
Automatic Ajax application testing
Sébastien Salva

LIMOS - UMR CNRS 6158
Université d’Auvergne, Campus des Cézeaux,

Aubière, France
Email: salva@iut.u-clermont1.fr

Patrice Laurençot
LIMOS - UMR CNRS 6158

Université Blaise Pascal, Campus des Cézeaux,
Aubière, France

Email: laurencot@isima.fr

Abstract—Asynchronous javascript and XML (AJAX) is a
recent group of technologies used to develop dynamic web pages.
Ajax applications are wisely used nowadays and need to be tested
to ensure their reliability. This paper introduces a method and
an architecture for automatic AJAX application testing. We use
STS automata for describing the application and for generating
test cases. We perform an improved random testing using some
predefined values and also test purpose based testing for verifying
specific properties. The testing framework is composed of several
testers which control and monitor the test execution to givea test
verdict. The Google map search application is used as an example
to illustrate the method.

Key-words: conformance testing, Ajax application, test archi-
tecture

I. I NTRODUCTION

Anyone, surfing the Internet, has already encountered and
used Ajax (Asynchronous JavaScript and XML) applications.
Ajax gathers a group of technologies which have radically
improved web document/interface sight and features. Instead
of reloading the web document after each user event, Ajax
offers the advantage to perform server calls and document
upgrades in the background, without reloading. This improve-
ment makes possible the addition of rich client applications
inside the web document. Ajax applications are usually com-
posed of Javascript code and DOM (Document Object Model)
which splits the web document into a hierarchical tree of
objects (forms, maps, html panel,...). Interoperability,which is
an essential capability in web development, is ensured by the
XML serialization of messages passing through the network
(x of Ajax).

Ajax is a major breakthrough in the web development area
even though it is rather complex to set it up. Indeed, Ajax
applications are distributed, handle new kind of objects (DOM)
and achieve the interoperability capability with XML. Due
to this melting pot of techniques, Ajax applications require a
concrete software life cycle and especially an intense testing
step. This one is absolutely required to trust final Ajax appli-
cations, and is now well integrated into software development
compagnies. Although testing distributed or object oriented
softwares is not new, Ajax testing poses new challenges,
mainly on account of the use of DOM, of the serialization
using XML patterns and of the application allocation on both
server and client sides. This is why Ajax applications are often
tested by hand. And of course, this is difficult, heavy and costly
in time.

So, testing automatically Ajax applications rises some issues
that we try to solve in this paper. In a first part, we propose
to conceive Ajax applications like grey boxes where most of
the interactions (events, XML messages, DOM modifications)
are observable. To specify them, we use the STS (Symbolic
Transition System) model and theory [1] since STS are easier
to handle for generating test cases and well-adapted for
modelling communicating systems.. We propose that Ajax
specifications are composed of several STS, one denoted
STSDEF , for describing its whole behavior and others for
illustrating specific executions. The use ofSTSDEF brings the
advantage to perform a random testing approach that we have
improved with the use of predefined values. The other STS
are seen as test purposes which complete the testing process
by executing the Ajax application with specific values in the
aim of testing specific properties of the application. Then,we
describe the test case generation over theioco implementation
relation, based on the STS theory. In the last part, we introduce
a new test platform which makes possible automatic Ajax
testing without the need of any user interaction.

While defining this testing method, we have developed a
prototype composed of several parts: a first toolUMLtoSTSis
dedicated to the graphical modelling of Ajax application into
STS. The second toolATP (Ajax Test Platform) corresponds
to the tester which generates test cases on the fly and executes
them.

This paper is structured as follows: section II provides an
overview of Ajax technologies and of some related works
about Ajax testing. In section III, we express the Ajax
application modelling with STS. Section IV describes the
testing method: we detail how are generated the test cases
and introduce a testing framework. Finally, section V gives
some perspectives and conclusions.

II. A JAX OVERVIEW

A. Ajax application functioning

Ajax (asynchronous JavaScript and XML) is a group of
web development techniques used for creating interactive
web applications. The "classical" web application model is
synchronous, which means that a user activity implies the
call of the web server synchronously, the modification and
the reloading of the overall content displayed in the navigator.
With Ajax technologies, an event triggered by a user leads to
one or more calls to the web server in the background (the

user is not aware of these calls) in order to update a web
content part, without reloading it. So, while using the same
web page, a user may provoke several calls and modifications
of the same page.

For instance, Figure 1 illustrates the Google Map Ajax
search [2] which aims to search locations in a map. If a list
of locations are found, these ones are marked inside the map
without reloading the web document. Otherwise, the map is
cleared. Ajax applications are often composed of both client

Fig. 1. Google Map Search

and server applications. The first one calls the server once an
event has been triggered and then modifies the web document
with received data. These calls can be synchronous (the client
calls the server and waits for a response) or asynchronous
(the response may be delayed). For asynchronous calls, we
suppose, in this paper, that the response is correlated withthe
request.

The client side is usually composed of:

• DOM (Document Object Model) + javascript code to send
and receive messages and to handle the displayed docu-
ment, seen as a hierarchical structure of objects (forms,
input labels, div,...) by mean of DOM. Usually, the code is
gathered in a javascript function, launched when an event
(Onmouse, Onkeyboard,...) is triggered. Data located in
an initial DOM object (a form for instance) are used to
construct the request sent to the server. When the client
receives a response, it updates the web document by
modifying one or more DOM objects,

• HTML+CSS codes to display the web document in a
navigator.

The server application role is to answer to the client
requests. Request and response messages are serialized into
XML or JSON to ensure interoperability. The serialization
pattern is given by XML schema.

Ajax application design is often done with UML sequence
diagrams which show all the actors (user, client navigator,web
server,...) and their interactions. An example, for the Google
map search, is illustrated in Figure 2. This diagram describes
the overall functioning of the application. The DOM object

"location", which is a form here, gathers the input string
provided by the user, the event which starts the Ajax function
once triggered, and the name of the Ajax function. This one
performs: the serialization of the string, the call of the web
server, the receipt of the response, its deserialization, and the
modification of the DOM object "map". Two responses may
be received: if the location is found, the response is composed
of the markers (longitude, latitude, name) which must be set
on the map, otherwise the message is empty and all of the
existing markers are cleared.

A j a x r e q u e s t

C l i e n t S e r v e rU s e r

I n i t i a l D O M o b j e c t : = l o c a t i o n
l o c a t i o n . i n p u t < s t r i n g >
l o c a t i o n . e v e n t : = O n c l i c k
l o c a t i o n . f u n c t i o n =
" l o c a l s e a r c h "
M o d i f i e d D O M o b j e c t : = m a p

l o c a l s e a c h
r e q u e s t

m a p : = m a p + m a r k e r s []

[l o ca t i on f ound] l i s t o f ma rke r s

[l oca t i on no t f ound]
n o m a r k e r s

m a p . m a r k e r s : = e m p t y

Fig. 2. UML sequence diagram

B. Related work on Ajax testing

Ajax testing rises new issues which have been tackled by
some works in [3], [4], [5], [6]. Ajax applications can be
tested with unit testing approaches and tools like Junit or
HttpUnit. In [3], [4], solutions and tools are proposed to take
into account timeouts in order to wait for the web content
update while testing. A timeout based solution is implemented
in [3], and aWaiforConditionin [4]. The testing process is still
done manually. In [5] and [6], Ajax applications are modelled
by state-based automata, where transitions represent callbacks
modifying the web page. Test cases are made by covering the
specification with the use of some criteria such as the state
reachability or the path coverage.

Our approach is rather similar to [5] in the sense that we
represent Ajax applications with STS to generate test cases.
However, we consider both client and server sides, we use
an STS to perform random testing and other STS as test
purposes. We also consider the message serialization and we
propose a testing framework for automatically executing test
cases. So, our approach can handle random and predefined
values, can detect faults on XML messages and can generate
and execute test cases automatically. The timeout notion [3],
[4] is considered here by mean of the quiescence property.

III. A JAX APPLICATION MODELLING WITH STS

Different kind of approaches may be developed for Ajax
application testing. In black box testing, the overall appli-
cation is seen as a black box which receives user events
and parameters, and which produces new DOM modifications
inside the web document. Although this approach simplifies

2

the testing process, the server side and the observability of
messages passing between both the client and the server are
lost. So, we suggest a grey box testing method, where the
Ajax application structure is known. Moreover, this approach
agrees with usual UML specifications, which illustrate all the
actors of the application.

To formally write Ajax application specifications, we use
automata instead of UML sequence diagrams for the reason
that automata are easier to handle for generating test cases.
Since Ajax applications are composed of events, parameters
and XML schema, an automaton model which allows to handle
a variable set is required. We have chosen the STS (Symbolic
Transition System) model [1] with its theory which especially
defines theiocoF implementation relation and an algorithm to
construct test cases.

An STS automaton< L, l0, V, v0, I, S,→>, mainly based
on the well known LTS model (labelled transition system) is
composed of an alphabet of input and output symbolsS: an
input begins by "?" and is given to the system, whereas an
output symbol, beginning by "!", is observed from the system.
It is also composed of a variable setV , initialized with v0,
which can be updated while firing a transition of→. Each
transition(li, lj, s, ϕ, ̺) ∈→ from the locationli to lj labelled
with the symbols, may have a variable update̺and a guard
ϕ on V which needs to be satisfied to fire the transition.

In Ajax applications, messages, passing between the client
and the server, must be serialized according to XML schema.
To express this with STS, we define a mapping∆ : χ × ς →
{true, false} whereχ is the XML message set andς is the
XML schema set.∆(m, s) returns eithertrue if m ∈ χ is
structured as described ins ∈ ς, or false otherwise.

Furthermore, we denote some properties on DOM objects:

Definition III.1 Let d be a DOM objet. We denote:

• ρ(d) = (param1, ..., paramn) the set of values or types
of d,

• d.function is the Ajax function which may be empty,
• d.event is the event which startsd.function. d.event

may be empty.

Instead of giving the STS formal definition, which can be
found in [1], we prefer illustrating it with the STS of Fig. 3 and
4 which model the Google map Ajax search application. This
specification, which agrees with the UML diagram of Figure 2,
represents the overall application whose we can give an event
and from which we can observe different kind of messages.
More precisely, the first transition expresses the launch of
the Ajax function "localsearch" which takes the DOM object
"location" and modifies the DOM object "map". The two next
ones represent the observation of XML messages which must
satisfy XML schema and the last transition represents the web
document update by mean of the "map" DOM object.

In this example, only one request is performed after the
event callback, but it is easily possible to add other events,
requests or DOM modifications. The STS model is rich enough
to describe most of Ajax applications.

Fig. 3. STS modelling the functioning of the Google Map search

Fig. 4. STS modelling one execution of the Google Map search

With the Google map Ajax search, we have intentionally
given two STS. The first one gives the Ajax application def-
inition where the observed messages and the modified DOM
object must be constructed according to existing XML schema.
The second STS completes this global definition by expressing
one execution and by showing the exact modification of the
"map" DOM object.

This combination brings the advantage to handle the spec-
ification with different points of view: with the first STS,
defining the whole application, we have the possibility to
perform random testing by changing the DOM values given to
the Ajax application. With the other STS, which can be seen
as test purposes (sequences of properties which must be found
in the specification), we have the possibility to test whether
the Ajax application accepts particular DOM values and yields
the correct web document updates.

The use of several STS for Ajax specification leads to the
following definition:

Definition III.2 An Ajax specificationAS =< SDEF , S > is
a tuple where:

• SDEF is an STS defining the Ajax application,

3

• S is a set of STS wheres ∈ S is an STS modelling
one execution of the Ajax application.s is composed of
specific variable values,

• for each STSs ∈ S ∪ {SDEF }, and for each transition
t ∈→s labelled by an input symbolis, is = ”?event <

i, o : DOM” > wherei ando are DOM objects,withi 6=
∅ andi.function 6= ∅. o can be equal to∅.

In the user viewpoint, using STS is not the easiest way
to write Ajax specifications. This is why we have developed
the graphical toolUMLtoSTSwhich helps to specify Ajax
applications with UML sequence diagrams. These ones are
then translated into STS and stored into XML files. The
UMLtoSTSinterface is illustrated in Figure 5.

Fig. 5. UMLtoSTS editor tool

IV. A JAX TESTING METHOD

A. Test case generation

Since specifications are written with STS, we can bene-
fit from the iocoF implementation relation and algorithms
described in [1]. Test cases are defined as STS, where the
final locations are labeled either bypass or fail. These
ones are generated according to theiocoF relation which
describes the implementation conformance. The idea behind
the iocoF relation is to compare the observable traces of the
specifications with the implementation under test ones. If the
implementation traces belong to the specification ones, then
the implementation is conformed. Traces correspond to the
exhaustive and observable event suites (output symbols and
variables). Quiescence is also seen as an observable event
(quiescent locations are those from which no output event are
observed). The notion of quiescence is important with Ajax
applications because of the communication between the web
server and the client. Indeed, observing quiescence means that
one message has not been received. Consequently, when a
quiescent location is revealed, instead of waiting infinitely a
message, the test case execution is stopped and afail test
verdict is given.

In our case, an Ajax specificationAS is composed of
one STSSTSDef , which expresses its whole behavior, and
of others STS{s1, ..., sn}, written with values, each one

describing exactly one execution. The intuition behind ourtest
case generation is to perform random testing withSTSDef

and test purpose based testing with{s1, ..., sn}.
Before using the test case generation algorithm of [1], we

construct a set of STS for random testing, by injecting in
STSDef some values gathered in a set, denotedR. This set
contains for each type, a list of values that will be used for
constructing Ajax requests. Some of these values are chosen
randomly whereas other values are predefined. These last ones
are assumed to have a high bug-revealing rate when used as
inputs.

We denoteR(t) ∈ R the set of values for the typet which
can be a simple type or a complex one. Figures 6, 7 show
some values used for the type "String" and for "tabular" of
"simple-type". So, for a tabular composed of String elements,
we use the empty tabular, tabulars with empty elements and
tabulars of String constructed withR(String).

We have constructedR with the following types: "String",
"Integer", "Float", "Tabular" and believe that these ones should
be sufficient to cover most of the Ajax applications.

<type id="String">
<val value=null />
<val value="" />
<val value="$" />
<val value="*" />
<val value="hello" />
<val value=RANDOM" /> <!-- a random
String-->
<val value=RANDOM(8096)" /> <!-- a random
String of 8096 caracters-->

</type>

Fig. 6. R(String)

<type id="Tabular">
<val value=null /><!-- an empty
tabular-->
<val value= null null /><!--tabular
composed of two empty elts-->
<val value= simple-type />

</type>

Fig. 7. R(tabular)

For an Ajax specificationAS =< SDEF , S >, we construct
test cases with the following steps:

1) we extract the transition list(t1, ..., tk) ∈ (→SDEF
)k,

labelled by the input symbol "?event<i,o:DOM>",
2) for each transitiont ∈ (t1, ..., tk), we construct the set

of valuesV alues(t) overR. V alues(t) = {(r1, ...rn) |
t labelled by?event < i, o : DOM >, (r1, ...rn) ∈
R(p1) × ... × R(pn) with ρ(i) = (p1, ...pn), }. So,
we obtain the setsV alues(t1), ..., V alues(tk). If the
parameter types are complex (tabular), we compose them
with other types to obtain the final values. We use an
heuristic to estimate and eventually to reduce the number
of tests according to the number of tuples inV alues,

3) we construct the set of STSTS from SDEF by in-
jecting the previous tuples of values intoSDEF . For

4

each (v1, ..., vk) ∈ V alues(t1) × ... × V alues(tk),
we derive an STSs ∈ TS from SDEF such as for
each ti ∈ (t1, ..., tk) labelled by "?event<i,o:DOM>",
ρ(i) = vi,

4) we extendTS with the set of STSS ∈ AS which are
already constructed with values,

5) test cases are finally constructed on the fly according to
the algorithm in [1].

The reader has already noticed that steps 2 and 3 may
lead to a test case explosion since we use cartesian products.
The first one is used to construct a set of valuesV alues(t)
over R for each transitiont labelled by "?event<i,o:DOM>".
While constructingV alues(t), we estimate its cardinality
and if this one is very large, we reduce it randomly. The
second cartesian product is used to fill inSDEF the transitions
labelled by "?event" (step 3) with values. Theoretically, the
larger the number of such transitions is, the larger the test
case number is. Practically, the number of events used with
one Ajax function is very limited (less than five). But once
more, we use an heuristic to estimate the test case num-
ber and to choose randomly a limited number of tuples in
V alues(t1) × ... × V alues(tk).

Fig. 8. A test case example

The final test case set, denotedTC, is constructed fromTS.
Well known testing tools like TORX [7] or TGV [8] may be
used to generate them with respect of theioco implementation
relation. However, we have implemented the algorithm of [1]
in our own testing tool to facilitate its integration. Test case
generation is executed on the fly while following one path,
in order to prevent from an eventual state space explosion

problem which may occur while constructing all the test case
branches, according to the infinite domain of the variables
used.

We illustrate a test case example in Figure 8, which is
obtained from the STS of Figure 4.

B. Test case execution

T 2

T 1

T

C l i e n t S e r v e rN e t w o r k

1

2 34

5

Fig. 9. Test architecture

Test cases are executed within the testing framework, illus-
trated in Figure 9, which has been implemented in a prototype.
On the one hand, we have of course an Ajax application under
test AUT , deployed on both client and server sides. On the
other hand, the tester is itself composed of several actorsT ,
T 1 andT 2. The testerT 1 launches Ajax functions and sends
the response toT . T 2 retrieves the XML messages passing
through the network andT constructs on the fly test cases
while receiving messages fromT 1 andT 2. More precisely:

while a transitiont labelled by1

?event < init, last : DOM > is receiveddo
check whetherinit and its properties (init.event,2

ρ(init), init.function) exists inside the web
document;
if not then3

return a Fail verdict toT ;4

else5

fill out the web document DOMinit with6

ρ(init);
call directly the Ajax functioninit.function;7

if last 6= null then8

serialize the web document DOMlast;9

send it toT ;10

end11

end12

end13

Algorithm 1 : TesterT 1

• Tester T1: this tester simulates a user which handles the
web document. This tester, written in Javascript language
is added to the web document and is run as soon as
the web document is loaded. Its algorithm is given in
Algorithm 1. T 1 takes a transition of the test case,
labelled by an input symbol "?event" (1).T 1 checks
whether the DOM objectinit and its properties (function,
event values,...) exist. Ifinit (or of course one of its
properties) does not exist, the test cannot be performed so

5

the fail verdit is returned toT (4). Otherwise,T 1 fills out
the web document DOM objectinit with values.T 1 calls
init.function (6,7). Once this one ends, a web document
DOM object last has eventually been modified. In this
case (last 6= null) this one is sent toT (9,10). Note
that it is not required to manually trigger each event.T 1
checks that the event (Onclick, Onkeypressed,...) exits in
the web document and directly calls Ajax functions.

• Tester T2: this tester corresponds to an autonomous
XML sniffer which is installed between the client and
the server. As soon as a complete XML message is read,
this one is sent to the testerT .

• Tester T: this one orchestrates the test case execution.
T takes a list of STSTS = {s1, ...sm} constructed as
described in section IV-A. For each STSsk, T constructs
on the fly one test case and covers it, according to the
algorithm of [1]. When it reaches a transition labelled by
"?event", this one is given toT 1 in order to launch an
Ajax function. Otherwise,T receives passively observ-
able messages fromT 1 or T 2 and checks that the guards
of the test case transitions are satisfied. This is done again
until T reaches a final test case location. Quiescence
is taken into consideration while the execution: we set
that quiescence is observed after 60s. If quiescence is
observed whereas a message ought to be received, then a
final location, labelled by "fail" is reached. In any case,
once the test case is completely executed, the tester comes
into a location either labelled by "pass" or "fail", which
indicates the local verdict of the test case.

Let us show how this architecture runs chronologically by
using the STS of Figure 4 which produces on the fly the
test case of Figure 8. For greater readability, we assume
that the Ajax application under testAUT behaves as the
specificationAS, illustrated in Figure 3. The successive steps
are depicted in Figure 9. (1)T 1 is added to the web document
and T loads the web document with a navigator. The tester
T constructs the test case on the fly. It retrieves the unique
transition labelled by "?event" and sends it toT 1. (2) T 1
checks iflocation exists and modifies it by adding the string
"university" to the input label. Then it starts the Ajax function
location.localsearch. (3) While constructing the test case, the
testerT waits successively for two XML messages, provided
each byT 2 in less than 60s. The first messagemss satisfies the
XML schemaschema1 andmss2 satisfiesschema2, thusT

continues the test case execution and now waits for a message
composed of the "map" DOM objet. (4) The Ajax function
localsearch ends with the update ofmap. T 1 serializes
and sends it toT . (5) Finally, T checks whethermap is
composed of the marker tab [lng,lat,"Auvergne University"...]
and reaches a final test case location labelled with "pass",
which is the local verdict.

After having executed each test casetci of TC =
{tc1, ..., tcn}, generated from the specificationAS, the tester
reaches a final location, labelled by the local verdict "pass" or
"fail". For tci, we denote this local verdictlv(tci). Once the

test case ofTC have been executed on the Ajax application
under testAUT , we can conclude whether theiocoF relation
is satisfied or not, i.eAUT iocoF AS.

Definition IV.1 Let AS be an Ajax specification,TC be the
test case set generated fromAS according to the definition of
theiocoF relation andAUT be the Ajax application under test.

AUT iocoF AS, iff ∀tci ∈ TC, lv(tci) = ”pass”,
¬(AUT iocoF AS), iff ∃tci ∈ TC | lv(tci) = ”fail”.

V. CONCLUSION

Conceiving a framework for testing Ajax applications au-
tomatically rises new issues on account of their unusual
nature. These ones are distributed over heterogeneous actors
(client and web server), handle web documents with DOM
and must be interoperable by mean of XML serialization.
We have first focused on the Ajax modelling with STS and
have chosen a grey box representation to observe all the
client/server interactions. Then, we have proposed a test case
generation based on theioco implementation relation. We have
also conceived a test architecture which has the capabilityto
execute automatically test cases without triggering manually
user events.

Ajax testing and this paper may lead to some perspec-
tives. First, Ajax applications can be more complex than
the ones considered here: they may be implemented with
object oriented patterns and may perform several simultaneous
web server calls. So, further research is required to provide
solutions for modelling and testing parallel Ajax calls.

Random testing is a mere approach that we have improved
with the R set, composed of predefined values. However,
this does not guarantee the coverage of all the specification
paths. A better solution would be a preliminary analysis of
the data and of the transition guards to ensure the complete
path coverage.

REFERENCES

[1] L. Frantzen, J. Tretmans, and T. Willemse, “Test Generation Based on
Symbolic Specifications,” inFormal Approaches to Software Testing –
FATES 2004, ser. Lecture Notes in Computer Science, J. Grabowski
and B. Nielsen, Eds., no. 3395. Springer, 2005, pp. 1–15. [Online].
Available: http://www.cs.ru.nl/ lf/publications/FTW05.pdf

[2] Google, “Google map search,” http://maps.google.fr/,
http://code.google.com/apis/maps/documentation/.

[3] J. M. Caffrey, “Automatisation de test ajax,” inMSDN magazin, Feb.
2007.

[4] J. Larson, “Testing ajax applications with selenium,” in InfoQ magazine,
2006.

[5] A. Marchetto, P. Tonella, and F. Ricca, “State-based testing of ajax
web applications,” inICST ’08: Proceedings of the 2008 International
Conference on Software Testing, Verification, and Validation. IEEE
Computer Society, 2008, pp. 121–130.

[6] A. Marchetto, P. Tonella, and F. Ricca, “A case study-based comparison
of web testing techniques applied to ajax web applications,” in Int J
Software Tools Technologies Transfer, no. 10. Springer-Verlag, 2008.

[7] G. J. Tretmans and H. Brinksma, “Torx: Automated model-based testing,”
in First European Conference on Model-Driven Software Engineering,
Nuremberg, Germany, A. Hartman and K. Dussa-Ziegler, Eds., December
2003, pp. 31–43.

[8] C. Jard and T. Jeron, “Tgv: theory, principles and algorithms: A tool for
the automatic synthesis of conformance test cases for non-deterministic
reactive systems,”Int. J. Softw. Tools Technol. Transf., vol. 7, no. 4, pp.
297–315, 2005.

6

