TTCN

Sébastien Salva Hacéne Fouchal Eric Petitjean

LERI-RESYCOM
Fax : (33) 3 26 91 33 97
Université de Reims Champagne-Ardenne,
Moulin de la Housse, BP 1039,
51687 Reims Cedex 2, France
e-mail:{Sébastien.Salva, Hacene.Fouchal, Eric.Petitjean}@univ-reims.fr

Abstract

Testing real-time systems or protocols containing time constraints seems difficult,
without formal methods, on account of the notion of time which cannot be observed
and directly controlled. But ensuring a functional behavior , respecting time con-
straints becomes very important, especially for critical systems. So, we propose a
novel testing methodology which aims to check if timed systems, modeled with timed
automata, can respect temporal and behavior properties of test purposes. A syn-
chronous product is generated between them for obtaining timed test cases. Then,
we describe, in details, a method to execute the test of an timed implementation.
Finally, we express test execution in TTCN.

Key-words : Timed automata, Clock Region, test cases, TTCN.

1 Introduction

Nowadays, creating real-time and critical systems becomes more and more difficult
and expensive, on account of their complexity which grows year after year and
on account of the addiction of multimedia and time. Moreover, consumers want
final working products, especially when a system is a multimedia protocol, an air
traffic system or a real-time system. Beta testing could be a solution to check the
correctness of a system, although it is cost (for management) and it low covers
infrequently used parts of the system. Despite these problems, beta testing is still
widely used in practice. For critical systems, formal methods and better coverage is
needed. So, in this field, we usually deal with two main validation techniques:

e the verification technique, which handles a specification and tries to prove its
correctness (in this case the system can be seen as a white box),

e the conformance testing technique, which uses an implementation of the system
and tries to find incorrectness on it without having any information about
its structure (in this case the implementation can be seen as a black box).
More clearly, to check if the implementation’s behavior is the same as the
specification’s behavior, a set of sequences of actions (called ’test cases’) is
generated and applied to the implementation under test (I.U.T). For timed
systems, we also need to check whether the implementation actions can be
executed in the same time intervals than the specification’s ones.

By testing an action of a system, we can obtain the following results: conclusive
which implies your implementation is conformed, fail which implies the action can-
not be performed in the implementation and inconclusive which implies at least
one action cannot be tested.

*** parler des autres meth ***

In this paper, we propose a new testing methodology for timed systems, modeled
with timed automata ([AD94]. This one is test purpose based approach. Test pur-
pose are expressed with sequences of actions and time constraints, which represents
temporal and behavior properties that must be verified on the implementation.

We present in section 3, the timed test cases generation which is summarized
as follow: a part of the specification containing the test purpose and this last one
are translated into region graphs to explicit relations between clocks and the elapse
of time. Region graph are equivalent representation of timed automata, often used
([]) and are the lonely representation which able to compare different clocks in tim-
ing constraints, but they contains unusual information, which increase costs of the
generation, so they are transformed into TIORA. Then, a synchronous product is
computed to obtain a graph, respecting the specification and containing the test
purpose. Test cases are the paths of this graph.

We describe in section 4, in details, test cases execution with a timed implemen-
tation, and we show how actions are tested in time intervals. We also show how
timed test cases can be translated into TTCN.

The remainder of this paper is structured as follow: Related works and notations
are expressed in Section 2. Section 7?7 is devoted to a timed conformance relation
based on trace. We give some remarks about the methodology and its complexity
in section ?7?. Section 5 illustrates an example of faulty implementation. Finally, in
section 6, we conclude.

2 Related works

2.1 Timed system model
2.1.1 Timed Input Output automata (TIOA)

Timed automata [AD94] are graphs representing timed systems during their execu-
tions. The first state is called the initial state. The choice of the next state depends
on the action to execute (represented by a transition, labeled with a symbol) and on
the moment where this action is executed. To represent time in timed systems, a set
of clocks is associated to the automaton. Each clock is represented by a real value
(dense time representation) and grows strictly monotonically. All clocks are set to
0 in the initial state. Clocks can be reset on any transition. At each time, the clock
values give us the time past for its previous reset. Finally, most of the transitions
contain clock constraints. To execute a transition, all the clocks of the system must
satisfy these ones.

Definition 2.1 (Clock constraint [AD94]) Let C4 be a finite set of clocks, and
x; € C4. A clock constraint 6 over x; is a boolean expression of the form § = x; <
cle>xi| =6 | 01 A dg where ¢ € Q.

The set of clock constraints over C4 is denoted ®(C4).

Timed Input Output automata are extended timed automata where symbols are
divided into input symbols and output symbols.

Definition 2.2 (Timed Input Output automata) A TIOA A is defined as a
tuple < EA,SA,S%,CA,EA >, where:

e Y4 is a finite alphabet,

e S, is a finite set of states,

° 394 is the initial state,

o (' is a finite set of clocks,

e BAC Lax ({21} xX4)x204 x &(C,) is the finite set of transitions.

An input symbol begins with "?" and an output one begins with "!".

A tuple < I,I',a, \, G > represents a transition from state l to state l’, labeled
with the symbol a. The subset A C C4 gives the clocks to be reset within this
transition, and G is a clock constraint over C4.

A transition .S; =, Sj, labeled by the input symbol "7x", models an input
action provoked by the external environment of the implementation. "7x" must
be given to it in order that the action could be executed. A transition S; L,
S;, labeled by the output symbol "Ix", represents an output action provoked only
by the implementation. Its execution is indicated by the sending of "!x" by the
implementation.

211

x>=3

Dialog
pending

Wait for
User
Request

?03

Dialog
accepted

Dialog
establish

103

X<2

?11 : map_u_abort_req 101 : tc_u_abort_req;terminated
?12 :tc_begin_ind 103 : service_invoked

?I13 : map_open_req 105 : tc_end_req;terminated
?14 :map_req 106 : tc_continue_req

?15 : map_delimiter_req 109 : map_p_abort;terminated

2?17 : map_open_rsp
?111 : map_delimiter_rep
?113 : tc_continue_ind
?114 : tc_end_ind

?116 : tc_p_abort_ind

Figure 1: A part of the MAP-GSM protocol, modeled with TIOA.

An example of TIOA, modeling a part of the MAP-GSM protocol, is illustrated
in figure 1. If we consider the transition T'mp2 109 1 DLFE, the clock constraint
y >= 4 should be satisfied when the system sends !09 (after this execution , and

y will be reset to 0).

2.1.2 Region Graph

Definition 2.3 (Clock valuation [AD94]|) A clock valuation over a set of clocks
C4 is a mapping v that assigns to each clock x € Ca a value in R™, called clock
value. We denote the set of clock valuation by V(Cjy).

A clock valuation v satisfies a clock constraint G, denoted v |= G, if and only if G
is evaluated to true under v.

For d € R™, v+d denotes the clock valuation which assigns a value v(x)+d to each
clock x. For X C Cy, [X — d]v denotes the clock valuation for C'4 which assigns d
to each x € X, and agrees with v over the rest of the clocks.

So, if n is the number of clocks of A, a clock valuation is a n-tuple of clock values.
With this previous definition, we can say the future behavior of a timed system is
determined by its states and by the clock valuations over C4. This motivates a
new representation of timed systems, by combining these states and these clock
valuations. However, the set of clock values, is infinite, because we deal with dense
time representation. An equivalence relation is defined in [AD94| in order to gather
clock values which have the same integral parts.

For any t € R", fract(t) denotes the fractional part of ¢ and [t| denotes the
integral part of £.

Definition 2.4 (Clock Region [AD94]) Let A =< ZA,LAJ%,CA,EA > be a
timed automaton. For each x € Cy, let ¢, be the largest integer ¢ such that (x < c)
or (¢ < x) is a subformula of some clock constraints appearing in E 4.

The equivalence relation ~ is defined over the set of all clock interpretations for
Ca; v ~ v iff all the following conditions hold:

e For all x € cy, either |v(z)| and |v'(x)] are the same, or both v(z) and v'(x)
are greater than cy.

e For all z,y € Cy with v(z) < ¢ and v(y) < ¢y, fract(v(x)) < fract(v(y)) iff
fract(v'(z)) < fract(v'(y)).
e For all x € Cy with v(z) < ¢, fract(v(z)) =0 iff fract(v'(z)) = 0.

A clock region for A is an equivalence class of clock valuations induced by ~.

We will use [v] the clock region to which v belongs.
Clock regions can also be seen as time intervals, depending on several clocks, and
they can be illustrated by polyhedrons with several vertices. A polyhedron is defined
with inequations. For a clock region R, we also say a clock valuation ¢ € R iff ¢
satisfies all the inequations of R.

Definition 2.5 (Time Successor) A clock region R’ is a time-successor of a clock
region R iff for each v € R, there exists a positive t € IR such that v+t € R’

Region graphs are equivalent representations of timed automata where timed
constraints are represented by one or several clock regions. A region graph state is
a tuple containing one state of the TIOA and one clock region. This new model
allows to distinguish each time interval during which an action may be executed.
An algorithm to transform TIOA into region graphs is given in [AD94].

Definition 2.6 (Region Graph) Let A = (X4,54,5%,Ca, Ea) be a timed input
output automaton. A region graph of A is an automaton RA = (Xga, Sra, s% 4, Era)
where:

e Ypa = X4 UJ,where § represents the elapse of time,
o Spa C{(s,[v]) | s€SaNnveV(Ch)}
o 5% = (sY, [vo]) where vo(x) =0 for all z € Ca

e R, has a transition, ¢ ——ga ¢, from state q((s, [v])) to state ¢'({s', [v])) with
the symbol a, iff either

— a # § and there is a transition (s,s',a,\,G) € E4 and d € R™ such that
(v+d) E G and v' = [A — 0](v+d),

— a =190, s # s and there exists d € R" such that v/ = v + d.

Our definition is slightly different from the definition in [AD94|, because we take
into account the delay to reach a clock region from another one, which is modeled
with delay transitions. Region graphs are often used in verification and testing tech-
niques for timed systems [AD94, DY96, SSb00|. Moreover, some algorithms, allowing
to minimize region graphs have been written [YL93, ACH"92|, which generates the
portion of the minimized system that is reachable in polynomial time. Consequently,
all clock regions, in which the same actions can be executed, are gathered into one
clock region. So, the number of states of region graphs is strongly reduced, what
reduces test costs.

2.2 Test Architecture

In order to apply the test cases on the implementation, the authors of [EnFDE97|
propose a first test architecture, inspired by the well-known one defined in [ISO91].
But in [PF99], we suggested another architecture which is more realistic. In fact, the
main idea is to remember that what we want to test is a temporal behaviour, however
it may have been implemented. This behaviour is represented in the specification by
clock constraints and clock resets, and we do not know a prior: what their equivalent
is in the specification, and not even if they have any equivalent at all. The aim is
to test whether the implementation accept the inputs at every moment it should,
according to the specification, and if the outputs it produces occur at the expected
moments. Consequently, and since the only temporal information we have at our
disposal lie in the specification, we must treat the temporal behavior in our tests as
a part of what is obtained from the specification, i.e. the tester, and only as a part
of the tester. This architecture is described by the figure exposed in figure 2.

In this architecture, we make no assumption about how time is modeled inside
the IUT, which now becomes an actual black box. The new tester is composed of two
parts, communicating with one another : the clock part, which contains the clocks
appearing in the specification, and the behaviour part, whose role is to communicate
with the implementation through the single PCO, i.e. to send inputs to the IUT
and receive outputs from it.

Since the clocks are now a part of the tester and belong no more to the im-
plementation, all the actions involving the clocks must now be performed by the
tester.

The behaviour part of tester may, like the behaviour part of the IUT in the former
architecture, ask the clock part at any time for the value of one or more clocks and
receive instantaneously the answer, but this communication is now internal to the
tester, and no more between the tester and the implementation.

TESTER

Behaviour Clocks

AN

IluT

Figure 2: A specific test architecture

On the other hand, the actions to be performed on the clocks, i.e the resets,
do not involve the implementation anymore. The tester, about which we do know
it contains clocks, performs the resets independently from the TUT. This situation
implies that the tester has to know which clocks are to be reset to zero in each
transition. Consequently, we must keep, in the whole process of test generation, the
sets of clocks to be reset (denoted as A in the definition 2.2), in the transition labels.
It will be interpreted during the test execution as an action to be performed by the
behaviour part of the tester upon its clock part of the tester.

3 Test Cases Generation

This part deals with the test cases generated from the specification and used for
testing. But previously, we need to make some hypothesis on TIOA.

4 Test Cases Execution

During the test, temporal and behavior properties of the implementation are checked,
by means of test cases. These ones contains actions which must be checked in
the PASS interval, expressing timing constraints of the test purpose and of the
specification. Unfortunately, clock regions are dense representation of time: that is
they contains infinite tuple of values, which cannot be all checked. Therefore, we
consider the fault coverage of the I.U.T is sufficient by applying these three cases:

e Let "7A" be an input action to test, in a PASS interval R, and let v € R
be the first clock valuation reached by the clocks, during the test. The tester
can send "A" to the I.U.T for any clock values reached by the clocks.

We propose that the tester sends "A" to the .LU.T as soon as possible and the
latest possible, that is for vy, and the last clock valuation vyine € R, reached
by the clocks. For reaching vginq, an elapse of time is necessary and it must
be computed on the fly during the test, on account of the dynamic behavior of
the LU.T (see section 4.1.2 for computation).

e Let "!A" be an output action to test, R a PASS interval and R’ an INCON-
CLUSIVE interval. The tester can only wait the receipt of the symbol "A"
from the I.U.T. So if "A" is received whereas the tuple of clocks equals one
clock valuation of the PASS interval, then the I.U.T respects the specification

and the test purpose. For a clock valuation of the INCONCLUSIVE interval,
only the specification is respected. Otherwise, the I.U.T does not respect both
(FAIL interval).

e For an elapse of time "d", allowing to reach the next clock region in which the
next action is tested, none test is needed. However, the tester must compute
on the fly the duration of this elapse of time and must simply wait. (see section
4.1.1 for computation)

Consequently, we consider input actions are checked for two clock valuations of
the PASS interval. So, a test case must be applied to the I.U.T 2" times with n the
number of input action. To express all **of** these cases, we develop a test case
into a tree, called Ezecution Tree.

4.1 Execution Tree

We suppose that we have a test sequence obtained from the synchronous product of
two TIORA. The following algorithm transforms such a sequence into a tree, called
Execution Tree, by respecting the three previous assumptions. This tree is composed
of TIORA states and of edges labeled by:

send(A) representing the sending of the input symbol ?A by the tester

e recv(A) representing the sending of the output symbol !A by the L.U.T to the
tester

e wait representing the time needed to reach the last clock valuation reached by
the I.U.T clocks in a clock region. This time is computed during the test.

e J representing the elapse of time needed to reach the next clock region. This
time is also computed during the test.

Algorithm

A,PASS(R),INCONCLUSIVE(R’)

Const-tree(SE
onst-tree(SEQ,s o

')

IF A=o

Add 2 ¢

THEN
{ Cons-tree(SEQ,next transition of SEQ)

%Input action
IF A="1

IF two clock valuations can be reached by the tuple of clocks
Add a branch %$ s’
Cons-tree(SEQ,next transition of SEQ)
Add a second branch % s
Cons-tree(SEQ,next transition of SEQ)

send(I)
ELSE { Add 24D,

THEN

Rt
Cons-tree(SEQ,next transition of SEQ)

%Output action
IF A=10
recv(0),PASS(R),INCONCLUSIV E(R')
THEN Add a branch -
Cons-tree(SEQ,next transition of SEQ)

S/

Finally, each branch of this tree can be given to the tester. This one can execute
them directly because each elapse of time, each sending or receipt of action are
indicated. The elapse of time wait and ¢ are computed as follow:

4.1.1 Elapse of time needed to reach the next clock region

. AR) B,R
Consider the sequence s; R—1> S9 — S3 R—2> s4. We need to calculate the elapse
t ¢

of time needed to reach Ry from any clock valuation, reached after executing the
action "A", that is the minimal value d such as vt +d € Ro.

.-~ Reachable Vfinal

Timegléps' ng

init

Figure 3: Reaching another clock region in vfinq from v

Let vinit = (v1, ..., vy) be the first clock valuation of Ry reached by the clocks after
the execution of "A". As, these ones grow with the same manner, strictly monotoni-
T1— Ty = U1 — Vg
cally, it is easy to prove they take the values of the equation
Lp—1— Tp = Un—1 — Up
So, the first clock valuation vy;nq reached by the clocks in Rs is unique and is
obtained by resolving the system of inequations
Inequations of Ro
A — X1 — T2 = V1 — V9
Tn—-1 —Tp =Up-1 — Un
Finally, the elapse of time d equals to the difference between v;,;; and the minimal
solution vyina of A. An example, illustrating this elapse of time is given in 3.

4.1.2 Elapse of Time needed to reach a clock valuation of a clock
region

For input actions, which can be executed in a clock region R, the tester tests them
as soon as it can, and for the latest clock valuation vf;nq, reached by the clocks in
R, knowing that the clocks gives the values vinit = (v1,...,v,). An elapse of time
wait is needed to reach vyinq. The figure 4 illustrates this other elapse of time.

R1 Vfinal

Time/elé\bs' ng

<" Vinit

Figure 4: Reaching the last clock valuation vy, of a clock region from v;y

The time, needed to reach vy, can be computed as the previous way. The
T1 — T2 =V1 — V2
clocks also take the values of the equation
n—1 —Tn = Un—-1 — Up

And vyinq is the maximal solution of the system of inequations
Inequations of R
A — X1 — T2 = V1 — Vg

Tpn—1 — Tp = Up—1 — Up
Finally, wait equals to the difference vyina — Vinit-
From the synchronous product, illustrated in figure ??, we obtain the execution

tree of the figure 5
wait e
send(12)
send(12)
wait H i H

wait

send(17) send(I7)
send(I7) send(17)
delta delta delta delta
wait wait wait wait
send(I11) send(I11) send(111) send(111)
send(I11) send(111) send(I11) send(I11)
recv(0O6) recv(06) recv(06) recv(06) recv(06) recv(OG) recv 06 recv(06)
P(R4) P(R4") P(R4") P(R4) P(R4) R4) P(R4")
R4/R4") 1(R4/R4") 1(R4/R4’) I(R4/RA") I(R4/RA") I(R4/R4")

Figure 5: Execution Tree

4.2 Transformation of execution tree in TTCN

TTCN (Tree and Tabular Combined Notation) is a language, normalized [ISO91],
expressing test cases, and recognized from most of the present testers. Thus, trans-
forming execution trees into TTCN allows to manage them directly, without con-
structing a new tester.

Before executing an execution tree branch, the tester clocks Xy, ..., Xy must be
started with: START X;..START Xy.

We also need two macro, the first one, called Cy(v, R) returns the elapse of time
W AIT, needed to reach the next clock region R from a clock valuation v (compu-

tation in 4.1.1). The second one, called Co(v, R) returns the two clock valuations

Vinin = (‘/Yla-"va> and Vipgz =

that the tuple of clocks currently equals to v (computation in 4.1.2).
The three following expressions allows to translate a branch of execution tree

into TTCN.

4.2.1 TTCN Expression of the elapse of time o

(V{,..., V), reached by the clocks in R, knowing

AR . .
A branch s % &' ? s, expressing the elapse of time needed to reach the next

clock region R, is expressed with:

Description

Verdict

Comment

READTIMER X; Ty

READTIMER Xy Tn
Cl(< Tl, AN >,R2) — Wait
[WAIT > 0]
TELAPSE WAIT

computation of the elapse of time

reaching Ro

4.2.2 TTCN Expression of input action test

. .. 7AR .
Consider the transition s R—> s'. The execution tree has two branches s
t

wait send(A)
and S ———

s’. So, we obtain in TTCN for the first one:

Rt
Description | Verdict Comment
1A Pass send "A"
CANCEL X; reset x; if necessary
START X;

send(A)
_—

S/

For the second branch, it is necessary to calculate the time needed to reach the

last clock valuation and to wait. We obtain:

START X;

Description Verdict Comment
READTIMER X, T
READTIMER Xy Tn
CQ(< T17 ceey TN >, R) - (Vlmirw ceey VNmzn)(V1maa:; vy VNmaz)
TELAPSE V1,4, — T reaching vsinal
1A Pass send "A"
CANCEL X; reset x; if necessary

4.2.3 TTCN Expression of output action test

Consider the transition s % s’ with an INCONCLUSIVE interval R’. The exe-

recv(A),PASS(R),INCONCLUSIVE(R') ,
s'. So, we obtain

cution tree has one branch s

Rt
in TTCN:
Description Verdict Comment
7A receive "A"
READTIMER X; Ty
READTIMER Xy Tn
Cy(< Ty, ... Ty >, R) —
(Vlminy ceey VNmzn)(V1max; vy VNmaw)
Co(< Ty, ... Ty >, R') —
(V1;71in7) Vernin)(Vlgnaza i VN;naa:)
[Vlmzn S T1 AND T1 § Vlmax] Pass
V1 .. <Ty AND T, <V1 .1 Inconclusive
V1 .. >Ti AND Ty > V1 .1 Fail "A" not received in R
[V Npin <T1 AND T7 < V Npazl Pass
[VN] .. <Ty AND Ty < VN, ..l Inconclusive
[VN] .. >T; AND Ty > VN, .1 Fail "A" not received in R
7otherwise Fail bad symbol
CANCEL X; reset x; if necessary
START X;

5 A faulty implementation

In order to illustrate the detection of potential faults in an faulty implementation,
let us consider the implementation in figure 6. This one contains two faults: the first
fault concerns the outgoing transition of the state TMP3 which is is labeled with
"O9" whereas it should be "!O6" in the PASS interval R . The second one, is a
violation of timing constraints on input action "7I2". The time during which "712"
could be executed is reduced because the constraint should be x < 1. During the
test execution, the tester sends inputs symbols and receives output ones of the test
case, illustrated in figure ?7.

First, according to the execution tree (figure 4), it sends "7I12" for a clock val-
uation equals to (0,0) (see execution tree), and it sends "?I77111" for others clock
valuations. The only reaction we can observe from the L.LU.T is "!09") and this is
an unexpected output. So, the implementation is faulty.

Then the tester sends "?12" for a clock valuation equals to (1 —€,1 —€). The
L.U.T stays in the state IDLE because its timing constraints are not satisfied. As
there is none output reaction, the tester continues to send "7177I11" for others clock
valuations. None output reaction can be received because the I.U.T is still in IDLE,
whereas "!06" is excepted in the PASS interval R)j. So, the implementation is faulty.

Consequently, the two faults are detected after executing the whole test case with

different clock valuations. However, it is impossible to detect where the implemen-
tation is faulty. A diagnostic is necessary.

21

x>=3

2?03

Wait for
User
Request

Dialog
pending

y<4

Figure 6: A faulty implementation

6 Conclusion

References

[ACH*92]

[ADY4]

[DY96]

[EnFDE97]

1S091]

[PF99]

R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, and H. Wong-Toi.
Minimization of timed transition systems. In R. Cleaveland, editor,
Proceedings CONCUR 92, Stony Brook, NY, USA, volume 630 of Lec-
ture Notes in Computer Science, pages 340-354. Springer-Verlag, 1992.

R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183-235, 1994.

C. Daws and S. Yovine. Reducing the number of clock variables of
timed automata. In Proceedings of the 1996 IEEE Real-Time Systems
Symposium, RTSS’96, Washington DC, USA. ITEEE Computer Society
Press, 1996.

A. En-nouaary, H. Fouchal, R. Dssouli, and A. Elqortobi. Test deriva-
tion for timed systems. Report LERI-97-09-01, LERI-RS (Université de
Reims), 1997.

ISO. Conformance Testing Methodology and Framework. International
Standard 9646, International Organization for Standardization — In-
formation Technology — Open Systems Interconnection, Genéve, 1991.

Eric Petitjean and Hacéne Fouchal. A fault model for timed system
testing. In Research report, submitted to TCS 2000, 1999.

[SSb00)]

[YL93]

Hacene Fouchal Sebastien Salva and Simon bloch. Metrics for Timed
Systems Testing. In ?th OPODIS International Conference on Dis-
tribued Systems, Paris, 2000.

M. Yannakakis and D. Lee. An efficient algorithm for minimizing real-
time transition systems (Extended abstract). In C. Courcoubetis, edi-
tor, Proceedings of the 5th International Conference on Computer Aided
Verification, Elounda, Greece, volume 697 of Lecture Notes in Computer
Science, pages 210-224. Springer-Verlag, 1993.

