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Abstract

Usually, the notion of time introduces space explo-
sion problems during the generation of exhaustive tests,
so test-purpose-based approaches have been developed to
reduce the costs by testing (usually on the fly) the critical
parts of the specification. In this paper, we introduce a
test-purpose-based method which tests any behaviour and
temporal properties of a real-time system. This method
improves the fault detection in comparison with other sim-
ilar approaches by using a state-characterization-based
technique, which enables the detection of state faults on
implementations. An example is given with the MAP-DSM
protocol modelled with two clocks.
key words:Timed automata, conformance testing, test pur-
pose

1. Introduction

Computer applications are being increasingly involved
in critical, distributed and real-time systems. Their mal-
functioning may have catastrophic consequences for the
systems themselves, or for the ones who are using them.
Testing techniques are used to check various aspects of
such systems. Different categories of test can be found in
literature: performance testing, robustness testing, inter-
operability testing and conformance testing which will be
considered here.

Conformance testing consists in checking if the imple-
mentation is consistent with the specification by stimulat-
ing the implementation and observing its behaviour. Test
cases which consist of interaction sequences are applied
on the implementation via a test architecture [13, 23]. This
one describes the configuration in which the implemen-
tation is experimented, which includes at least the imple-
mentation interfaces (called PCO, point of control and ob-
servation) and the tester which executes the test cases to
establish the test verdict:

• pass: no error has been detected.

• fail: there is at least an error on the implementation.

• inconclusive: pass and fail cannot be given (the test
cannot be performed).

Many testing methods have been proposed for gen-
erating automatically test cases from untimed systems
[30, 9, 24, 3] or timed ones [5, 13, 10, 22, 29]. Most
of the timed ones are exhaustive methods which gener-
ally transform specifications into larger automata (such as
region graphs [13, 23], grid automata [29, 12], or SEA
[19, 18]) to generate test cases on the complete speci-
fication. This kind of method is interesting and usable
with small systems but can end in a space explosion prob-
lem (usually obtained from state explosion) with larger
ones. So, others techniques called test-purpose-based ap-
proaches, have been proposed to test the most critical
systems parts. These ones check local implementation
parts from test requirements given by engineers, which are
called test purposes. The conclusion of the test is given
here by checking the satisfaction of the test purpose in the
implementation.

Some test purpose based methods have been proposed
[7, 8, 20, 28, 18] to test timed systems. These ones
strongly reduce the test cost and can be generally used
in practice to test specification properties on implementa-
tions. However, faults like extra(missing) states and trans-
fer faults cannot be detected with the previous techniques.
Such faults can modify the system internal state (this one
becomes unknown and faulty), so detecting them is im-
portant.

In this paper, we introduce a test-purpose-based
method which can test the conformance and the robust-
ness of implementations, by testing any temporal or be-
haviour properties belonging to the specification (called
Accept properties), but also any other ones given by de-
signers (Refuse properties). The test case generation is
performed by a timed synchronous product which com-
bines the specification with the test purposes and prevents
state explosion. With this product, we obtain a graph
which includes the specification and the test purpose prop-
erties. Furthermore, to improve the fault detection, we use
a state-characterization-based approach to identify each
state visited in the implementation. So, missing and trans-
fer faults can be detected.



This article is structured as follow: Section 2 describes
the theoretical framework needed in this study. Section
3 provides an overview of testing methods, and a re-
lated works on timed testing with test purpose based ap-
proaches. Section 4 introduces the concept of Timed test
purposes. The testing method is described in Section 5.
We apply this one on a real system, which is a part of the
MAP-DSM protocol. Then, we give the fault coverage
of the method in Section 6. Finally, we give an overview
of an academic test tool, which implements this testing
method, in Section 7 and we conclude in Section 8.

2. Definitions

2.1. The Timed Input Output Automaton model
TIOA (Timed Input Output Automata) are graphs de-

scribing timed systems. This model, extended from the
timed automaton one [1], expresses time with a set of
clocks which can take real values (dense time represen-
tation) and by time constraints, called clock zones, com-
posed of time intervals sampling the time domain. Actions
of the system are modelled by symbols labelled on transi-
tions: input symbols, beginning with ”?” are given to the
system, and output ones, beginning with ”!” are observed
from it. A TIOA transition, labelled by an input symbol
?a, can be fired if the system receives ?a while its time
constraint is satisfied. In the same way, a TIOA transition,
labelled by an output symbol !a, is fired if !a is observed
from the system while the time constraint is satisfied.

Definition 1 (Clock zone) A clock zone Z over a clock
set C is a tuple < Z(x1), ...Z(xn) > of intervals such
that card(Z) = card(C) and Z(xi) = [ai bi] is a time
interval for the clock xi, with ai ∈ IR+, bi ∈ {IR+,∞}.
If Xi is the clock value of the clock xi, we say that a clock
valuation v = (X1, ..., Xn) satisfies Z, denoted v |= Z iff
Xi ∈ Z(xi), with 1 ≤ i ≤ n.
For two clock zones Z and Z′, we denote some operators:

• Z ∩ Z ′ = {v | v |= Z and v |= Z ′}
• Z/Z ′ = {v | v |= Z}/{v′ | v′ |= Z ′}

Definition 2 (Timed Input Output Automata (TIOA))
A TIOA A is a tuple < ΣA, SA, s

0
A, CA, EA > where:

• ΣA is a finite alphabet composed of input symbols
and of output symbols,

• SA is a finite set of states, s0A is the initial one,

• CA is a finite set of clocks,

• EA is the finite transition set. A tuple (s, s′, a, λ, Z)
models a transition from the state s to s′ labelled by
the symbol a. The set λ ∈ CA gathers the clocks
which are reset while firing the transition, and Z =<
Z(1), ..., Z(n) >(n=card(CA)) is a clock zone.

A TIOA example, modelling a MAP-DSM part, is
given in Figure 1. Among the protocols used with GSM
(Global system for Mobile communication), nine proto-
cols are grouped into the MAP (Mobile application part).
Each one corresponds to a specific service component.
The Dialog State Machine (DSM) manages dialogs be-
tween MAP services and their instantiations (opening,
closing...). A DSM description can be found in [6]. The
specification of Figure 1, describes the request of the MAP
service by an user(?I3). This one can invoke several MAP
requests (?I4) which aim to start some services (!O3). A
dialog can be accepted then established or it can be aban-
doned (!O5 or !O9).

If we consider the transition (Tmp2, IDLE, !O9,
{X Y }, < X[4 +∞[Y[4 +∞[ >), the two clocks x and y
must have an greater value than 4 so that the system pro-
duces the symbol !O9. After this execution , x and y are
reset.
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?I1  : map_u_abort_req
?I2  : tc_begin_ind
?I3  : map_open_req
?I4  : map_req
?I7  : map_open_rsp
?I11 : map_delimiter_rsp
?I13 : tc_continue_ind
?I14 : tc_end_ind
?I15 : tc_p_abort_ind
?I16 : tc_p_abort_ind

!O1 : tc_u_abort_req;terminated
!O3 : service_invoked
!O5 : tc_ind_req;terminated
!O6 : tc_continue_req
!O9 : map_p_abort;terminated

X.=0
Y.=0

X.=0
Y.=0

Y.=0

Figure 1. A TIOA

2.2. Fault model
The fault model is a set of potential faults (untimed

and timed ones) that can be detected on implementations
by the testing process. For the TIOA semantic, the fault
model can be found in [13, 12]. This one is composed of:

• Output faults: An implementation produces
an output fault, for a specification transition
(s, s′, !a, λ, Z), if it does not respond with the ex-
pected output symbol !a.

• Transfer faults: An implementation produces a
transfer fault if from a state, it goes into a state dif-
ferent from the expected one by accepting an input
symbol or by giving an output one.



• Extra state faults: An implementation is said to
have an extra (missing) state if its number of states
must be reduced (increased) to be equal to the num-
ber of states of the specification.

• Time constraint widening fault: Such a fault oc-
curs if the implementation does not respect the time
delay granted by a specification clock constraint, that
is if the upper (or lower) bound of a clock constraint
is higher (smaller) in the implementation. This fault
may occur on input or output symbols: for an output
one, the implementation does not respond in the ex-
pected delay given by the specification, for an input
symbol, the implementation accepts the input symbol
in delays wider than the one given by the specifica-
tion.

• Time constraint restriction fault: This fault occurs
only with input symbols. An implementation pro-
duces this fault if it rejects an expected input symbol
in delays satisfying the clock constraint given by the
specification. In this case, the clock constraint of the
implementation is more restrictive than the specifica-
tion one. Since output symbol cannot be controlled
by the system environment, an implementation that
produces an output symbol in a more restrictive de-
lay than the one specified is seen as a valid restriction
of the specification.

3. Related Works

In the literature, testing methods can be grouped into
two categories:

• the exhaustive testing methods, which involve gen-
eration of test cases on the complete specification,
execution of the test cases on the implementation and
analysis of the test results. To describe the set of cor-
rect implementations, a conformance relation is first
defined, then test cases are given or generated from
the specification to check if the relation is satisfied or
not. Some works about timed systems testing can be
found here [5, 13, 22, 29, 12].

• the non exhaustive testing methods [7, 8, 21, 20,
28, 11, 18, 2, 14], which aims to test local parts of
implementations. This concept aims to check if a
set of properties, called a test purpose, can be exe-
cuted on an implementation during the testing pro-
cess. Test purpose can be either manually given by
designers, or can be automatically generated [7, 17].
Then, test cases are generally generated from the test
purposes and from some specification parts, reduc-
ing the specification exploration in comparison with
exhaustive methods (reducing in the same time the
test costs). Finally, test cases are executed on the im-
plementation to observe its reactions and to give a
verdict [28].

In [8, 20], the authors use time automata to model
the specification and the test purpose. Test cases are
generated by synchronizing the specification with the
test purpose and by extracting the paths which con-
tain all the test purpose properties. During the syn-
chronization, a reachability analysis is performed to
keep only the reachable transitions. This method
needs for each transition a resolution of linear in-
equalities and also a DFS algorithm to search some
clocks constraints. The number of inequalities is pro-
portional with the number of clocks and the transi-
tions they constrained, consequently the resolution is
generally costly.

In [28], the specification and the test purpose, mod-
elled with timed automata are translated into region
graphs to sample the time domain into polyhedrons.
The test cases are generated by synchronizing the
specification region graph and the test purpose one.
Each region clock of the region graph is accessible
from the initial one, so a final test case can be com-
pletely executed on implementations. However, the
region graph generation is costly and can suffer from
state explosion.

In [18], the test tool TGV [15] has been extended
to test timed systems. This method can test non de-
terministic systems and takes into account the quies-
cence of states. Test purposes and specification are
translated into non real time automata (SEA), then
the TGV method is adapted and used to generate test
cases.

In [2], the authors use specifications and test pur-
poses modelled by TIOA. Then, they search for a
feasible path which match the specification and the
test purpose with a DFS algorithm.

In [14], test purposes are modelled by Message Se-
quence Charts (MSC). These ones are converted into
TIOA. Then, the specification and test purposes are
converted into grid automata. Finally, test cases are
generated by using the synchronous product defined
in [8].

In this paper, we propose a new test purpose defini-
tion to generate test cases which can test the conformance
of timed system as well as their robustness by defining
Refuse properties, that is test purpose properties which do
not belong to the initial specification. So these ones can
simulate the execution of different failures, like byzantine
or scheduling ones, in order to check if the system can still
respond correctly despite these errors. We do not trans-
late timed automata into larger models to apply existing
untimed test purpose methods on them [28, 18, 14]. We
define a new timed synchronization product on timed au-
tomata which also takes into account Refuse properties.
We also propose to improve the fault detection by enabling
the detection of the missing state and transfer faults. We
adapt a state characterization based approach, defined in



[26] for region graphs, to identify each system state with
observable action sequences. With this state identifica-
tion, missing and transfer faults can be detected.

Before describing the test case generation, we present
our definition of timed test purposes.

4. Timed test purpose

Test purposes are graphs describing the requirements
that engineers wish to test on the system implementation.
These requirements can be specification properties which
should be satisfied in the implementation during tests. We
call them Accept properties. But, test purposes could also
be constructed with properties which do not belong to the
specification, that we call Refuse properties. These ones
can be used to test the system robustness by checking if
the system responds correctly despite the execution of un-
specified actions.

So, we define that a Timed Test Purpose is a TIOA
whose the states are either labelled by ”accept” or ”refuse”
to model that transitions are composed of accept or refuse
properties. An accept transition of the test purpose must
exist in the specification. Its clock zone may be however
more restrictive than the specification one.

Definition 3 (A Timed Test Purpose) Let S =< ΣS,
SS, s

0
S, CS, ES > be a TIOA describing a specifica-

tion. A timed test purpose TP is a TIOA < ΣTP, STP,
s0TP, CTP, ITP, ETP > where:

• CTP ⊆ CS,

• STP ⊆ SS × accept, refuse is a set of states such
that each state s′ ∈ STP is labelled either by:

– ACCEPT: if s′ is the initial state
of TP, or if ∀(s, s′, a, λ, Z) ∈
ETP, ∃(s1, s2, a, λ2, Z2) ∈ ES such as Z ⊆
Z2, s ∈ {(s1, accept), (s1, refuse)}, s′ =
(s2, accept)

– REFUSE: otherwise

Definition 4 (Accept and Refuse transition) We call a
transition (s, s′, a, λ, Z) an accept transition iff s′ is la-
belled by ACCEPT. We call it a REFUSE transition other-
wise.

A timed test purpose example is given in Figure 2. This
one checks if after having a dialog accepted (?I7), a dialog
can be established (!O6) during a more restrictive clock
zone than the specification one.

Test purposes for testing the system robustness
Robustness aims to check the system behaviour under

the influence of external errors (byzantine failure, bus er-
ror, scheduling problem, ...). Mutations are generally in-
jected into test cases to simulate these errors. Some well-
known mutations can be found in [16]:

Dialog
Pending
Accept

Dialog
Accepted

Accept

Dialog
Establish
Accept

?I7 !O6

X[0 +inf[
Y[0 2]
Y.=0

X[3 +inf[
Y[0 +inf]

Figure 2. A test purpose example for the
MAP-DSM protocol

1. Replacing an input action, to simulation that an un-
expected action is received by the system from its
external environment.

2. Changing the instant of an input action occurrence to
simulate that the good input action is received later
than expected

3. Exchanging two input actions to simulate an schedul-
ing problem with external components to the system

4. Adding an unexpected action to simulate that an ex-
ternal component has send an additional action to the
system.

5. Removing an action to simulate the lost of a informa-
tion

Refuse properties are used here to model mutations,
which are injected into test purposes and finally into test
cases. Refuse properties can be added to test purposes by
hands for specifying a precise error, or can be generated
by some methods [16, 27]. The test purpose example of
Figure 3 contains a refuse property which check that dur-
ing the establishment of a connection between the MAP
server and a service provider (?I11 !O6), the dialog can-
not be aborted (?I16=tc p abort ind). The action ?I16 is
an unexpected action for the system. The test purpose also
checks that the system continue to establish the dialog de-
spite ordering the abort.
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Pending
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Dialog
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TMP3
Accept

TMP3
Refuse

?I7 ?I11 ?I16
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!O6

X[0 +inf[
Y[0 2]
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X[2 +inf[
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X[2 +inf[
Y[0 +inf[

Figure 3. A test purpose with refuse proper-
ties



5. Test case generation

5.1. Testing hypotheses
Some assumptions are required on the implementation

under test and on the specification. The ”Implementation
Reset” and ”Determinism” hypotheses are required to ex-
ecute the test cases. Indeed, without reset function, the
tester cannot execute several test cases on the implemen-
tation, and if the implementation is nondeterministic, it
may be uncontrollable and thus not testable. The two last
hypotheses are required for using a state characterization
based approach. These ones ensure and allow to identify
each specification state.

Implementation Reset After each test, implementations
can be reset to the initial state.

Determinism The specification must be timed determin-
istic on the set of alphabet. 1. from any state, we can-
not have two outgoing transitions labelled with the
same symbol. 2. we cannot have an outgoing transi-
tion, labelled with an input symbol and an outgoing
transition labelled with an output one, whose the tim-
ing constraints are satisfied simultaneously. These
properties ensure that a determined implementation
path can be covered during the tests.

Minimality The specification must be minimal on the
state set.

Completely specified system The specification must be
completely specified on the set of input symbols
(each input symbol is enabled from each state).

Remark 5 To complete a specification on the set of
input symbols, we propose to add a trap state s�
and to complete each state s with outgoing transitions
(s, s�, ?I, λ,G) from s to s�. These transitions model
the external actions refused by A and improve the observ-
ability and the controllability of the specification. So, the
complete TIOA UPA =< ΣUPA

, SUPA
, s0UPA

, CUPA
,

IUPA
, EUPA

>, derived from A can be obtained with
these rules:

• ΣUPA
= ΣA, SUPA

= SA ∪ {s�},

• s0UPA
= s0A, CUPA

= CA,

• IUPA
= IA ∪ {Z ′ | ∀s′ ∈ SA(s, s

′, ?I, λ, Z) /∈
EA, Z

′ =< [0 +∞[...[0 +∞[>}
∪{Z ′ | ∃s′inSA(s, s

′, ?I, λ, Z) ∈ EA, Z
′ =< [0 +

∞[...[0 +∞[> /Z},

• EUPA
= EA ∪ {(s, s�, ?I, λ′, Z ′) | ∀s′ ∈

SA(s, s
′, ?I, λ, Z) /∈ EA, λ

′ = ∅, Z ′ =< [0 +
∞[...[0 +∞[>}
∪{(s, s�, ?I, λ′, Z ′) | ∃s′inSA(s, s

′, ?I, λ, Z) ∈
EA, λ = ∅, Z ′ =< [0 +∞[...[0 +∞[> /Z}
∪{(s�, s�, ?I, λ, Z) |?I ∈ ΣA}

Test purposes are often composed of some specifica-
tion actions, but not of complete specification action se-
quences [8, 28, 11, 18, 2, 14]. Test purposes may also
be inconsistent with the specification, especially when we
use refuse properties. So, test purposes based methods
generally synchronise the test purpose with the specifi-
cation to obtain paths which can be completely executed
from the initial system path. Moreover, our testing method
needs a state characterization based step to detect missing
and transfer faults. So, these two steps are first presented
below:

5.2. Timed Synchronous Product
The timed synchronous product aims to combine a test

purpose and a specification to obtain paths which can
be executed on the implementation. In comparison with
the timed synchronous product that we have defined in
[28] for region graph models, this one takes into account
Refuse properties and injects them into the final test cases.

Consider two transitions, s1
A,ZS−−−→ s2 of a specifica-

tion S and s′1
A,ZTP−−−−→ s′2 of a timed test purpose TP, la-

belled with the same symbol ”A”. By synchronizing them,
we generate different clock zones, depending on ZS and
ZTP. The different kinds of synchronized clock zones are:

• PASS clock zone: The clock zone Zpass gathers the
values which satisfy the execution of the two tran-
sitions, that is the ones which belong to ZS ∩ ZTP.
If the transition is executed in this clock zone during
the test, the test purpose transition is satisfied.

• INCONCLUSIVE clock zone: The clock zone
Zinconclusive represents the values which satisfy the
execution of the specification transition, but not the
execution of the test purpose one. INCONCLUSIVE
clock zones ensure that test cases can be executed on
implementations, even though the test purpose can-
not be satisfied. INCONCLUSIVE clock zones al-
low to give an inconclusive result, that means some
specification properties have been tested instead of
the test purpose ones. Zinconclusive contains values
of ZS/Zpass.

• FAIL clock zone: The FAIL clock zones represent
the values which do not satisfy the execution of the
specification transition. In this case, if the transition
is executed in a FAIL clock zone during the test, the
implementation is faulty.

Figure 4 shows an example of synchronized clock
zones.

Now, we give the definition of the timed synchronous
product between a specification and a test purpose which
may contain refuse properties.

Definition 6 (Timed synchronous product) Let S =<
ΣS, SS, s

0
S, CS, IS, ES > and TP =< ΣTP, STP, s

0
TP,

CTP, ITPETP > be two TIOA. The Timed Synchronous



Product between S and TP is a graph SP =<
ΣSP, SSP, s

0
SP, CSP, ESP > defined by:

• ΣSP ⊆ ΣS ∪ ΣTP, SSP ⊆ SS ∪ STP, s0SP ⊆ s0S,
CSP ⊆ CS ∪ CTP,

• ESP is the set of transitions

si
a,PASS(Z),INCONCLUSIV E(Z′)−−−−−−−−−−−−−−−−−−−−−−−→ si+1, with

si ∈ SSP, si+1 ∈ SSP, Z a PASS clock zone and
Z ′ an INCONCLUSIVE one. This set is constructed
with the following algorithm.

Algorithm

Input: T (Test Purpose), S(Specification)
Output: SP (Synchronous Product)
BEGIN:
For each specification path PS of S, and For each test purpose
path TP containing in the same order the accept transition
symbols of TP

We scan each transition tp
A,ZTP−−−−→ tp′ of TP and each

transition s
B,ZS−−−→ s′ of PS

if the symbol A == B then
//the specification and the test purpose transitions are
synchronized


if Label(tp′) == REFUSE then we add

sp
A−−−−−−−−→

PASS(ZTP )
sp′ to ESP

else we add

sp
A−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

PASS(ZS∩ZTP ),INCONCLUSIV E(ZS/ZTP )
sp′

synchronizing the test purpose and the specification
endif

if the symbol A �= B
//the specification and the test purpose transitions cannot
be synchronized


if Label(tp′) == ACCEPT then we add

sp
B−−−−−−−→

PASS(ZS)
sp′ to ESP to reach a next

synchronization
else

we scan PS to find if a synchronization on the

symbol A with tp
A,ZTP−−−−→ tp′ is possible later

if it is possible, then we add sp
B−−−−−−−→

PASS(ZS)
sp′

to reach this synchronization.

else we add sp
A−−−−−−−−→

PASS(ZTP )
sp′

endif
endif

if some PTP transitions are not used then we add them to ESP

endif
END

We illustrate the timed synchronous product with this
simple example. Consider the path of Figure 5, derived
from the specification of Figure 1. This one is synchro-
nized with the test purpose of Figure 2. The timed syn-
chronous product is expressed in Figure 6.
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Figure 4. An example of synchronized clock
zones with two clocks
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Figure 5. A specification path

5.3. State characterization set of TIOA
We have defined the state characterization based ap-

proach for region graphs in [26]. We have shown that the
identification of two states depends on output symbols,
which are observed during the system execution, and on
the moments of these observations, that is the clock zones,
for TIOA. So, to distinguish two TIOA states, we look for
a transition sequence which provides either different out-
put symbols, or the same ones with different clock zones
or both. A state s is characterized by a identification set
Ws if this one is composed of transition sequences which
distinguish s from the other states. Finally, the state char-
acterization set W is the union of the subsets Wsi which
characterize each state si. This is formally described in
the following definition.

Definition 7 (Timed State Characterization Set W )
Let IA = (ΣIA, SIA, s

0
IA, IIA, EIA) be a TIOA satis-

fying the hypotheses of Section 5.1. Two states S and
S′ of IA are distinguished by a transition sequence
σ = (t1, t2, A1, λ, Z1)...(tn, tn+1, An, λn, Zn), denoted
S Dσ S′ iff

1. ∀(tk, tk+1, Ak, λk, Zk)(1 ≤ k ≤ n), with Ak an out-

put symbol, we have a path S
A1,λ1Z1−−−−−→ S2 .......

Sk−1
Ak−1,λk−1,Zk−1−−−−−−−−−−−→ Sk ∈ (EIA)

k and
(Sk, Sk+1, Ak, λk, Zk) ∈ EIA,

2. ∃(tk, tk+1, Ak, λk, Zk)(1 ≤ k ≤ n), with Ak an out-
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Figure 6. A synchronous product



put symbol, we have a path S′ A1,λ1,Z1−−−−−−→ S2 .......

Sk−1
Ak−1,λk−1,Zk−1−−−−−−−−−−−→ Sk ∈ (EIA)

k and
(Sk, Sk+1, Ak, λk, Zk) /∈ EIA.

We denote WS , the set of transition sequences allowing to
distinguish S ∈ SIA from the other states of SIA. WS =
{σi | ∀S′ �= S ∈ SIA, S Dσi

S′}.
Finally, a Timed Characterization Set of IA, denoted WIA

equals to {WS1
, ...WSn

}, with {S1, ..., Sn} = SIA.

A general algorithm of state characterization set gener-
ation can be found in [26].

If we take back our synchronous product example
of Figure 6, the states can be distinguished with the
following state-characterization sets. By applying this set
to each pair of state, we always observe different output
symbols at different time values, so we can distinguish
them.
WTMP3 = {(TMP3, Dialog establish, {}, !O6,
< X[2 +∞]Y[0 +∞] >)}

WDialog accepted = {(Dialog accepted, TMP3, ?I11,
{}, < X[2 +∞]Y[0 +∞] >)(TMP3, Dialog establish,
!O6, {}, < X[2 +∞]Y[0 +∞] >)}

WDialog pending = {(Dialog pending,Dialog esta-
blish, ?I7, {}, < X[0 +∞[Y[0 2[〉)(Dialog accepted,
TMP3, ?I11, {}, X[2 +∞]Y[0 +∞] >)(TMP3,
Dialog establish, !O6, {}, < X[2 +∞]Y[0 +∞] >)}

WIDLE = {(IDLE,Dialog pending, ?I2, {},
< X[0 1[Y[0 2[ >)(Dialog pending,Dialog establish,
?I7, {}, < X[0 +∞[Y[0 2[ >)(Dialog accepted, TMP3,
?I11, {}, < X[2 +∞]Y[0 +∞] >)(TMP3,
Dialog establish, !O6,
{}, < X[2 +∞]Y[0 +∞] >)}

WDialog establish = {(Dialog establish, TMP2, ?I15,
{}, < X[4 +∞[Y[0 +∞[ >)(TMP2, IDLE, !O9,
{X Y }, < X[4 +∞[Y[4 +∞[ >)}

5.4. The testing method
The testing method is composed of four steps. Steps

1 and 2 synchronize the test purpose with the specifica-
tion to generate paths, including the test purpose, which
can be executed on the implementation. Step 3 applies
a state-characterization-based approach on the synchro-
nized paths. Finally, step 4 performs a reachability analy-
sis on the paths obtained from the previous step and mod-
ify the clock zones to ensure that the test cases can be
completely executed on the implementation.

These test case generation steps are detailed below:

Let S be a TIOA, satisfying the previous hypotheses,
and TP be a timed test purpose. The test case generation
steps are:

• STEP1: Specification path search: We extract the

specification paths which can be synchronized with
the test purpose. Instead of synchronizing all the
specification with the test purpose, we extract only
the needed. So, the transition sequences of S, con-
taining in the same order all the Accept transition
symbols of the test purpose, are first extracted and
named TS1(S), ..., TSn(S). If this set is empty, the
process terminates and the following steps cannot be
performed. We use a DFS (Depth First Path Search)
algorithm to generate these paths. The path extrac-
tion is performed depth wise, so only one specifica-
tion local path is memorized at a time.

• STEP2: Timed synchronous product: Each transi-
tion sequence TSi(S) is synchronized with TP. This
operation generates a graph SP , including TP and
respecting the temporal and behaviour properties of
S.

• STEP3: State characterization set generation:
Each state Si of SP is identified with WSi

(cf
Section 5.3). Then, we combine, with Π, the
synchronous product and the state characterization
set: Π = SP ⊗ W = {p.(si, sj , a, λ, Z).σj |
∀(si, sj , a, λ, Z) ∈ ESP , p is a path of SP from
s0 to si, σj ∈ Wsj if sj is labelled by ACCEPT,
σj = ∅ otherwise}. It’s the concatenation of a path
p (finished by its state si) with the state characteriza-
tion set of si. If we combine the synchronous product
example of Figure 6 and the state-characterization set
of Section 5.3, we obtain the paths of Figure 7.

• STEP4: Search of feasible paths: Test cases are fi-
nally all the feasible paths of Π [2]. The feasibility
problem, for a given path p = t1..tn, aims to de-
termine if it exists a possible execution to reach the
transition tn, and to generate the clock zones over p
for firing tn. The approach, described in [2], adds a
global clock h and then performs a reachability anal-
ysis from the first and the last transitions of the initial
path. The obtained feasible path clock zones can be
modelled with the global clock h or with the clocks
used in the initial path. For example, the feasible
paths of the Π set, illustrated in Figure 7, are given in
Figure 8. These ones are the final test cases.

Test cases are then executed on the implementation
from the initial state. Each input symbol is given to the im-
plementation at a clock valuation of its PASS clock zone.
If the system is not faulty, output symbols should be ob-
served at clock valuations of PASS clock zones as well.
So, by applying a test case transition t = (l, l′, A, λ,
PASS(Z), INCONCLUSIV E(Z ′)) on the imple-
mentation I , we can observe some reactions, denoted
React(t) , and we can give a local verdict for the tran-
sition. React(t) =

• PASSaction iff A is an output symbol and A is re-
ceived from the tester in the PASS clock zone, that is
at a clock value v |= Z,
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Figure 8. The test cases

• INCONCLUSIV Eaction if A is an input symbol
or if A is an output symbol and A is received from
the tester in the INCONCLUSIVE clock zone, that is
at a clock value v |= Z ′,

• FAILaction otherwise.

Finally, by executing the test cases and observing the
implementation reactions, we can conclude on the success
or on the failure of the test:

Definition 8 (Verdict assignment) Let I be a system un-
der test and T = (l1, l

′
1, A1, λ1, PASS(Z1),

INCONCLUSIV E(Z ′
1))...(ln, l

′
n, An, λn,

PASS(Zn), INCONCLUSIV E(Z ′
n)) be a test case.

The verdict assignment V (I, T ), obtained by applying T
on I, is given by:

• Pass iff ∀t = (li, l
′
i, Ai, λi, PASS(Zi),

INCONCLUSIV E(Z ′
i)) ∈ T , with Ai an output

symbol, React(t) = PASSaction,

• Inconclusive iff ∃t = (li, l
′
i, Ai, λi, PASS(Zi),

INCONCLUSIV E(Z ′
i)) ∈ T , with Ai an output

symbol, React(t) = INCONCLUSIV Eaction

and iff ∀t′ = (lj , l
′
j , Aj , λj , PASS(Zj),

INCONCLUSIV E(Z ′
j)) ∈ T , with Aj an output

symbol, React(t) �= FAILaction,

• Fail otherwise

Method complexity: If N is the number of state and
K the number of transitions of the specification, the test
case generation complexity of our method is proportional
to C2 ∗ N + N ∗ K + N + K. For the first step, we
use a DFS algorithm whose the complexity is proportional
to N + K. The timed synchronous product complexity
depends on the length of the paths to combine. In the
worst case, this length equals to N and there is at most K
specification paths. So, the complexity of the synchronous
product is proportional to N ∗K. The step 3 complexity is
proportional to N2K [25]. In step 4, the search of feasible
paths is proportional to C ∗C ∗N [2], with C the number
of clocks.

6. Fault coverage of the proposed method

In this Section, we introduce the fault coverage of our
testing method. As a test purpose doesn’t test the whole
implementation of a system, the fault coverage is analyzed
on a implementation part, called Icovered. Furthermore,
to generate test cases, we use some specification paths,
needed for the timed synchronous product. Let Scovered

be the set of these paths. Icovered corresponds to im-
plementation part tested by the test cases obtained from
Scovered.

• Output fault detection: Output faults can be easily
detected by firing all of the specification transitions.
According to our definition of the timed synchronous
product, each path of Scovered exists completely in
at least one test case. Moreover, we suppose that
the system is deterministic. So, each transition of
Icovered is tested during the testing process.

• Missing state fault detection: Extra(missing) state
faults are detected by checking if an extra or missing
state exists in the implementation. As our method
identifies each state, it can detect missing states on
Icovered. Each state si of Scovered is identified in the
implementation and tested by test cases of the form
s0

p−→ si.Wsi , with p a path from the initial state s0
to si and Wsi the subset allowing to identify si. Con-
sequently, if a state is missing in Icovered at least one
test case cannot be completely executed.

• Transfer fault detection: Transfer faults can be easily
detected by identifying the states of the implemen-
tation. So, any state-identification based technique,
and particularly our method, detects transfer faults
on Icovered. Each transition t = (Si, Sj , a, λ,G) of

Scovered is tested by a test case of the form S0
p−→

Si
a,λ,PASS(Z)−−−−−−−−−→ Sj .WSj

, with p a path from the ini-
tial state S0 to Si and WSj

the subset allowing to
characterize Sj . Consequently, the arrival state of
the transition t in the implementation is tested and
identified. So, transfer faults are detected.



• Time constraint widening fault detection: Time con-
straint widening faults are detected if at least an out-
put symbol is not received by the tester in the time
delay given by the specification. According to our
definition of the timed synchronous product, each
transition of Scovered is visited during the testing pro-
cess by at least one test case. Consequently, a test
case transition (s, s′, a, λ, PASS(Z),
INCONCLUSIV E(Z ′)) labelled by an output
symbol, is tested by the tester which waits its receipt
during the PASS clock zone Z. If no output symbol is
received, a time constraint widening fault is detected
on I .
For input ones, the method checks them only at clock
valuations which belong to time delays given by the
specification. So, time constraint widening faults can
be detected with output symbols and not with input
ones on Icovered.

• Time constraint restriction fault detection: In prac-
tice, it is unfeasible to detect all of the time constraint
restriction faults. Consider a test case transition
(s, s′, ?a, PASS(Z), INCONCLUSIV E(Z ′)),
to detect the faults, the tester should send to the
implementation the input symbol ”?a” at all of the
bounds of Z which are for each clock xi the time
values ai and bi such that Z(xi) = [ai, bi]. Since
the clocks are uncontrollable, these bounds are not
necessary reached by the clocks.

R

Vinit

Vfinal

x

y

Figure 9. Reaching all the clock region
bounds: a difficult issue

Consider the clock zone of the Figure 9. vinit repre-
sents the first clock valuation reached by the clocks
in Z during an execution. vinit is not a bound of Z.
So, if the implementation has a time constraint re-
striction fault between the bound of Z and vinit, the
fault cannot be detected.

Consequently, we can detect such a fault if this one
occurs during the execution. In this case, consider a
test case p.(si, sj , ?a, λ, PASS(Z),
INCONCLUSIV E(Z ′)).p′.Wsk . Let si be the
implementation state reached by p and sk the one
reached by p.(si, sj , a, λ, PASS(Z),
INCONCLUSIV E(Z ′)).p′. If the implementa-
tion produces this fault, si rejects the input sym-

bol ”a” in delays given by Z. Therefore, the im-
plementation stays in its current state si. Here, ei-
ther the implementation rejects p′.WSk

too, or ac-
cepts it. If p′.WSk

is rejected, the implementation
enters in a deadlock. Output symbols of p′.WSk

are not observed so the time constraint restriction
fault is detected. If p′.WSk

is accepted by the im-
plementation, according to the hypotheses (Section
5.1), S is minimal and deterministic therefore there
exists an unique path from si to sk, covered with
(si, sj , a, λ, PASS(Z), INCONCLUSIV E(Z ′))
.p′ from si. Thus, a state sl different from sk is
reached with p′ from si. Since the state reached by
p′ is identified with Wsk , if this one is different from
sk an error is produced. So, in both cases, time con-
straint restriction faults are detected.

7. Prototype tool functionality

Test Purpose
based Method

Characterization
State Set 

Generation

Interval Automata
Test Cases

in TTCN format
Test Purposes

Figure 10. The test tool TTCG

We have implemented the previous methodology in an
academic prototype tool, called TTCG (Timed Test Cases
Generation). The description of its architecture is illus-
trated in Figure 10. The prototype tool takes specifications
and test purpose modelled with TIOA. It is composed of
two parts: the first one produces the timed synchronous
product between the test purposes and some specifications
paths. The second one produces the W set generation.
The paths, obtained from the synchronous product and the
state characterization set, are then concatenated to finally
produce the test cases. These ones are given in TTCN or
in Poscript format.

This tool has been written with the language C, ex-
cepted the second part which has been written in Open-
MP to parallelize the W set generation. Clock zones mod-
elling and operators on clock zone have been implemented
with the Polylib library [31]. This one has a graphical in-
terface which allows the user to load TIOA and test pur-
poses. The amount of memory used depends on the spec-
ification. With the MAP-DSM specification (Figure 1),
this one does not exceed 10 Mb.

8. Conclusion

In this paper, we have proposed a test purpose based
approach which can test both the conformance and the ro-
bustness of implementations, by using test purposes com-
posed of Accept and Refuse properties. This method uses
a synchronous product between the specification and the
test purpose to generate on the fly test cases and a state
characterization based approach to improve the fault cov-
erage by enabling the detection of transfer faults and miss-



ing state faults. The complexity is polynomial so we be-
lieve that this one can be used in practice.

Our approach could be extended for testing others as-
pects of timed systems like interoperability. The quies-
cence of critical states [4] could be tested with specific
test purposes too, by checking if these states do not pro-
duce an output response without giving an input symbol.
Moreover, this property could help to distinguish pair of
states by considering the notion of quiescence as a special
sort of output observation. As a consequence, the length
of the state characterization set and so the test costs could
be reduced.
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