] with the

capability to build one model called Input Output La-
belled Transition System (IOLTS) for every component

of a communicating system under learning. k-Tail is

well-known to quickly build generalised models from

traces, but it is unable to take into account the notion

of component and to construct models from event logs.

Furthermore, CkTailv1 goes further in model learning

by proposing the generation of dependency graphs. The

latter show in a simple way the directional dependencies

observed among components. We showed that CkTailv1

builds more precise models than the two previous passive

approaches, but we also concluded that its requirements

and assumptions are still too restrictive to be practical.

Contributions: this paper presents an extension of

CkTailv1, simply called CkTailv2, and the related tool.

This new approach aims at relaxing some requirements

of CkTailv1 for targeting more communicating systems.

CkTailv2 indeed accepts event logs having communica-

tion and non-communication events, the latter being

often used to keep track of debug outputs or errors.

Event logs can now integrate requests followed by an

unlimited amount of responses. Besides, CkTailv2 re-

lies on two session extraction algorithms. The former

segments event logs by trying to detect sessions with

respect to constraints related to the request-response

pattern, the recognition of nested requests, time delays

and data dependency among components. The latter

assumes event logs to include session identifiers. This

assumption simplifies the event log segmentation and

allows a quicker model generation.

This paper also provides a detailed empirical eval-

uation, which investigates the precision of the models

derived by CkTailv2 and its performance in terms of

execution times. This empirical evaluation was carried

out on event logs collected from 10 case studies and

compares our implementation of CkTailv2 against three

other tools namely CSight, the algorithm given in [26]

and CkTailv1. This evaluation shows that CkTailv2

infers more precise models than the three previously

approaches, in reasonable time delays.

In summary, the major contributions of this paper

are:

– the presentation of the CkTailv2 tool and approach,
which generates behavioural models and dependency

graphs for every component of a communicating

system from event logs,

– the design of two new algorithms allowing to better

recognise sessions in event logs, and hence to build

more precise models,

– the implementation of the approach publicly avail-

able in [12] and an evaluation that compares Ck-

Tailv2 with CSight, the approach proposed in [26]

and CkTailv1.

Paper organisation: Section 2 discusses related work

and presents our motivations. We provide an overview

of our tool along with its capability of inferring models

of communicating systems with a concrete example of

IoT system in Section 3. The CkTailv2’s algorithms

are detailed in Section 4. We recall some basic defini-

tions about the IOLTS model and we describe the four

steps of the approach. Section 5 examines experimen-

tal results and discusses about the threats to validity.

Section 6 summarises our contributions and draws some
perspectives for future work.

2 Related Work

Model learning can be defined as a set of methods that

recover a specification by gathering and analysing sys-

tem executions and concisely summarising the frequent
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interaction patterns as state machines that capture the

system behaviour [4]. Model learning algorithms can be

organised into two main categories: active and passive

approaches. Both categories are discussed below.

2.1 Active Model Learning

In this first category, systems are repeatedly queried

(often with tests) to collect positive or negative obser-

vations, which are analysed and generalised to produce

models [3, 5, 7, 15, 21, 22, 33]. Most of the active tech-

niques have been conceived upon two concepts, the L∗

algorithm [5] and incremental learning [15]. This model

learning category is actively studied to make the ap-

proaches more effective and efficient. Among the possible

research directions, some works recently proposed opti-

misations to reduce the query number [2], while others

tackled systems having specific constraints [21].

Some active model learning approaches have been

proposed for communicating systems. Groz et al. in-

troduced an algorithm to generate a controllable ap-

proximation of components through active testing [19].

This kind of active technique implies that the system is

testable and can be queried. The learning of the com-

ponents is done in isolation. A recent work lifts this

constraint by testing a system with unknown compo-

nents by means of a SAT solving method [32]. Tappler et

al. also proposed a model-based testing technique for IoT

systems [41]. This technique is based on the generation

of models from multiple implementations of a common

specification, which are later pair-wise cross-checked

for equivalence. Any counterexample to equivalence is

flagged as suspicious and has to be analysed manually.

2.2 Passive Model Learning

The second category includes the techniques that pas-

sively recover models from a given set of samples, e.g., a

set of execution traces. These are said passive as there

is no direct interaction with the system under learning.

Models are often generated by encoding sample sets

with state diagrams whose equivalent states are merged.

For instance, the k-Tail approach [10] merges the states

having the same k-future, i.e. the same event sequences

having the maximum length k, which all are accepted

by the two states. k-Tail has been later enhanced with

Gk-tail to generate Extended Finite State Machines

encoding data constraints [24]. Other approaches also

enhance k-Tail to build more precise models [8, 30, 31].

kBehavior [27] is another kind of approach that gener-

ates models from a set of traces by taking every trace one

after the other and by completing a finite-state automa-

ton in such a way that it now accepts the trace. These

previous passive algorithms usually yield big models,

which may quickly become unreadable.

Some passive approaches dedicated to communicat-

ing systems have also been proposed. Mariani et al.

proposed in [26] an automatic detection of failures in

log files by means of model learning. This work extends

kBehavior to support events combined with data. It

segments an event log with two strategies: per compo-

nent or per user. The former, which can be used with

communicating systems, generates one model for each

component. CSight [9] is another tool specialised in the

model learning of communicating systems, where compo-

nents exchange messages through synchronous channels.

It is assumed that both the channels and components

are known. Besides, CSight requires specific trace sets,

which are segmented with one subset by component.

CSight follows five stages: 1) log parsing and mining of
invariants 2) generation of a concrete Finite State Ma-

chine (FSM) that captures the functioning of the whole

system by recomposing the traces of the components;
3) generation of a more concise abstract FSM; 4) model

refinement with invariants that must hold in FSMs, and

5) generation of Communicating FSM.

2.3 Key Observations and Motivations

After having studied the literature, we have firstly ob-

served that few papers and tools tackled the model

generation of component based systems or communicat-

ing systems. As stated in the introduction, the main

concerns of the active model learning techniques are that

the component topology must be known in advance, and

that all the components must be reachable, testable and

resettable many times. As a consequence, active learning

can be currently applied on a limited amount of sys-

tems. As for passive techniques, the approaches [9, 26]

have paved the way, however, there is still room of im-

provements to relax the approach requirements and to

infer precise models. Besides, we have observed that the
generation and use of invariants to make models more

precise also limits learning to small trace sets only in

practice. For instance, the invariant mining and satis-

fiability checking used in CSight are both costly and

prevent the tool from taking as input medium to large

trace sets.

We have proposed in [37] a passive model learning al-

gorithm for component-based systems, which builds one

model per component to avoid the generation of large

and unreadable models. This approach is specialised to

IoT systems with an algorithm called Assess [34]. The
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requirements considered in these approaches are differ-

ent from those of CkTail or CSight. The main difference

lies in the fact that the communications among compo-

nents are assumed hidden (not available in event logs).

Therefore, Assess tries to detect implicit component

calls and adds new synchronisation actions in models.

Its algorithm is hence specific to this assumption. Then,

we have proposed CkTailv1 [36] to generate models of

communicating systems. In short, the novelty proposed

by CkTailv1 lies in its capability of detecting sessions

in event logs. Indeed, CSight needs sessions put in sepa-
rate sets but does not provide a way to generate them

from event logs. The work proposed in [27] offers the

possibility to segment event logs with several strategies.

One of them allows to extract the session of every com-

ponent on condition that the events include component

identifiers.

We showed that CkTailv1 builds more precise models

than the other approaches by better recognising sessions,

but we also concluded that its requirements are too

restrictive to be widely used. Indeed, CkTailv1 requires

event logs comprising communication events only in

such a way that each request has to be followed by one

response only. CkTailv2 aims at relaxing some of these

assumptions and integrates two new trace extraction

algorithms to support more communicating systems.

3 CkTailv2 Tool and Approach Presentation

CkTailv2 is implemented in Java and is released as open

source in [12]. The tool takes as inputs an event log

collected from a communicating system and a file in-

cluding regular expressions used to format the event log.

It returns two kinds of models. The behaviours of each

component of the system under learning are encoded

with one IOLTS. Intuitively, an IOLTS expresses here

the interactions of one component c with the others

along with the non-communication actions of c. Besides,

CkTailv2 generates dependency graphs, given under the

form of Direct Acyclic Graphs (DAGs). Each component

has its own DAG capturing its dependencies towards

other components. Such graphs help better comprehend

the architecture of the whole system. They complement

the IOLTSs by offering another viewpoint of the com-

ponent interactions and they might be used to different

purposes, e.g., testability measurement, or security anal-

ysis. Once generated, CkTailv2 stores these models into

two folders containing files saved in the DOT format.

We chose this format since it is based upon a well-known

plain text graph description language that can be trans-

lated into graphics formats, e.g., PDF.

We provide below the requirements of CkTailv2, an

over-view of its architecture and functioning along with

an example of model generation.

3.1 CkTailv2 Requirements

The capability of CkTailv2 of inferring models depends

on several realistic assumptions made on a system under

learning denoted SUL:

– A1 Event log: we consider the components of SUL

as black-boxes (no access to firmware, code, data

stored on the device, etc.). The communications

among the components can be monitored, e.g., on

components, on servers, gateways, or by means of

wireless sniffers. Event logs are collected in a syn-

chronous environment made up of synchronous com-

munications. Besides, these events are ordered by
means of timestamps given by a global clock. At the

end of the monitoring process, we consider having

one event log;

– A2 Event content: components produce commu-

nication events or non-communication events. Both
kinds of events include parameter assignments al-

lowing to identify the source and the destination

of each event. For non-communication events, both

the source and the destination refer to the same

component that has produced the event. Besides, a
communication event can be identified either as a

request or a response;

– A3 Device collaboration: components can run in

parallel and communicate with each other. To learn

precise models, we want to recognise sessions of the

system in event logs. We consider two exclusive cases:

– A31: the components of SUL follow this strict

behaviour: they cannot run multiple instances;

requests are processed by a component on a first-

come, first served basis. Besides, components fol-

low the request –response exchange pattern (a

response is associated to one request, a request

is associated to one or more responses), or

– A32: the events that belong to the same session

are identified by a parameter assignment.

The session recognition mentioned in A3 helps ex-

tract traces expressing complete behaviours of SUL, i.e.

disjoint action sequences starting from one of its ini-

tial states and ending in one of its final states. A32

represents the classical assumption stating that mes-

sages include an identifier allowing to observe whole

collaborations among components. Usually, the session

identification strongly facilitates the trace extraction.

Unfortunately, we have observed that this technique is
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seldom adopted with communicating systems. When it

is not used, we restrict the functioning of SUL with A31

to be able to recognise sessions. We have observed that

this assumption can be applied with many wireless or

IoT systems.

3.2 CkTailv2 Overview

CkTailv2 is organised into four-steps, illustrated in Fig-

ure 1. Initially, the user gives as inputs an event log

collected from SUL along with regular expressions. The
latter are used to format the event log into a sequence

S of actions of the form a(α) with a a label and α some

parameter assignments. In accordance with the assump-

tions A1-A3, the event log formatting allows to highlight

some information such as timestamps, or the sources

and destinations of the messages (request or response).

Execution traces are extracted from S by means of

two algorithms, which rely either on the assumption A31
or A32. In short, if the actions include session identifiers,

allowing to directly recognise sessions in S (A32), then

we call an algorithm that extracts traces by means of

these identifiers. Otherwise, we use a more complex

algorithm, which aims at recognising sessions in S with

respect to constraints derived from the assumptions
A1-A31. Both algorithms return a trace set denoted

Traces(SUL). In the meantime, these algorithms detect

dependencies among the components of SUL and build

a dependency set denoted Deps(SUL).

Then, the third step of CkTailv2 derives dependency

graphs from Deps(SUL). In its last step, CkTailv2 gener-

ates one IOLTS for every component of SUL with three

sub-steps called “4A Trace partitioning”, “4B IOLTS

Generation” and “4C IOLTS Generalisation”. The lat-

ter calls the k-Tail approach, which is a model learning

technique used to reduce IOLTSs by merging equivalent

states.

3.3 Model Learning Example

Before describing the CkTailv2’s steps, let us illustrate

them with a motivating example of model generation.

Figure 2 shows a part of an event log collected from an

IoT system made up of devices and of two gateways. The

events are formatted by means of regular expressions

to produce actions. The regular expression example of

Figure 2 extracts from HTTP requests a label equals to

the URI along with some parameters. Figure 3 depicts

an example of sequence of 15 actions obtained after the

first step of CkTailv2. The first four actions are derived

from the HTTP messages of Figure 2. As required, these

actions indicate the sources and destinations of the

messages with the parameters from and to. The other

parameter assignments capture acknowledgements or

sensor data, e.g., a temperature value with svalue:=68 or

a level of luminance with svalue:=1000. We can observe

from these actions that the IoT system SUL is made up

of 6 components. But interpreting their interactions and

what they do is still tricky because of lack of readability.

Traces are now extracted from the action sequence

S of Figure 3 by the second step of CkTailv2. It covers

and segments S while trying to recognise sessions. In

our example, no session identifier is found in the actions.

As a consequence, CkTailv2 uses an algorithm that

tries to recover sessions with respect to the assumption

A31. To be integrated in the algorithm, we formulated

this assumption with five constraints expressing what

a session is and when keeping an action to a current

session. These constraints are detailed in Section 4.3

and summarised as follows: C1: a response is always

associated to the last observed request sharing the same

communicating components; C2: successive responses

are always associated to the related request; C3: nested

requests (a request to a component that also performs

another request before giving a response) are always

kept together in a session; C4: a session gathers messages

exchanged between components interacting together in

a limited time delay and all the messages capturing a

data dependency between two components; C5: a non-

communication event is kept is the current session also

with respect to time delay and data dependency. Figure

4 gives the trace set Traces(SUL) obtained from the

action sequence of Figure 3 with this algorithm. For sake

of readability, the parameter assignment are concealed

in the figure. We observe that it has kept together the

related requests and responses, and the nested requests

req6 req7. Here, our algorithm has only detected one
distinctive longer time interval between the two actions

resp5 req6, which implicitly shows that a session ends

at resp5 and that a new one begins at req6.

While actions are covered to extract traces, the com-

ponent interactions are also analysed by CkTailv2 for

detecting component dependencies. These dependencies

are given under the form of component lists c1c2 . . . ck
expressing that a component c1 depends on a component

c2, which itself depends on another component and so

on. The set Deps(SUL) gathers these component lists.

The component dependency is defined in Section 4.5.

Figure 4 shows the set Deps(SUL) inferred from our

example. Most of the dependencies between pairs of com-

ponents stem from requests. The component sequence

G1G2d3 is detected from the nested requests req6 req7.

Four data dependencies are also detected between d2d1,

G2d1, d4d1, (with the data svalue:=68) and d3G1 (with

the data cmd:=status).
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Fig. 1 Model learning of communicating systems with the CkTail approach

Jan 20, 2020 09:56:24.225

CET;Host=d1;Dest=G1;Protocol=HTTP;Verb=GET

Uri=/req1?svalue=68.00 HTTP/1.1;

Jan 20, 2020 09:56:24.682

CET;Host=G1;Dest=d1;Protocol=HTTP;HTTP/1.1

status=200 response=OK;

Jan 20, 2020 09:56:25.153

CET;Host=G1;Dest=d2;Protocol=HTTP;Verb=GET

Uri=/req2?svalue=68.00 HTTP/1.1;

Jan 20, 2020 09:56:25.318

CET;Host=d2;Dest=G1;Protocol=HTTP;HTTP/1.1

status=200 response=OK data=done;

Example of regular expression:

^(?<date>\w{3} \d{2}, \d{4} \d{2}:\d{2}:\d{2}.\d{3})

\s(CET);(?<param1>(\w+=\w\d));(?<param2>(\w+=\w\d));

(?<param3>[^;]+);(?<param4>[^=]+=[A-Z]{3,4})\s(Uri=)

(?<label>[^?]+)[?](?<param5>(\w+=\d{2}\.\d{2}))\s

HTTP/1.1;$

Fig. 2 Example of 4 HTTP messages collected from an IoT
system. The regular expression retrieves a label and 5 param-
eters here. The label expression will be the label of the action
in the action sequence S

The CkTail’s third step generates dependency graphs.

It derives DAGs from the set Deps(SUL) and computes

their transitive closures. Figure 5 illustrates the depen-

dency graphs obtained in our example.

The fourth step of CkTailv2 lifts traces to the level

of IOLTSs. In the step 4A Trace partitioning, CkTailv2

builds one trace set for every component of SUL. It

begins by doubling every communication action to give

a pair of output/input actions by separating the notion

of source/destination. The non-communication actions

are marked as outputs. Traces(SUL) is then partitioned

into as many trace sets as components found in SUL.

Each trace set Tc gathers only the traces related to the

component c. If we take back our example, Figure 6

gives the new trace sets composed of sequences of input

and output actions derived from the set Trace(SUL) of

Figure 4. As this system is made up of 6 components,

Traces(SUL) is partitioned into 6 subsets.

req1(from:=d1,to:=G1,svalue:=68,time:=

09:56:24.225)

resp1(from:=G1,to:=d1,content:=ok, time:=

09:56:24.682)

req2(from:=G1,to:=d2,svalue:=68, time:=

09:56:25.153)

resp2(from:=d2,to:=G1,content:=done,

time:=09:56:25.318)

req3(from:=G1,to:=G2,svalue:=68, time:=

09:56:26.267)

req1(from:=d1,to:=G1,svalue:=68, time:=

09:56:27.369)

resp3(from:=G2,to:=G1,content:=ok, time:=

09:56:27.371)

resp1(from:=G1,to:=d1,content:=ok, time:=

09:56:27.720)

req5(from:=G2,to:=d4,svalue:=68, time:=

09:56:27.859)

log(from:=d4,to:=d4,content:=heat-off,

time:=09:56:28.909))

resp5(from:=d4,to:=G2,content:=done,

time:=09:56:28.982)

req6(from:=G1,to:=G2,udevice:=12, cmd:=

status,time:=09:56:35.962)

req7(from:=G2,to:=d3,cmd:=status,GPIO:=1

time:=09:56:35.974)

resp7(from:=d3,to:=G2,svalue:=1000,

time:=09:56:36.846)

resp6(from:=G2,to:=G1,svalue:=1000, time:=

09:56:36.958)

Fig. 3 Action sequence of an IoT system. These actions
have the form <label><parameter assignments>, the latter
expressing the components involved in the communications
and data

Traces(SUL)={req1resp1req2resp2req3req1resp3

resp1req5logresp5, req6req7resp7resp6}

Deps={ d1G1, G1d2, d2d1, G1G2, G2d4, G2d1,

d4d1, G1G2d3, G2d3, d3G1 }

Fig. 4 Step 2: Traces of SUL and dependency set Deps(SUL).
The parameter assignments are concealed for readability
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Fig. 5 Step 3: Dependency Graph Generation. Each compo-
nent has its own dependency graph expressing its directional
dependencies with the other components of SUL

$T_{d1}$={ !req1 ?resp1 !req1 ?resp1 }

$T_{d2}$={ ?req2 !resp2 }

$T_{d3}$={ ?req7 !resp7 }

$T_{d4}$={ ?req5 !log !resp5 }

$T_{G1}$={ ?req1 !resp1 !req2 ?resp2 !req3

?req1 ?resp3 !resp1, !req6 ?resp6 }

$T_{G2}$={ ?req3 !resp3 !req5 ?resp5, ?req6

!req7 ?resp7 !resp6 }

Fig. 6 Step 4A: Trace Partitioning. Traces(SUL) is prepared
before the IOLTS generation. Traces(SUL) is segmented to
produce one trace set for every component of SUL

The step 4B IOLTS Generation transforms every

trace set Tc into an IOLTS by converting traces into

IOLTS path cycles, which are joined on the initial state

only. In our example, as we have 6 trace sets, we obtain

6 IOLTSs Ld1-Ld4, LG1, LG2, illustrated in Figure 7.

Finally, CkTailv2 applies the k-Tail algorithm to reduce

the IOLTS sizes in the step 4C IOLTS Generalisation.

More precisely, it merges the states sharing the same

k-future, i.e. the same action sequences having the max-

imum length k. In our example, with k := 2, only the

states in white of the IOLTS Ld1 are merged by k-Tail,

which produces the IOLTS Ld11.

With these IOLTSs and DAGs, it becomes easier

to interpret the behaviour of SUL. In our example, the

IOLTSs bring out that the central devices of SUL are G1

and G2, which are the two gateways. The component

d1 is an active sensor that provides temperature values.
These values are sent to two actuators d2 and d4 through

the gateways G1 and G2. d3 is a passive sensor (an

illuminance light meter) that is queried by G1 through

G2, as d3 is directly connected to G2. d4 seems to

control a heating system, which is turned off when the

temperature reaches 68◦F.

Furthermore, as we now have formal models, differ-

ent kinds of activities may be automatically or semi-

automatically conducted to document SUL, to discover

defects or more generally to audit SUL. For instance,

the European Telecommunications Standards Institute

(ETSI) has proposed a general method dedicated to

audit large scale, networked systems by undertaking

testing and risk assessments [16]. One of the stages of

this method corresponds to establishing the context of

SUL, which can be partially performed with our tool

from event logs. Besides, quality metrics such as testa-

bility degrees can be computed from our models [14, 39].

We provide another tool for computing Observability,

Controllability and Dependability in [13]. These metrics
can be used to deduce which component is testable, or

testable in isolation. Other approaches can take these

models or transition systems to audit the security of

SUL [1, 20, 38, 41].

After this overview of CkTailv2, we will develop its
theoretical background along with its algorithms in the

next section.

4 The CkTailv2 Approach

Before going to the CkTailv2 step description, we will

briefly recall some basic definitions and notations used

in the remainder of the paper.

4.1 Preliminary Definitions

As in many works dealing with the modelling of atomic

components, e.g., [11, 17], we express the behaviours of

components with the well established Labelled Transi-

tion System (LTS) model. A LTS is defined in terms of

states and transitions labelled by actions, themselves

taken from a general action set L, which expresses what

happens. The Input Output LTS is an extension of the

LTS allowing to better express behaviours with inputs

and outputs.

Definition 1 (IOLTS) An Input Output Labelled Tran-

sition System (IOLTS) is a 4-tuple 〈Q, q0, Σ,→〉 where:

– Q is a finite set of states;

– q0 is the initial state;

– Σ ⊆ L is the finite set of actions. ΣI ⊆ Σ is the

countable set of input actions, ΣO ⊆ Σ is the count-

able set of output actions, with ΣO ∩ΣI = ∅;
– →⊆ Q × Σ × Q is a finite set of transitions. A

transition (q, a, q′) is denoted q
a−→ q′.

We also use the following notations on action se-

quences. The concatenation of two action sequences σ1,

σ2 ∈ L∗ is denoted σ1.σ2. ε denotes the empty sequence.

We denote that σ1 is a subsequence of another sequence

σ2 with σ1 � σ2. final(σ) denotes the action ak(αk)
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Fig. 7 Steps 4B & C: IOLTS Generation and generalisation with the k-Tail algorithm. Each component has its own IOLTS.

of the sequence σ = a1(α1) . . . ak(αk) or ε if σ = ε. A

trace is a finite sequence of observable actions in L∗.

The trace of an IOLTS is a sequence a0 . . . ak such that

∃qi−1, qi, ai, (1 ≤ i ≤ k) : q0
a1−→ q1 . . . qk−1

ak−→ qk ∈→∗.
Traces(L) denote the trace set of the IOLTS L.

Furthermore, to better match the functioning of com-

municating systems, we assume that an action has the

form a(α) with a a label and α an assignment of param-

eters in P , with P the set of parameter assignments. For

example, !switch(from := c1, to := c2, cmd := on) is an

output action composed of the label ”switch” followed

by a parameter assignment expressing the components

involved in the communication and a parameter of the

switch command.

We finally will use the following notations on actions

to make our algorithms more readable:

– from(a(α)) = c denotes the source of the action;

– to(a(α)) = c denotes the destination;

– components(a(α)) = {from(a(α)), to(a(α))};
– time(a(α)) = t returns the timestamp value identi-

fying when a(α) occurred, time(ε) = +∞;

– isReq(a(α)), isResp(a(α)) are boolean expressions

expressing the nature of the message;

– session(a(α)) = id denotes the session identifier

when available. Otherwise, session(a(α)) = ∅.
– data(a(α)) = α \ {from := c1; to := c2, time :=

t, session := s};

The dependencies among the components of a com-

municating system are captured with a Directed Acyclic

Graph (DAG), where component identifiers are labelled

on vertices.

Definition 2 (Directed Acyclic Graph) A DAG

Dg is a 2-tuple 〈VDg, EDg〉 where V is the finite set

of vertices and E the finite set of edges.

λ denotes a labelling function mapping each vertex

v ∈ V to a label λ(v).

4.2 CkTailv2 Step 1: Trace Formatting

Keeping in mind the assumption A1, CkTail takes as

input an event log gathering events that are totally or-

dered by means of their time-stamps. These events are
parsed to retrieve the actions performed by SUL and

their related data. These actions must have the form

a(α) with a a label and α an assignment of parameters

and must be compliant with the assumption A2. This

formatting is achieved by means of regular expressions

given to CkTailv2. Their writing may be performed man-

ually with small to medium event logs, but this activity

may quickly become laborious as the log size grows.

A way to eliminate or assist users in this intervention

is to consider the approaches and tools that automati-

cally mine patterns from log files [18, 25, 26, 29, 42, 43].
These patterns may be used to quickly derive regular

expressions.

As events are usually too detailed or specific to their

related executions, regular expressions are also a good
mean to lift the abstraction level by filtering out some

useless actions, or some concrete values in actions.

At the end of this step, we hence assume having a

sequence S ∈ L∗ of actions on the form a1(α1) . . . ak(αk).

The next step of CkTailv2 covers the action sequence S

to extract the sub-sequences that capture some sessions

of SUL. This step relies either on the assumption A31

or A32 and is hence implemented with two different

algorithms presented in the two next sections.

4.3 CkTailv2 Step 2: Trace Extraction Without Session

Identifier

The first trace extraction algorithm is founded on the

assumptions A1, A2, A31 to interpret communications

and to recover sessions in event logs. In particular, with

A31, we suppose that sessions are not identified in event

logs.
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C1 A response ai(αi) is always associated to the last request
previously observed in σ such that the replier returns the
response to the requester which has sent the request.

C2 All the responses associated to the same request are kept in
σ.

C3 A request ai(αi) that belongs to a chain of nested requests
must be kept in the session σ. Two requests req1 and req2
are nested iff the action sequence S includes this form
of sequence: req1(from:=c1, to:=c2) req2(from:=c2, to:=c3)
resp2(from:=c3, to:=c2) resp1(from:=c2, to:=c1).

C4 A component, which already participated to the session σ,
can send a new request ai(αi) to another component. This
request is kept in σ if C4.1: the session is not timed out, or
if C4.2: this request shares data with some previous actions
of σ

C5 A non-communication action ai(αi) is kept in σ if C5.1: the
session is not timed out, or if C5.2: ai(αi) shares data with
some previous actions of σ

Table 1 Constraints derived from the assumptions A1, A2,
A31. When one of these constraints hold, the current action
ai(αi) is kept in a session σ.

To devise this algorithm, we derived a list of con-

straints from these assumptions giving the conditions for

a sub-sequ-ence of S to be a session. As our algorithms

cover the actions of S one after the other, we have for-

mulated these constraints to express whether an action

ai(αi) of the action sequence S = a1(α1) . . . ak(αk) ∈ L∗

belongs to a session denoted σ. Table 1 gathers the

five constraints used in our algorithms. C1 and C2 fo-

cus on responses, while C3 and C4 deal with requests.

C4 is a special constraint expressing when a new re-

quest ai(αi), sent from a component that has previously

participated in the current session, belongs to σ. The

choice of keeping this new request in the session de-

pends on two other factors, i.e., time delay and data

dependency, with the constraints C4.1 and C4.2. C5

addresses non-communication actions and restricts the

session participation as in C4.

To use these constraints in our algorithms, we for-

mulated them with boolean expressions written with

the notations given in Section 4.1 completed by these
ones:

– KC stands for the set of known components involved

in the session σ so far;

– response(a1(α1), a(α)) is the boolean expression

isResp( a1(α1))∧ from(a1(α1)) = to(a(α))∧ to(a1(

α1)) = from(a(α));

– Lreq(σ) denotes the set of sequences of pending re-

quests i.e. the sequences of requests a1(α1) . . . ak(αk)

� σ for which responses have not yet been received.

Lreq(σ) =def {a1(α1) . . . ak(αk) � σ | isReq(ai(
αi))1≤i≤k, ∀a(α) ∈ L∗ : response(a(α), ai(αi)) =⇒
ai(αi)a(α)ai+1(αi+1) � σ};

– OLreq(σ) denotes the set of requests for which a

least one response has been received;

– ontime(a(α), σ) is a boolean expression that returns

true if the action a(α) may belong to the session σ

C1 ∃!σr ∈ Lreq(σ) : response(ai(αi), final(σr))}
C2 ∃!σr ∈ OLreq(σ) : response(ai(αi), final(σr))}
C3 isReq(ai(αi)) ∧ Lreq′ = {σ1 ∈ Lreq(σ) | from(ai(αi)) =

to(final(σ1))} 6= ∅∧ ¬pendingRequest(from(ai(αi)))
C4 isReq(ai(αi))∧

from(ai(αi)) ∈ KC∧(∀σ1 ∈ Lreq(σ) : from(ai(αi)) 6=
to(final(σ1)))∧ (ontime(ai(αi), σ) ∨ dataDependency(
ai(αi), S, σ))∧ ¬pendingRequest(from(ai(αi)))

C5 ¬isReq(ai(αi))∧ ¬isResp(ai(αi))∧ from(ai(αi)) ∈ KC∧
(ontime(ai(αi), σ)∨ dataDependency(ai(αi), S, σ))

Table 2 Formalisation of the constraints C1-C5 used in the
trace extraction algorithm

with regard to the session duration or session time-

out;

– data-dependency(a(α), S, σ) is a boolean expression

that returns true if the request a(α) shares some

data with other requests of the session σ � S. The

data dependency is defined in Section 4.5;

– pendingRequest(c) is the boolean expression (∃σ1 ∈
Lreq(σ), a(α) ∈ σ1 : c ∈ components(a(α))) that

evaluates whether the component c has sent (resp.

received) a request and has not yet received (resp.

sent) the response.

From these notations, we formulated the above con-

straints, listed their boolean terms and studied their

possible permutations. We finally kept the constraints
expressing that an action ai(αi) belongs to the current

session when they hold. These are listed in Table 2.

Algorithms 1 and 2 implement the trace extraction.

Algorithm 1 calls the procedure Keep-or-Split with an

action sequence initialised to S. It returns Traces(SUL),

the final component set C along with the set of compo-

nent dependencies Deps(SUL).

The procedure Keep-or-Split covers an action se-

quence a1( α1) . . . ak(αk) to extract a session σ. The

set of known components KC is initialised with the

components of the first action a1(α1). Then, every ac-

tion ai(αi) is covered to decide whether it is kept in

σ (line 8) or not. Given an action ai(αi), the proce-

dure updateOLreq (Algorithm 2 lines (1-5)) is called

to update the set of pending requests OLreq w.r.t. the

assumption A31. More precisely, if ai(αi) is a new re-

quest coming from a component c, then all the previous

requests that involve c are removed from OLreq to meet

A31 (first come, first served). In the same way, if ai(αi)

is a response, only the request associated to this response

is kept.

Then, the procedure Keep-or-Split processes the ac-

tion ai(αi) with the constraints C1-C5. When one of

them holds, the action ai(αi) is added to the session σ.

Besides, the set of known components KC is updated

to include the components involved in ai(αi). For any

other case, the action ai(αi) is put into a new action

sequence σ2 (line 27). Once all the actions have been
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Algorithm 1: Trace Extraction with A31
input :Action sequence S
output :Traces(SUL), Component set C, Component

dependency set Deps(SUL)
1 C := Deps(SUL) := ∅;
2 Keep-or-Split(S);
3 Procedure Keep-or-Split(a1(α1) . . . ak(αk)) is
4 σ := σ2 := ε;
5 Lreq(σ) := OLreq(σ) := ∅;
6 KC := components(a1(α1));
7 i := 1;
8 while i ≤ k do
9 updateOLreq(ai(αi));

10 case C1 true do
11 σ := σ.ai(αi); Trim(σr);
12 KC := KC∪components(ai(αi));
13 case C1 false and C2 true do
14 σ := σ.ai(αi);
15 KC := KC∪components(ai(αi));
16 case C3 true do
17 σ := σ.ai(αi);
18 Extend(σr, ai(αi));
19 KC := KC∪components(ai(αi));
20 case C3 false and C4 true do
21 σ := σ.ai(αi);
22 Extend(ε, ai(αi));
23 KC := KC∪components(ai(αi));
24 case C5 true do
25 σ := σ.ai(αi);
26 KC := KC∪components(ai(αi));
27 otherwise do σ2 := σ2.ai(αi) ;
28 i++;

29 Traces(SUL) := Traces(SUL) ∪ {σ};
30 C := C ∪KC;
31 if σ2 6= ε then
32 Keep-or-Split(σ2);

33 END;

covered, σ is added to Traces(SUL) and C is updated

with the set of components KC built with this session.

If σ2 is not empty, the procedure Keep-or-Split( σ2) is

recursively called to recover other sessions in σ2 (line

31).

The main difference among the cases C1 to C5 lies

in the update of the set of pending requests Lreq(σ),

with the procedures Trim and Extend. The former is

called with C1: receipt of a response associated to a list of

pending requests σr in Lreq(σ). Trim is called to remove

the last request of σr, final(σr), because a response has

been received to this request. final(σr) is shifted to

OLreq(σ). The procedure Extend is called with C3

and C4. C3 corresponds to the receipt of a request

that belongs to a chain of nested requests σr ∈ Lreq(σ).

Extend is here called to update Lreq(σ) with the nested

request list σr.ai(αi). C4 stands for the receipt of a new

request from a known component. Extend is now called

to add the new request ai(αi) in Lreq(σ). Furthermore,

Extend builds the set Deps(SUL) of component lists.

This part is detailed in Section 4.5.

The boolean expression ontime(a(α), σ), used in C4

and C5, is implemented with the procedure ontime. As

stated previously ontime allows to limit the session du-

Algorithm 2:
1 Procedure updateOLreq(ai(αi)) is
2 if isReq(ai(αi)) then
3 OLreq(σ) := OLreq(σ) \ {a(α) ∈ OLreq |

from(ai(αi)) ∈ components(a(α))};
4 else if isResp(ai(αi)) then
5 Lr := {a(α) ∈ OLreq(σ) | from(ai(αi) =

to(a(α))}
OLreq(σ) := OLreq(σ) \ {a(α) ∈ OLreq(σ) |
from(ai(αi) ∈ components(a(α))} ∪ Lr;

6 Procedure Trim(σr) is
7 σ′ := remove(final(σr));

8 Lreq(σ) := Lreq(σ) \ {σr} ∪ {σ′};
9 OLreq(σ) := OLreq(σ) \ {a(α) ∈ OLreq(σ) |

from(final(σr)) ∈ components(a(α))};
10 OLreq(σ) := OLreq(σ) ∪ {final(σr)};
11 Procedure Extend(σr, a(α)) is
12 σ′ := σr.a(α) = a1(α1) . . . ak(αk);

13 Lreq(σ) := Lreq(σ) \ {σr} ∪ {σ′};
14 //Component dependencies
15 lc := c1 . . . ckck+1 such that ci = from(ai(αi))(1≤i≤k),

ck+1 = to(ak(αk));
16 Deps(SUL) := Deps(SUL) ∪ {lc};
17 Procedure ontime(ai(αi), σ) is
18 return (time(ai(αi))− time(final(σ)) < T );

19 Procedure data-dependency(ai(αi), S, σ) is

20 if ∃σ1 = a1(α1)a2(α2) . . . ai(αi) � S : to(ai(αi))
data−−−→
σ1

from(a1(α1)) then
21 Deps(SUL) :=

Deps(SUL) ∪ {to(ai(αi)).from(a1(α1))};
22 if σ1 � σ.ai(αi)) then
23 return true;

24 return false;

ration. Several implementations are possible. We provide

an example in Algorithm 2, line (17). This procedure

checks whether the time delay between the last received

action ai(αi) and the previous one in the session σ is

lower than a time duration T .

The boolean expression data-dependency (ai(αi),

S, σ), also used in C4 and C5, is implemented by the

procedure given in Algorithm 2. It checks whether a
data dependency exists between the request ai(αi) and

some requests of the session σ. The notion of dependency

among components and this procedure shall be discussed

in Section 4.5.

The action sequence of Figure 3 has been converted

into Traces(SUL) by means of this algorithm, as no

session identifier is available within actions. Here, the

trace extraction algorithm has detected that C4 does

not hold with the request req6. It has indeed detected,

by means of the timestamps, a distinctive longer time

interval between the actions resp5 req6, which implicitly

suggests that the session timed out. The algorithm has

detected two nested requests req6 req7. Besides, several

data dependencies have been identified between the

requests req1,req2 req3,req5. These requests along with

their responses are hence kept together in the same

session.
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4.4 CkTailv2 Step 2: Trace Extraction With Session

Identifier

Algorithm 3: Trace Extraction with A32
input :Action sequence S
output :Traces(SUL), Component set C, Component

dependency set Deps(SUL)
1 C := Deps(SUL) := ∅;
2 ID := {session(a(α)) | a(α) ∈ S};
3 Traces(SUL) :=

⋃
id∈ID{σid} with

σid = S \ {a(α) | session(a(α)) 6= id};
4 foreach σ = a1(α1) . . . ak(αk) ∈ Traces(SUL) do
5 S := σ;
6 Keep-or-Split2(S);

7 END;
8 Procedure Keep-or-Split2(a1(α1) . . . ak(αk)) is
9 Lreq(σ) := OLreq(σ) := ∅;

10 KC := components(a1(α1));
11 i := 1;
12 while i ≤ k do
13 C := C ∪ components(ai(αi));
14 case C1 true do
15 Trim(σr);

16 case C3 true do
17 Extend(σr, ai(αi));

18 case C3 false and C4 true do
19 Extend(ε, ai(αi));

20 i++;

The previous trace extraction algorithm relies on

the assumption A31 to extract traces. This second trace

extraction algorithm now relies on A32. This assumption,

which means that all the events have to include session

identifiers, strongly simplifies the recovering of sessions,

and hence the trace extraction. But, as we also wish

to detect component dependencies, the trace extraction

algorithm, given in Algorithm 3, still covers every action

of an action sequence S.

Algorithm 3 begins to build Traces(SUL) by ex-

tracting from S the sub-sequences of actions having the

same session identifier (lines 2-3). Afterwards, it calls

the procedure Keep-or-Split2 for every trace of Traces(

SUL) to detect component dependencies (lines 4-6). To

this end, this procedure updates the set of pending re-

quests Lreq( σ) as previously for every trace σ with

the constraints C1, C3, C4 (only these constraints are

needed to build Lreq(σ)). Lreq(σ) is updated by means

of the procedures Trim and Extend, which disclose

component dependencies and build the set Deps(SUL).

4.5 CkTailv2 Step 3: Dependency Graph Generation

The notion of component dependency is formulated by

means of the three expressions given below. We write c1
depends on c2, when at least one of these expressions

holds.

Definition 3 (Component dependency) Let c1, c2 ∈
C, c1 6= c2, and S ∈ L∗. We denote c1 depends on c2 iff

(c1
r−→
σ
c2) ∨ (c1

nr−→
σ

c2) ∨ (c1
data−−−→
σ

c2) with:

1. c1
r−→
σ
c2 iff ∃σ � S, a(α) � σ : isReq(a(α)),

from(a(α)) = c1, to(a(α)) = c2;

2. c1
nr−→
σ

c2 iff ∃σ � S, a1(α1) . . . ak(αk) � σ :

from(a1(α1)) = c1, to(ak(αk)) = c2, a1(α1) . . .

ak(αk) ∈ Lreq(σ);

3. c1
data−−−→
σ

c2 iff ∃σ � S, α ∈ P : DS(σ, c1, c2, α) and

∀σ′ = a′1(α′1)a′2(α′2) . . . ak(αk) � S : DS(σ′, c1, c2, α)

=⇒ σ′ � σ, with DS(a1(α1) . . . ak(αk)c1, c2, α) the

boolean expression from(a1(α1)) = c2∧ to(ak(αk))

= c1∧ isReq(ak( αk))∧ to(ai(αi)) = from(ai+1(

αi+1) )1≤i<k)∧
⋂

(1≤i≤k)
αi = α.

The two first expressions illustrate that a component
c1 depends on another component c2 when c1 queries c2
with a request or by means of successive nested requests

of the form req1(from := c1, to := c)req2(from :=

c, to := c2). The last expression deals with data depen-

dency. We say that c1 depends on c2 if there is a chain of

actions from c2 ended by a request to c1 sharing the same

data α. More precisely, the third expression holds if a

component c2 has sent an action a1(α1) with some data

α, if there is a unique sequence a1(α1) . . . ak(αk) sharing

this data and if ak(αk) is a request whose destination is

c1. An immediate consequence of this expression is that

we do not consider component dependencies when there

are several chains of actions all sharing the same data

and addressed to the several components. Yet, we can

observe that there is a data dependency among compo-

nents, but we are unable to establish the dependency

relations as several options among the components are

possible. Because of this ambiguity that may bring false

relationships, we prefer to not consider this case.

The component dependencies are detected by the

second step of CkTailv2 and are given under the form

of component lists c1 . . . ck in Deps(SUL). Component

dependencies are detected while Algorithms 1 or 3 build

traces by means of the procedures Extend and data-

dependency. The procedure Extend detects the two first

component dependency cases of Definition 3. It uses

the set of pending requests Lreq(σ) to complete the set

Deps(SUL). Indeed, the procedure Extend constructs

a sequence of Lreq(σ) in such a way that it is either

one request (Case C4) or a list of nested requests (Case

C3). The procedure covers the component sequences

lc = c1 . . . ckck+1 of Lreq(σ) and adds the dependency

lists inDeps(SUL) (Algorithm 2, line 15). The procedure

data-dependency(ai(αi), S, σ) checks whether the last
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expression of Definition 3 holds. If there is a unique

sequence a1(α1) . . . (ai(αi) sharing the same data α ∈
data( ai(αi)) and finished by the request ai(αi) then

the dependency to(ai(αi)).from(a1(α1)) is added to

Deps(SUL) (line 21). If this sequence is a subsequence

of the current session σ.ai(αi), then the procedure also

returns true to Algorithms 1 and 3 to indicate that this

request must be kept in the current session.

It is worth noting that Algorithms 1 and 3 slightly dif-

fer in the data dependency detection. Given two compo-

nents c1 and c2, Algorithm 1 checks whether c1
data−−−→
σ

c2

holds on the initial action sequence S. It checks that

there is a unique chain of actions from c2 to c1 in S
as it does not know the sessions in advance. Algorithm

3 does the same verification but on every trace σ of

Traces(SUL), which represent sessions. As a trace σ

is usually much shorter than the action sequence S,

c1
data−−−→
σ

c2 may be satisfied more frequently. In other

terms, Algorithm 3 may detect more component de-

pendencies because the sessions are already given and

known.

Figure 4 shows the set Deps(SUL) derived from the

action sequence of Figure 3. Most of the component
dependencies stem from requests. For instance, the com-

ponent sequence G1G2d3 is detected from the nested

requests req6 req7. Four data dependencies are detected

between d2d1, G2d1 d4d1, (with the data svalue:=68)

and d3G1 (with cmd :=status).

CkTailv2 implements the generation of dependency

graphs from Deps(SUL) with Algorithm 4. The latter

partitions Deps( SUL) to group the dependency lists

starting by the same component into the same subset.

This partitioning is performed with the equivalence

relation ∼c on C∗ given by ∀l1, l2 ∈ Deps(SUL), with

l1 = c1 . . . ck, l2 = c′1 . . . c
′
k, l1 ∼c l2 iff c1 = c′1. Given a

partition Ci and a component list l ∈ Ci, Algorithm 4

builds a path of the DAG Dgi such that the nth state is

labelled by the nth component of l. Algorithm 4 finally

computes the transitive closure of the DAGs to make

all component dependencies visible.

The dependency graphs, which are generated from

the set Deps(SUL) of Figure 4, are depicted in Figure

5. They reflect another window on the architecture of

SUL. Indeed, these graphs show in a readable manner
how the components interact together. They also help

identify central components that might have a strong

negative impact on SUL when they integrate faults.

4.6 CkTailv2 Step 4: IOLTS Generation

This last step, implemented by Algorithm 5, generates

one IOLTS for every component in C. The algorithm

Algorithm 4: Device Dependency Graphs Gen-

eration
input :Deps(SUL)
output :Dependency graph set DG

1 foreach Ci ∈ Deps(SUL)/ ∼c do
2 foreach c1c2 . . . ck ∈ Ci do
3 add the path sc1 → sc2 . . . sck−1

→ sck to Dgi;

4 Dg′i is the transitive closure of Dgi;

5 DG := DG ∪ {Dg′i};

Algorithm 5: IOLTS Generation
input :Traces(SUL)
output : IOLTSs Lc1 . . . Lck

1 T := {};
2 foreach σ = a1(α1) . . . ak(αk) ∈ Traces(SUL)) do
3 σ′ := ε;
4 foreach ai(αi) � σ do
5 σ′ := σ′.!ai(αi ∪ {id := from(ai(αi))} \ {time :=

t, session := s});
6 if isReq(ai(αi)) ∨ isResp(ai(αi))) then
7 σ′ := σ′.?ai(αi ∪ {id := to(ai(αi))} \ {time :=

t, session := s});

8 foreach c ∈ C do
9 Tc := Tc ∪ {σ′ \ {a(α) ∈ σ′ | (id := c) /∈ α}

10 foreach Tc with c ∈ C do
11 Generate the IOLTS Lc from Tc;
12 Merge the equivalent states of Lc with kTail(k = 2, Lc);

starts by transforming the traces to integrate the notions

of input and output. Given a trace a1(α1) . . . ak(αk),

every action is doubled by separating the component

source and destination. The source and the destination

are identified by a new assignment on the parameter

id added to each action. Besides, the timestamps and

session identifiers are removed from the assignments to

improve the model generalisation. For a communication

action ai(αi), this step produces a new trace σ′ com-

posed of the output !ai(αi1) sent by the source of the

message, followed by the input ?ai(αi2) received by the

destination (lines 5-7). Non-communication actions are

marked as outputs. Then, this new trace σ′ is segmented

into sub-sequences, each capturing the behaviours of one

component only (lines 8, 9). The trace set Tc gathers
the traces of the component c.

Every trace set Tc is now lifted to the level of IOLTS.

A trace t = a1(α1) . . . ak(αk) ∈ Tc is transformed into

the path q0
a1(α1)−−−−→ q1 . . . qk−1

(ak(αk)−−−−−→ q0 such that the

states q1 . . . qk−1 are new states. These paths are joined

on the state q0 to build the IOLTS Lc:

Definition 4 (IOLTS generation) Let Tc = {t1, . . . ,
tn} be a trace set. Lc = 〈Q, q0, Σ,→〉 is the IOLTS

derived from Tc where:

– q0 is the initial state.

– Q,Σ,→ are defined by the following rule:
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ti=a1(α1)...ak(αk)

q0
a1(α1)−−−−→qi1...qik−1

ak(αk)−−−−→q0

Finally, Algorithm 5 applies the kTail algorithm

to generalise and reduce the IOLTSs by merging the

equivalent states having the same k-future. We use k = 2

as recommended in [23, 24].

5 Empirical Evaluation

The experiments presented in this section aim to evalu-

ate the capabilities of our algorithms to build models

in terms of precision and performance, compared to

the approaches allowing to learn models of communicat-

ing systems. Prior to this work, we evaluated CkTailv1

along with the tools CSight [9], Assess [35], and the tool

suite proposed in [26] based upon the tool kbehavior,

which we denote LFkbehavior. Our experimental results,

given in [36], showed that Assess requires assumptions

that are strongly different than those required by the

other tools. The main difference for Assess lies in the

fact that the communications among components are

assumed hidden (not available in event logs). Assess

tries to detect implicit calls of components instead, and

completes models with synchronisation actions to ex-

press them. When this assumption does not hold, i.e.

when we feed Assess with event logs including communi-

cation messages, we showed that it builds high imprecise

models. Consequently, for this new evaluation, we have
chosen to conduct several experimentations on CSight,

LFkbehavior, CkTailv1 and CkTailv2 (source code and

explanations available in [12]). As our approach uses

two distinct trace extraction algorithms, we have chosen

to differentiate them with the notations CkTailv2-w/oS

(Algorithm 1 without session identifier) and CkTailv2-

w/S (Algorithm 3 with session identifiers).

This evaluation aims at investigating the capabilities

of our algorithms through the following four questions:

– RQ1: can CkTailv2 infer models that capture correct

behaviours of SUL? This question studies the capa-

bility of CkTailv2 to build models that accept valid

traces of the system compared to CSight, CkTailv1

and LFkbehavior. The valid traces correspond to

traces extracted from event logs but not used for the

model generation;

– RQ2: do the models inferred by CkTailv2 reject

abnormal behaviours? RQ2 studies the capability

of CkTailv2 to generate models that reject invalid

traces, compared to CSight, CkTailv1 and LFkbe-

havior. Invalid traces express abnormal behaviours

of the system;

– RQ3: is CkTailv2 able to detect accurate dependen-

cies among components? RQ3 investigates the recall

and precision of CkTailv2 to detect component de-

pendencies. Recall is here the percentage of the real

dependencies that are detected, and precision is the

percentage of detected dependencies that are correct;

– RQ4: what is the performance of CkTailv2 to in-

fer models compared to the other tools? How does

CkTailv2 scale with the size of the event log?

5.1 Empirical Setup

To generate models, the considered tools impose dif-

ferent assumptions, which we examined before our ex-

periments to avoid any bias. We ran LFkbehavior with

the strategy that segments event logs w.r.t. component

identifier, as this is the only one that can be applied

with communicating systems to build one model per

component. CSight doesn’t take event log as input but

trace sets such that every component is associated to

its own trace set. CkTailv1 is more restrictive on the

event log content than LFkbehavior and CkTailv2. For

CkTailv1, an event log must be exclusively composed of

communication events and a request must be associated

to one response only.

As a consequence, we have taken into consideration

all these differences through experiments conducted on

several configurations. We firstly assembled and config-

ured 6 communicating systems from a set of 7 commer-

cial devices (3 sensors, 2 gateways, 2 actuators). Each

of these systems contains at least one gateway using the

home automation system Domoticz 1, connected to at

least two sensors and one actuator. The behaviours of

the gateway(s) after the receipt of data from the sensors

differ in each configuration. We monitored these systems

and collected event logs of about 2200 events. We denote

them Conf1 to Conf6. We also considered 2 other sys-

tems made up of other components to avoid giving con-

clusions on similar systems. The first one has 8 sensors

(4 are commercial devices and the others are based upon

the open source framework EspEasy 2) that periodically

send data to a Cloud server. The second one corresponds

to an IP security camera, which is interconnected to

NTP, SMTP and FTP servers. The corresponding event

logs are denoted Conf7 and Conf8 and respectively

include 2206 and 1310 events. All these event logs do not

include session identifiers. Hence, we manually modified

them to compare our algorithms CkTailv2-w/oS and

CkTailv2-w/S. The modifications consisted in adding

a session identifier in every action with regard to the

1 https://www.domoticz.com/
2 https://www.letscontrolit.com/
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functioning of the systems. We denotes these new event

logs Conf9 to Conf16.

All the tools except CSight take event logs as input.

We experimented CSight after having manually seg-

mented Conf1 to Conf8 into trace sets, but we were

unable to get any result after 5 hours of computation,

which was our limit for each experiment. We observed

that the first steps of CSight were achieved, but these
were always followed by time-outs. The last steps of

Csight call a model-checker to refine models with in-

variants, and we suspect that the model-checker was

unable to check invariant satisfiability on large trace

sets. Therefore, to compare CSight with the other tools,

we took back two trace sets given with the CSight imple-

mentation. The first one, denoted Tcp contains 8 traces

(46 events) collected from two components exchanging

TCP messages. The second trace set denoted AltBit

contains 15 traces (246 events) expressing message ex-

changes between two components over the Alternating

Bit Protocol, which belongs to the family of reliable

transport protocols.

In summary, we considered 18 configurations. Conf1,

3, 5, 8, Tcp and AltBit are event logs that meet the

requirements of all the tools, and are particularly inter-

esting for comparing CSight, CkTailV1, LFkbehavior

and CkTailv2-w/oS. Conf2, 4, 6, 7 are more general

event logs (composed of requests associated to multiple
responses and of non-communication events) and are

used to confront CkTail- v2-w/oS with LFkbehavior.

Finally, Conf9 to 16 allow to compare our algorithms

CkTailv2-w/oS and CkTailv2-w/S.

Furthermore, CkTailv1 and CkTailv2 use the proce-

dure ontime to check whether an action belongs to a

current session with regard to the session duration. The

same procedure, which is given in Section 4.3, was used

for both tools.

5.2 RQ1: can CkTailv2 infer models that capture

correct behaviours of SUL?

To answer RQ1, we measured the rate of valid traces ac-

cepted by all the behavioural models generated from the

18 configurations. Given a valid trace σ and an IOLTS L,

IOLTS acceptance means here that σ ∈ Traces(L). To

get valid traces, we chose to follow a Hold Out method,

which partitioned each event log in one training log for

the model generation and one testing log for the extrac-

tion of valid traces. We manually segmented event logs

into two parts with an approximative ratio of 80% and

20%, taking care not to separate actions that belong

to the same session to avoid the generation of incorrect

models.

Tcp AltBit Conf1 Conf2 Conf3 Conf4 Conf5 Conf6 Conf7 Conf8 Mean
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Fig. 8 Percentage of valid traces accepted by the models
with the configurations Tcp, AltBit, Conf1 to 8
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Fig. 9 Percentage of valid traces accepted by the models
with the configurations Conf9 to 16

Afterwards, still to avoid any bias, we extracted valid

trace sets from the testing logs. This trace extraction was

automatically performed for the event logs including

session ids. But for the other event logs, as there is

no information allowing to recognise valid traces, we

manually extracted them by leveraging our knowledge

of the case study functioning.

We obtained around 35 to 200 valid traces for Conf1

to 16. For the configurations Tcp and AltBit we respec-

tively used 75 % of the traces to generate models, the

remaining being used as valid traces.

Results: The percentages of valid traces accepted by the

models generated by each tool are illustrated in the bar-

diagrams of Figures 8 and 9. With the configurations

Conf1 to 8, the models that accept the most of valid

traces are always those generated by CkTailv2-w/oS.

In our experiments, these models accept an average of

96,43% of valid traces. The models given by CkTailv1

and LFkbehavior provide close results with 66.47% and

63.23%. If we focus on the results given by CkTailv2-

w/oS and CkTailV1, we have the same rate of valid
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traces accepted by the models with Conf1, 3, 5 and 8.

These similarities come from the fact that these con-

figurations meet the assumptions of both tools. The

trace segmentation along with the model generation are

hence performed in a similar manner. As expected, with

the other configurations, we observe that CkTailv1 pro-

duced less correct models as it eliminated some actions

during the trace extraction. LFkbehavior outperforms

CkTailv1 with Conf2, 4 and 6 for the same reason.

Figure 8 also shows that the models generated from

the configurations Tcp and AltBit accept all the valid

traces, whatever the approach used. These results tend

to reveal that the sizes of the event logs used with these

configurations are not large enough to make distinctions

among the approaches. Therefore, we prefer to not give

any conclusion here. As stated earlier, we were unable

to apply CSight on larger trace sets.

Figure 9 shows that when the event logs include ses-

sions identifiers, LFkbehavior and CkTailv1 infer models

accepting the same ratio of valid traces. The interesting

observation is that CkTailv2-w/oS and CkTailv2-w/S

provide close results, i.e., the models given by CkTailv2-

w/oS accept slightly less valid traces only. We recall that

CkTailv2-w/S extracts traces from event logs by means

of session identifiers (the trace extraction is always cor-

rect) whereas CkTailv2-w/oS tries to detect sessions

for extracting traces. Hence, Figure 9 tends to show

that the trace extraction algorithm of CkTailv2-w/oS

(Algorithm 1) is very effective.

5.3 RQ2: do the models inferred by CkTailv2 reject

abnormal behaviours?

This research question targets the capability of our algo-

rithms to infer models that reject incorrect behaviours

of the system. Incorrect behaviours are expressed by

means of invalid traces, which are here derived from

valid traces by injecting one of the following errors: rep-

etition of actions (random addition of 2 to 6 actions),

inversion of a request with its associated response(s),

permutation of one request in a sequence of nested re-

quests, and suppression of one response when several

responses associated to the same request are found.

We generated 16 sets having 43 to 100 invalid traces

for each configuration Conf1 to 16, and two sets of 20

invalid traces for Tcp and for AltBit. Then, we measured

the proportions of invalid traces accepted by the range

of models inferred from the same configurations and

training sets used for RQ1.

Results: The bar-diagram of Figure 10 shows the pro-

portions of invalid traces accepted by the models given
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Fig. 10 Percentage of invalid traces accepted by the models
for each configuration

by each tool in each configuration. This figure reveals

that all the tools performed well in the sense that the

inferred models reject most of the incorrect behaviours.
CkTailv1, CkTailv2 and CSight outperform LFkbehavior

with some configurations though. For instance, LFkbe-

havior produced models that accept 13,3% of invalid

traces with Conf5.

As previously, it remains difficult to compare CSight

and CkTailv2 because only two configurations Tcp and

AltBit are considered in this evaluation. As CSight uses

invariant satisfiability to increase the model precision

and not CkTailv2, we believe that CSight should return

more precise models, but only with small trace sets.

The results given with RQ1 and RQ2 tend to indicate
that the models produced by CkTailv2 offer the best

precision: not only they accept the highest ratio of valid

traces, but also reject all the invalid ones (as CSight).

5.4 RQ3: can CkTailv2 detect accurate dependencies

among components?

This research question investigates the capability of our

algorithms to find component dependencies during the

event log analysis. Among the range of tools considered

in this evaluation, only CkTailv1, CkTailv2-w/oS and

CkTailv2-w/S are able to infer dependency graphs, but

CkTailv1 and CkTail- v2-w/oS use the same dependency

detection. As a consequence, we chose to study RQ3

by comparing the DAGs returned by CkTailv2-w/oS

and CkTailv2-w/S to the real dependency graphs we

manually built from the dependency schemes that we

devised for Conf1 to 8, Tcp and AltBit. We evaluated

the recall and precision of both algorithms. A good

component dependency detection is characterised by a

high recall and high precision, where high recall also

relates to a low false negative rate and high precision

relates to low false positive rate.
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Fig. 11 recall and precision of CkTailv2 to detect component
dependencies. Recall is the percentage of the real dependencies
that are detected; precision is the percentage of detected
dependencies that are correct
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Table 3 # real dependencies for each configuration

Results: Table 3 shows the number of real component
dependencies for each configuration and the bar-diagram

of Figure 11 depicts the recalls and precisions achieved

by CkTail- v2-w/oS and CkTailv2-w/S. On average,

CkTailv2-w/oS detected 88% of the real dependencies

and CkTailv2-w/S 97,5%. No wrong component depen-

dency is returned by both algorithms. After inspection,

we observed that the undiscovered dependencies corre-

spond to some data dependencies that can be observed

among several chains of messages sharing the same data

addressed to several components at the same time. We

have chosen in Definition 3 to not consider them to avoid
returning false dependencies. This case of having chains

of messages sharing the same data addressed to several

components is more frequent with CkTailv2-w/oS as

it detects data dependencies on the action sequence S,

while CkTailv2-w/S does it on traces, which are smaller

sequences. As a consequence, the recall of CkTailv2-

w/oS is lower than the one of CkTailv2-w/S.

5.5 RQ4: what is the performance of CkTailv2 to infer

models compared to the other tools? How does

CkTailv2 scale with the size of the event log?

Procedure To answer RQ4, we firstly studied how the

tools scale with the size of the event logs. We collected

40 event logs from Conf3 by varying the number of

events between 500 to 10000 events. Then, we measured

execution times to produce models. As CSight did not

complete on Conf3, we only considered LFkbehavior,

CkTailv1, CkTailv2-w/oS and CkTailv2-w/S. To include

Fig. 12 Execution times vs. number of events
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Fig. 13 Execution times of the tools with the configurations
Tcp and AltBit

CSight in our evaluation, we measured the execution

times of all the tools on Tcp and AltBit. Experiments

were carried out on a computer with 1 Intel R© CPU

i5-6500 @ 3.2GHz and 32GB RAM.

Results Figure 12 depicts the execution times in seconds

of the tools w.r.t. the event log sizes. CkTailv2-w/S

offers the best performance as it produces models in less

than 1 second. These results are not surprising as the

algorithm splits event logs quickly thanks to the session

identifiers. LFkbehavior offers close results as it never

took more than 2 seconds to produce models. On the

other hand, CkTailv1 and CkTailv2-w/oS required less

than 33s and 89s respectively. The curve for CkTailv2-

w/oS follows a quadratic regression and reveals that our

tool does not scale well. Most of the execution times

are consumed by the trace extraction step to recover

sessions, one after the other. The difference between

CkTailv1 and CkTailv2-w/oS comes from the fact that

CkTailv2-w/oS uses two set of pending requests to check

if the constraints C1-C5 hold while CkTailv1 needs one

set only.

The bar-diagram of Figure 13 illustrates the execu-

tion times of all the tools on the configurations Tcp

and AltBit. These results tend to show that CSight is

significantly slower than the other tools, it is around 30
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times slower than CkTail- v2-w/oS. Besides, as stated

earlier, CSight were unable to return models after 5

hours with Conf1 to 8.

These experiments show that CkTailv2 can be used

in practice to infer models of communicating systems

even with large event logs, but it suffers from insufficient

scalability, on account of its feature of detecting sessions

for extracting traces.

5.6 Threat to Validity

Some threats to validity can be identified in our evalua-

tion. The first factor, which may threaten the external

validity of our results, applies to the case studies used in

the experimentations. Most of them indeed are IoT sys-
tems using the HTTP protocol. We also considered two

other event logs collected from components exchanging

messages by means of the TCP and Alternating bit pro-

tocols. But many communicating systems rely on other
kinds of protocols, from which it may be more difficult to

identify senders, receivers, requests or responses. Hence,

our results cannot be generalised to all communicating

systems. This is why we deliberately avoid drawing any

general conclusion. We chose to mainly concentrate our

experimentations on IoT systems that we devised to be

able to appraise the capability of CkTailv2 of inferring

correct dependency graphs. This threat is somewhat

mitigated by the fact that our results can be easily

generalised to communicating systems based upon the

HTTP protocol, and that the latter is used by numerous

communicating systems.

The generalisation of our approach is also restricted

by the requirements A1-A3. The event logs have to

include timestamps given by a global clock and must be

formatted by means of regular expressions so that the

event types can be identified. Although we have observed

that this task is not too difficult to carry out on HTTP

messages, it is manifest that this is not generalisable to

any kind of protocols, especially those encrypting some

parts of the message contents. We need to investigate

how these requirements could be relaxed in future work.

There are also some threats to internal validity.

Firstly, like all the other passive model learning ap-

proaches, the larger the event log, the more complete

and precise the models will be. Furthermore, our ap-

proach uses one parameter denoted T , in the procedure

ontime, to limit the session duration. We set this pa-

rameter to 1 or 2 seconds in our experiments as the

session durations was lower than these values in our

case studies. Changing this parameter impacts the pre-

cision of the models though. We assume that the user

has some knowledge about SUL and that he/she can

set this parameter correctly. Otherwise, we suggest to
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Fig. 14 Impact of the session duration on the model precision

generate several models while modifying this parameter.

We evaluated the precisions of the models generated

from Conf2 with T taking values between 0 and 150

seconds. Figure 14 illustrates the ratios of valid and in-

valid traces accepted by the inferred models. The ratio

of invalid traces remain unchanged. But, the ratio of

valid traces evolves with T . Although the figure does

not allow to directly deduce the best parameter value

as several ones are possible, it helps avoid choosing the

bad ones.

6 Conclusion

This paper has proposed the design and evaluation of a

tool called CkTailv2, which is specialised into the learn-

ing of behavioural models along with dependency graphs

from event logs, themselves collected from of communi-

cating systems. Compared to other model learning algo-

rithms, CkTailv2 increases the precision of the generated

models by integrating an algorithm that better recog-

nises sessions in event logs with respect to constraints

related to the request-response pattern, the recognition

of nested requests, time delays and component depen-

dency. Besides, when sessions are explicitly identified

in event logs, CkTailv2 provides another algorithm to

quicker generate models.

CkTailv2 is simple to use. A user only has to give an

event log and a set of regular expressions as inputs to

produce one IOLTS and one DAG per component of the

communicating system. These models are stored in DOT

files and varied tools can process them to graphically

represent how the communicating system behaves and

is structured. These models may be then used to detect

defects or security vulnerabilities. Besides, our evalua-

tion showed that CkTailv2 is effective, as it provides

precise models, and that it can be used in practice on

large event logs.
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Nevertheless, several aspects need to be investigated

and improved in the future. We firstly plan to evaluate

CkTailv2 on further kinds of systems to confirm our

experimental results. The latter show that CkTailv2

does not scale well with the size of the event logs. We

believe that the performance can be improved by devis-

ing parallel algorithms. But another way is to get rid

of some requirements, such as the need to have events

that encode senders and receivers. We believe that an

additional event log analysis step could perform this

task automatically.

Another direction of future work is to make use of

these models to assist developers in the analysis and test

of communicating systems. More precisely, we intend to

propose an approach combining this model learning tech-

nique with the generation of mocks, i.e. fake components
that simulate real components and that behave in a pre-

defined way. These mock components could make test

development easier by replacing complex dependencies
(e.g., infrastructure or environment related dependencies

[6, 40]). Besides, mock components could increase test

efficiency by replacing slow-to-access components. We

finally believe that the models produced by CkTailv2

could be analysed to automatically generate executable

mock components.
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