Automatic Ajax application testing

Sébastien Salva Patrice Laurencot
LIMOS - UMR CNRS 6158 LIMOS - UMR CNRS 6158
Université d’Auvergne, Campus des Cézeaux, Université Blaise Pascal, Campus des Cézeaux,
Aubiére, France Aubiére, France
Email: salva@iut.u-clermontl.fr Email: laurencot@isima.fr
Abstract—Asynchronous javascript and XML (AJAX) is a So, testing automatically Ajax applications rises somedss

recent group of technologies used to develop dynamic web pe§} that we try to solve in this paper. In a first part, we propose
Ajax applications are wisely used nowadays and need to be tesl to conceive Ajax applications like grey boxes where most of

to ensure their reliability. This paper introduces a method and . . .
an architecture for automatic AJAX application testing. We use the interactions (events, XML messages, DOM modifications)

STS automata for describing the application and for generang ~are observable. To specify them, we use the STS (Symbolic
test cases. We perform an improved random testing using some Transition System) model and theory [1] since STS are easier
predefined values and also test purpose based testing for Ving to handle for generating test cases and well-adapted for
specific properties. The testing framework is composed of seral modelling communicating systems.. We propose that Ajax

testers which control and monitor the test execution to give test ificati d of | STS d ted
verdict. The Google map search application is used as an exgfe Specificalions aré composed of severa » Oné denote

to illustrate the method. STSper, for describing its whole behavior and others for
Key-words: conformance testing, Ajax application, test achi- illustrating specific executions. The use&if'Sp g brings the
tecture advantage to perform a random testing approach that we have

improved with the use of predefined values. The other STS
are seen as test purposes which complete the testing process
Anyone, surfing the Internet, has already encountered aoyl executing the Ajax application with specific values in the
used Ajax (Asynchronous JavaScript and XML) applicationaim of testing specific properties of the application. Thea,
Ajax gathers a group of technologies which have radicaljescribe the test case generation overithe implementation
improved web document/interface sight and features. ddisterelation, based on the STS theory. In the last part, we intred
of reloading the web document after each user event, Ajaxnew test platform which makes possible automatic Ajax
offers the advantage to perform server calls and documeasting without the need of any user interaction.
upgrades in the background, without reloading. This improv While defining this testing method, we have developed a
ment makes possible the addition of rich client applicatiomprototype composed of several parts: a first tdMLtoSTSis
inside the web document. Ajax applications are usually cordedicated to the graphical modelling of Ajax applicatiotoin
posed of Javascript code and DOM (Document Object Mod&)'S. The second tod\TP (Ajax Test Platform) corresponds
which splits the web document into a hierarchical tree @b the tester which generates test cases on the fly and egecute
objects (forms, maps, html panel,...). Interoperabilithiich is them.
an essential capability in web development, is ensured &y th This paper is structured as follows: section Il provides an
XML serialization of messages passing through the netwoodkerview of Ajax technologies and of some related works
(x of Ajax). about Ajax testing. In section Ill, we express the Ajax
Ajax is a major breakthrough in the web development ar@gplication modelling with STS. Section IV describes the
even though it is rather complex to set it up. Indeed, Ajabesting method: we detail how are generated the test cases
applications are distributed, handle new kind of objectOkD) and introduce a testing framework. Finally, section V gives
and achieve the interoperability capability with XML. Duesome perspectives and conclusions.
to this melting pot of techniques, Ajax applications requar
concrete software life cycle and especially an intensenigst . o o
step. This one is absolutely required to trust final Ajax apptA- Ajax application functioning
cations, and is now well integrated into software developime Ajax (asynchronous JavaScript and XML) is a group of
compagnies. Although testing distributed or object oeent web development techniques used for creating interactive
softwares is not new, Ajax testing poses new challengaegeb applications. The "classical" web application model is
mainly on account of the use of DOM, of the serializatiosynchronous, which means that a user activity implies the
using XML patterns and of the application allocation on botball of the web server synchronously, the modification and
server and client sides. This is why Ajax applications aterof the reloading of the overall content displayed in the nawiga
tested by hand. And of course, this is difficult, heavy andlgos With Ajax technologies, an event triggered by a user leads to
in time. one or more calls to the web server in the background (the

|. INTRODUCTION

II. AJAX OVERVIEW

user is not aware of these calls) in order to update a w#bcation", which is a form here, gathers the input string
content part, without reloading it. So, while using the sam@ovided by the user, the event which starts the Ajax fumctio
web page, a user may provoke several calls and modificatiaree triggered, and the name of the Ajax function. This one
of the same page. performs: the serialization of the string, the call of thebwe
For instance, Figure 1 illustrates the Google Map Ajagerver, the receipt of the response, its deserializatiod,the

search [2] which aims to search locations in a map. If a listodification of the DOM object "map". Two responses may
of locations are found, these ones are marked inside the niegpreceived: if the location is found, the response is comgos
without reloading the web document. Otherwise, the map @ the markers (longitude, latitude, name) which must be set
cleared. Ajax applications are often composed of both tliean the map, otherwise the message is empty and all of the

existing markers are cleared.
My Favorite Places

Search for locations on the map below and save them to your list of favorite places N N N
User i
university] Rechercher \ - Client Server
= Saintd
o
mps o

foumi par Google™ I .

Royat § Saethislocaton L .=

|
| Q Université d/Auvergne Clermont | localseach |
France

request 1
el é Initial DOM object:=location |
o Iocat!on.lnput <str|ng.> Ajax request |
" Q Université Blaise Paseal Clermont I location.event:=Onclick >

; 3, Avenue Carnot location.function=

= 4 gjn%nﬂ?;"ég“&"“d~ Franca "localsearch" [location found] list of markers
: P cmrmo.@na.’;&)ZJ Modified DOM object:=map - mmmeee e]
elles 2 g Lempdes| Verazon

Oty (“‘["'Q’E:;c'oqmund)\wergna Mocation not foundl

| Q Universite Blaise Pascal Clermont FD |
no markers

SeitGmenChampale |Bomagnat |- LeCenare ilom 15 Bis. Rue Poncillon
Nébouzat 63000 Clermont Ferrand, France
00

(5 Roche Blanche ({arcst Les | I
Marires-de-vayre | Saint-Julien de-Gopp{

 Saint-Amant-Tallende — gyreMonton
Ayaat N |

I:awsrm B, \ Vitle Corite: Saliedes |
Gocgle A Q Universite D Auvergne Clermont Ferrand |

Données 008 T Alldwadest o, d utisalion| France
04 73177307

Dier-ial
|

map:=map+markers[] u map.markers:=empty

-
L
|

Fig. 2. UML sequence diagram
Fig. 1. Google Map Search

o . B. Related work on Ajax testing
and server applications. The first one calls the server once

a,.

event has been triggered and then modifies the web documerﬁ’lax teslilng_ ”S§S n4ew gsu%s VX."Ch havlt_e bt(_een tacklel()j by
with received data. These calls can be synchronous (thaatcligome works in [3l, [. [5], [6]. Ajax applica lons can be
calls the server and waits for a response) or asynchronc?% ted .W'th unit testing lapproaches and tools like Junit or
(the response may be delayed). For asynchronous calls, . Unit. In [3], [4], solutions and tools are proposed thda

suppose, in this paper, that the response is correlatedthéth nto ‘account timeouts in order to wait for_ thE?‘ v_veb content
request. update while testing. A timeout based solution is impleradnt

The client side is usually composed of: in [3], and aWaiforConditionin [4]. The testing process is still

DOM (D Obiect Model) + i _ q aone manually. In [5] and [6], Ajax applications are modelle
* (qcument ject Model) + javascript co € t0 Senfy, state-based automata, where transitions represebhacks
and receive messages and to handle the displayed dolxﬁ

. . s difying the web page. Test cases are made by covering the
ment, seen as a hierarchical structure of objects (for. ecification with the use of some criteria such as the state
input labels, div,...) by mean of DOM. Usually, the code '?eachability or the path coverage.

gathered in a javascript funct_ion,_launched when an eventour approach is rather similar to [5] in the sense that we
(O”_”?‘?“SG’ Onkeyboard,...) IS tnggered. Data located ngresent Ajax applications with STS to generate test cases
an initial DOM object (a form for instance) are used t owever, we consider both client and server sides, we use
congtruct the request gent to the server. When the cli STS to perform random testing and other STS as test
receives a response, it updates the web document%@rpose& We also consider the message serialization and we
modifying one or more D.OM objects, . propose a testing framework for automatically executirgj te
* HTML+CSS codes to display the web document in gases. So, our approach can handle random and predefined
navigator. values, can detect faults on XML messages and can generate
The server application role is to answer to the clieRfnd execute test cases automatically. The timeout notipn [3
requests. Request and response messages are serialzed4Nts considered here by mean of the quiescence property.
XML or JSON to ensure interoperability. The serialization
pattern is given by XML schema. I11. A JAX APPLICATION MODELLING WITH STS
Ajax application design is often done with UML sequence Different kind of approaches may be developed for Ajax
diagrams which show all the actors (user, client navigatehh application testing. In black box testing, the overall appl
server,...) and their interactions. An example, for the @eo cation is seen as a black box which receives user events
map search, is illustrated in Figure 2. This diagram dessriband parameters, and which produces new DOM modifications
the overall functioning of the application. The DOM objecinside the web document. Although this approach simplifies

the testing process, the server side and the observabflity o

messages passing between both the client and the server are

lost. So, we suggest a grey box testing method, where the oearion. sventioneLik
- ocatlon. inpubi=<strings

Ajax application structure is known. Moreover, this apmtoa location. functioni=

agrees with usual UML specifications, which illustrate bk t B

actors of the application.

To formally write Ajax application specifications, we use

Tevent
<location, map :DOM>

[A (mss, shemal) = Imsg

automata instead of UML sequence diagrams for the reason Frue) <mos XML message>
that automata are easier to handle for generating test.cases

Since Ajax applications are composed of events, parameters 1mag imag

and XML schema, an automaton model which allows to handle masdiMML nessage> fmesdiNML message>

[A (mss2, shema2)=

a variable set is required. We have chosen the STS (Symbolic true]
Transition System) model [1] with its theory which espdgial
defines theocor implementation relation and an algorithm to
construct test cases. P (mep, DoMachematc
An STS automator< L, ly, V,vg, I, S,—>, mainly based rruel
on the well known LTS model (labelled transition system) is
composed of an alphabet of input and output symisblgn
input begins by "?" and is given to the system, whereas an
output symbol, beginning by "I", is observed from the system Fig. 3. STS modelling the functioning of the Google Map skarc
It is also composed of a variable s&t, initialized with vy,
which can be updated while firing a transition ef. Each St tnsg
transition(l;,1;, s, p, 0) €— from the location; to /; labelled bow> S e messsae
with the symbols, may have a variable updateand a guard ecationeventss N/ LA (naeshena)
@ on V' which needs to be satisfied to fire the transition. location. input:=
In Ajax applications, messages, passing between the client
and the server, must be serialized according to XML schema.
To express this with STS, we define a mappikg y x ¢ —

[mes3=empty]

! modaf

[map.markers=empty]

Imsg
<mss2 XML
message>

"university"
location. function:=
localsearch

! modif [A (ms=2,
shema2) =

[map.markers={ (latl, true]

{true, false} wherey is the XML message set andis the i Taeerne
XML schema setA(m,s) returns eithertrue if m € x is
structured as described ine ¢, or false otherwise. Fig. 4. STS modelling one execution of the Google Map search

Furthermore, we denote some properties on DOM objects:

Definition Ill.1 Letd be a DOM objet. We denote: With the Google map Ajax search, we have intentionally
e p(d) = (paramy, ..., paramy,) the set of values or typesgyiven two STS. The first one gives the Ajax application def-
ofd,)]]) inition where the observed messages and the modified DOM
o d.f unction IS the Ajax fur_vctlon which may be empty, object must be constructed according to existing XML schema
o d.cvent is the event which starts. function. d.evenl The second STS completes this global definition by exprgssin
may be empty. one execution and by showing the exact modification of the
"map" DOM object.

Instead of giving the STS formal definition, which can be hi bination bri he ad handle th
found in [1], we prefer illustrating it with the STS of Fig. 3@ _T IS com '”"’_‘“0” fings the a v_antage_ to han e the spec-
cation with different points of view: with the first STS,

4 which model the Google map Ajax search application. Tfﬁ% fini h hol licati h h ibil
specification, which agrees with the UML diagram of Figure efining the whole application, we have the possibility to

represents the overall application whose we can give antevi ﬁrfor_m ra”dﬁ’m t.esting_by changing the DOM values given to
and from which we can observe different kind of messagé e Ajax application. With the other STS, which can be seen

More precisely, the first transition expresses the launch or test purposes (sequences of propertu_as_ Wh'Ch must bd foun
the Ajax function "localsearch" which takes the DOM objed the_ speC|f|_cat|_on), we have the possibility to test whgthe
"location” and modifies the DOM object "map". The two nex e Ajax application accepts particular DOM values anddgel
ones represent the observation of XML messages which m correct web document updat_es. o
satisfy XML schema and the last transition represents the we Thq use OT §§vera| STS for Ajax specification leads to the
document update by mean of the "map" DOM object. following definition:

In this example, only one request is performed after the
event callback, but it is easily possible to add other evenfaefinition Ill.2 An Ajax specificatiorAS =< Sppr, S > is
requests or DOM modifications. The STS model is rich enoughfuple where:
to describe most of Ajax applications. o Spgr is an STS defining the Ajax application,

o S is a set of STS where € S is an STS modelling describing exactly one execution. The intuition behind test
one execution of the Ajax application.is composed of case generation is to perform random testing WithSp. ¢
specific variable values, and test purpose based testing w{th, ..., s, }.
o for each STS € S U {Sper}, and for each transition Before using the test case generation algorithm of [1], we
t €—, labelled by an input symbak, is = ”7event < construct a set of STS for random testing, by injecting in
i,0: DOM” > wherei ando are DOM objects,with # ST Sp.y some values gathered in a set, denakedThis set
@ andi. function # &. o can be equal ta. contains for each type, a list of values that will be used for
))))) constructing Ajax requests. Some of these values are chosen
In the user viewpoint, using STS is not the easiest Waynqomly whereas other values are predefined. These last one
to write Ajax specifications. This is why we have developege assumed to have a high bug-revealing rate when used as
the graphical toolUMLtoSTSwhich helps to specify Ajax inputs.
applications with UML sequence diagrams. These ones argpg denoteR(t) € R the set of values for the typewhich
then trans!ated into. S_TS and s_tored into XML files. Thggn pe a simple type or a complex one. Figures 6, 7 show
UMLtoSTSinterface is illustrated in Figure 5. some values used for the type "String" and for "tabular" of

"simple-type". So, for a tabular composed of String element
user client server we use the empty tabular, tabulars with empty elements and

tabulars of String constructed witR(String).
locationnput = “urersiy” =T We have constructe® with the following types: "String",
"Integer”, "Float", "Tabular" and believe that these oneswdd
Jocation oncick()] be sufficient to cover most of the Ajax applications.
<type id="String">
schemaxsd [Eat | <val value=null />
<val value="" />
<val value="$" />
schema2.xsd Edit <va| Val ue:" * " / >
<val value="hello" />
=) J maps <val val ue=RANDOM' /> <!-- a random
map String-->

<val val ue=RANDOM 8096)" /> <!-- a random

Fig. 5. UMLtoSTS editor tool String of 8096 caracters-->

</type>

IV. AJAX TESTING METHOD Fig. 6. R(String)

A. Test case generation
<type id="Tabul ar">

_ Since speuﬁcauqns are written W|th_STS, we can bene- <val value=null /><!-- an enpty

fit from the iocor implementation relation and algorithms tabul ar-- >

described in [1]. Test cases are defined as STS, where the <val val ue= null null /><!--tabular

. . . . conposed of two enpty elts-->

final locations are labeled either bpass or fail. These <val val ue= sinpl e-type />

ones are generated according to theor relation which </type>

describes the implementation conformance. The idea behind

the iocor relation is to compare the observable traces of the Fig. 7. R(tabular)

specifications with the implementation under test oneshdf t

implementation traces belong to the specification ones) the For an Ajax specificatiollS =< Spgr, S >, we construct
the implementation is conformed. Traces correspond to tist cases with the following steps:

exhaustive and observable event suites (output symbols and) we extract the transition listt1, ...,tx) € (—spp)"
variables). Quiescence is also seen as an observable event labelled by the input symbol "?event<i,0.DOM>",
(quiescent locations are those from which no output event ar 2) for each transitiont € (¢4, ..., tx), we construct the set
observed). The notion of quiescence is important with Ajax of valuesValues(t) over R. Values(t) = {(r1,...m) |
applications because of the communication between the web ¢ labelled by?event < i,0 : DOM >, (r1,..1,) €
server and the client. Indeed, observing quiescence means t R(p1) x ... x R(pn) with p(i) = (p1,...pn), }. SO,
one message has not been received. Consequently, when a we obtain the setd alues(ty), ..., Values(ty). If the

quiescent location is revealed, instead of waiting infipite
message, the test case execution is stopped afadl dest
verdict is given.

In our case, an Ajax specificatiodS is composed of

parameter types are complex (tabular), we compose them
with other types to obtain the final values. We use an
heuristic to estimate and eventually to reduce the number
of tests according to the number of tupleslimiues,

one STSSTSp.s, Which expresses its whole behavior, and 3) we construct the set of STES from Spgrr by in-
of others STS{sy,...,s,}, written with values, each one jecting the previous tuples of values in®pgr. For

4

each (vy,..,v;) € Values(t1) x ... x Values(ty), problem which may occur while constructing all the test case

we derive an STS € T'S from Sper such as for branches, according to the infinite domain of the variables

eacht; € (t1,...,t;) labelled by "?event<i,0:DOM>", used.

p(1) = v, We illustrate a test case example in Figure 8, which is
4) we extendl'S with the set of STSS € AS which are obtained from the STS of Figure 4.

already constructed with values,

5) test cases are finally constructed on the fly according® Test case execution

the algorithm in [1].

The reader has already noticed that steps 2 and 3 may
lead to a test case explosion since we use cartesian products
The first one is used to construct a set of valltegues(t)
over R for each transitiort labelled by "?event<i,0:DOM>".
While constructingValues(t), we estimate its cardinality
and if this one is very large, we reduce it randomly. The
second cartesian product is used to filldp g the transitions
labelled by "?event” (step 3) with values. Theoreticalhg t
larger the number of such transitions is, the larger the test
case number is. Practically, the number of events used with
one Ajax function is very limited (less than five). But once

Client Network Server

d

A

Ll
|§| 2
- ;

PSR SO HIEN
2h0An T w3

. :
Aé : - ',:QS 'l

Fig. 9. Test architecture

more. we use an heuristic to estimate the test case numJ€st cases are executed within the testing framework: illus

ber and to choose randomly a limited number of tuples Ht€d in Figure 9, which has been implemented in a prototype

Values(ti) x ... x Values(ty). On the one hand, we have of course an Ajax application under
test AUT, deployed on both client and server sides. On the

location nat
exist

other hand, the tester is itself composed of several adtors
T1 andT2. The testefl'1 launches Ajax functions and sends

revent< Location, masiDOHs the response t@'. T2 retrieves the XML messages passing
location. event:=mClick through the network and” constructs on the fly test cases
location.input:=
Muniversity” while receiving messages froffil and7'2. More precisely:
location. functicn:=
Imsg <mss XML me ssage> localszarch 1 while a transitiont labelled by

[A{mzs, shemal) =false] .

Imsg <mzs:XML message>

[A (m==,shemal)=true]

FAIL)

Imsg<maz2: XML message>

Imsg«<mss2: XML message>

| &(mss2, shema2) =false]

&
o g b~ W

Imodi £ [& (m352,5hemaZ) =true]

mep . markeza<s [{1at1, 1ngl, 7 call directly the Ajax functionnit. function;
"auvergne university"l...] . 8 If laSt # null then
e 9 serialize the web document DOMst;
10 send it toT;
Imodif
map.markers=[{latl,lngl, jl end
"auvergne university'}...] 12 end
Q 13 end

Tevent < init,last : DOM > is receiveddo

check whetheinit and its propertiesifit.cvent,
p(init), init. function) exists inside the web
document;

if notthen

| return a Fail verdict tdl’;
else
fill out the web document DOMnit with

p(init);

Fig. 8. A test case example

The final test case set, denotéd’, is constructed frorfi'S.
Well known testing tools like TORX [7] or TGV [8] may be
used to generate them with respect of the& implementation
relation. However, we have implemented the algorithm of [1]
in our own testing tool to facilitate its integration. Testse
generation is executed on the fly while following one path,
in order to prevent from an eventual state space explosion

Algorithm 1: TesterT'1

Tester T1: this tester simulates a user which handles the
web document. This tester, written in Javascript language
is added to the web document and is run as soon as
the web document is loaded. Its algorithm is given in
Algorithm 1. T'1 takes a transition of the test case,
labelled by an input symbol "?event" (1)1 checks
whether the DOM objecinit and its properties (function,
event values,...) exist. lfnit (or of course one of its
properties) does not exist, the test cannot be performed so

the fail verdit is returned t@" (4). Otherwisel'1 fills out test case off’C' have been executed on the Ajax application
the web document DOM objec¢hit with valuesT'1 calls under testAUT, we can conclude whether thecor relation
init. function (6,7). Once this one ends, a web documeiig satisfied or not, i.eAUTiocor AS.
DOM objectlast has eventually been modified. In this
case {ast # null) this one is sent tdl’ (9,10). Note Definition IV.1 Let AS be an Ajax specificatiorif’ C' be the
that it is not required to manually trigger each evefit. test case set generated frohs' according to the definition of
checks that the event (Onclick, Onkeypressed,...) exits fiieiocor relation andAUT' be the Ajax application under test.
the web document and directly calls Ajax functions. ~ AUTiocopAS, iff Vic; € TC, lv(tc;) = "pass”,

« Tester T2: this tester corresponds to an autonomous —(AUTiocor AS), iff 3tc; € TC | lv(te;) =7 fail”.
XML sniffer which is installed between the client and V. CONCLUSION

the server. As soon as a complete XML message is read - . . L
) : Conceiving a framework for testing Ajax applications au-
this one is sent to the testér. . ‘ . .
o . tomatically rises new issues on account of their unusual
» Tester T this one orchestrates the test case execunonnature These ones are distributed over heterogeneous acto
T takes a list of STSI'S = {s1,...s,»} constructed as ' 9

described in section IV-A. For each SEg, T constructs (client and We.b server), handle web documents V.V't.h D.OM
. . nd must be interoperable by mean of XML serialization.

on the fly one test case and covers it, according to t , . g .

. . i, e have first focused on the Ajax modelling with STS and
algorithm of [1]. When it reaches a transition labelled b .
N .o L . ave chosen a grey box representation to observe all the
?event”, this one is given t@'1 in order to launch an . . ;

: . 4 . . client/server interactions. Then, we have proposed a tes C

Ajax function. Otherwise,I" receives passively observ-

able messages froffil or T2 and checks that the guardsqenerauon based on theco implementation relation. We have

of the test case transitions are satisfied. This is done agglﬁo conceived a test architecture which has the capakality

until 7" reaches a final test case location. Quiesceng)e(eCUte automatically test cases without triggering miiyiua
.) . . . < user events.
is taken into consideration while the execution: we set

that quiescence is observed after 60s. If quiescence jfjax testing and this paper may lead to some perspec-

s : : e
: tives. First, Ajax applications can be more complex than

observed whereas a message ought to be received, th) PP P

final location, labelled by "fail" is reached. In any case

$he? ones considered here: they may be implemented with
. object oriented patterns and may perform several simutasie
once the test case is completely executed, the tester com . . .

)) ! i IR . WED server calls. So, further research is required to peovid

into a location either labelled by "pass" or "fail", which . . . ;

S . solutions for modelling and testing parallel Ajax calls.

indicates the local verdict of the test case. S :

Random testing is a mere approach that we have improved

Let us show how this architecture runs chronologically byith the R set, composed of predefined values. However,
using the STS of Figure 4 which produces on the fly tH@is does not guarantee the coverage of all the specification
test case of Figure 8. For greater readability, we assum@ths. A better solution would be a preliminary analysis of
that the Ajax application under testUT behaves as the the data and of the transition guards to ensure the complete
specificationAs, illustrated in Figure 3. The successive stepath coverage.

are depicted in Figure 9. (1)1 is added to the web document
and T loads the web document with a navigator. The test

REFERENCES

ﬁ.ﬁ L. Frantzen, J. Tretmans, and T. Willemse, “Test GenenaBased on

T constructs the test case on the fly. It retrieves the unique symbolic Specifications,” ifFormal Approaches to Software Testing —

transition labelled by "?event" and sends itdd. (2) T'1
checks iflocation exists and modifies it by adding the string
"university" to the input label. Then it starts the Ajax fiion [2]
location.localsearch. (3) While constructing the test case, the
testerT" waits successively for two XML messages, provide

FATES 2004 ser. Lecture Notes in Computer Science, J. Grabowski
and B. Nielsen, Eds., no. 3395. Springer, 2005, pp. 1-15lif€n
Available: http://www.cs.ru.nl/ If/publications/FTWQadf

Google, “Google map search,” http://maps.google.fr/,
http://code.google.com/apis/maps/documentation/.

J. M. Caffrey, “Automatisation de test ajax,” iIMSDN magazin Feb.
2007.

each byI"2 in less than 60s. The first messages satisfies the [4] J. Larson, “Testing ajax applications with selenium’linfoQ magazing

XML schemaschemal andmss2 satisfiesschema?2, thusT

continues the test case execution and now waits for a mess%%‘

composed of the "map" DOM objet. (4) The Ajax function
localsearch ends with the update ofnap. T'1 serializes
and sends it tdl'. (5) Finally, ' checks whethemap is
composed of the marker tab [Ing,lat,"Auvergne Universit}"

and reaches a final test case location labelled with "pasi,

which is the local verdict.

After having executed each test cage, of TC
{tcy,...,tc, }, generated from the specificatiohS, the tester
reaches a final location, labelled by the local verdict "pass
“fail". For tc;, we denote this local verdicv(tc;). Once the

(8]

2006.

Marchetto, P. Tonella, and F. Ricca, “State-basedirtgsof ajax
eb applications,” inICST '08: Proceedings of the 2008 International
Conference on Software Testing, Verification, and Valaati 1EEE
Computer Society, 2008, pp. 121-130.

[6] A. Marchetto, P. Tonella, and F. Ricca, “A case studydshsomparison

of web testing techniques applied to ajax web applicatioms,Int J
Software Tools Technologies Transfap. 10. Springer-Verlag, 2008.

G. J. Tretmans and H. Brinksma, “Torx: Automated modas$éd testing,”

in First European Conference on Model-Driven Software Engjimg,
Nuremberg, GermanA. Hartman and K. Dussa-Ziegler, Eds., December
2003, pp. 31-43.

C. Jard and T. Jeron, “Tgv: theory, principles and althonis: A tool for
the automatic synthesis of conformance test cases for atawrdinistic
reactive systems/Int. J. Softw. Tools Technol. Transtol. 7, no. 4, pp.
297-315, 2005.

