
Test purpose generation for timed protocol testing
Sébastien Salva

LIMOS - UMR CNRS 6158
Université d’Auvergne, Campus des Cézeaux,

Aubière, France
Email: salva@iut.u-clermont1.fr

Antoine Rollet
LABRI - UMR CNRS 5800

Université de Bordeaux, Talence cedex, France
Email: rollet@labri.fr

Abstract—Test purposes are requirements, usually constructed
by hand, which aim at testing critical properties on imple-
mentations. These ones are then used by testing methods to
generate test cases. Writing them manually is a heavy task, this
is why we propose several techniques to generate test purposes
automatically or semi-automatically from a specification. These
methods use different strategies for test purpose generation in
order to focus on specific communication protocol properties
like the test of critical states and actions, or the test of service
invocations. These methods are basically based on a test purpose
design language which takes into consideration testability. This
one mesures the test quality of a system with the evaluation of
several criteria (observability, controllability,...). Measuring the
testability while generating test purposes helps to reduce the test
costs and helps to improve the fault detection during the testing
process.

Key-words : Timed protocols, conformance testing, test
purpose, testability.

I. INTRODUCTION

Testing techniques are now well established methods in de-
velopment processes and are used to check various aspects of
an implementation such as its interoperability, its performance,
its robustness, or its conformance which is the topic of this
paper. This last one aims at checking the consistency between
an implementation, seen as a black box, and its specification.
Testing methods are necessary to produce reliable software,
systems or communication protocols. Nevertheless they tend
to be costly, especially when specifications are large, timed or
distributed. Indeed, testing the whole system with exhaustive
testing methods often leads to a space explosion problem (and
as a consequence to a test case explosion).

To reduce these costs a solution, well-known in the protocol
development area since twenty years, is the construction of
test purposes, used later for testing. Test purposes are test re-
quirements (scenarios or suite of properties) which are usually
given by designers, and sometimes added to the specification.
They can be used for testing the current system but also the
upgraded ones later. Basically, test purposes aim at checking
the critical system parts such as the critical communications,
the internal states or the invocations of external partners or
services. Test cases are then derived and executed with test
purpose based methods or by hand.

Although using this approach greatly reduces the test costs,
the first issue encountered is that test purposes are essentially
constructed by hand. And this is particularly difficult when

the system is large, has real-time constraints or is distributed.
Some works [5], [10] tackle to the test purpose generation for
untimed systems, but to our knowledge none of them gives
generation methods for timed systems and timed protocols.

This is why we propose in this paper several techniques
to generate test purposes automatically or semi-automatically
from timed systems modeled with timed automata. During
the generation, we take into account some specific properties
of protocols, such as critical states or service invocations of
another layer. We propose two categories :
(1) the first one is composed of two methods which produce
semi-automatically test purposes from critical properties. De-
signers just have to give either the critical states (for the first
method) or transitions (for the second one) to compute the test
purposes that will be able to test them.
(2) The second category is composed of two methods which
generate test purposes automatically. Each one uses a specific
strategy, to guide the test purpose generation. The first method
tries to recognize the invocation of services in the specification
and generates test purposes which can call them. The second
method detects the critical states of the system and produces
test purposes to test their conformance.

We also focus on the effectiveness of the generated test
purposes. It is indeed more interesting to generate test pur-
poses which can be always executed, which can detect the
greatest number of faults and which require the lowest time
execution. This "effectiveness of test" is defined by the system
testability [9], [6]. Testability is evaluated with the analysis
of different criteria and is measured precisely with testability
degrees. So, to take into consideration testability, we define
a new test purpose design language, composed of operators
which evaluate a list of testability degrees while generating
test purposes.

This paper is structured as follow: Section II provides an
overview of test purpose based methods, and our motivations.
Section III describes the theoretical framework needed in this
study. We give an overview of the testability evaluation in
Section IV. Section V presents our test purpose model, based
on a rational language which takes into account testability and
which may represent test purpose sets with short expressions.
The test purpose generation methods are described in Section
VI and a brief overview on test case generation is given in
Section VII. We conclude in Section VIII.

II. RELATED WORK AND MOTIVATIONS

Testing consists in checking if the implementation conforms
to the specification by stimulating the implementation and
observing its behaviour. Testing methods can be grouped into
two categories. On the one hand, we have exhaustive methods
which involve generation of test cases on the complete spec-
ification, execution of the test cases on the implementation
and analysis of the test results. On the other hand, we have
non exhaustive methods, like test purpose based ones, [5],
[11], [2], [8], [7], which aim to test only local parts of
the implementation. These methods are oriented: designers or
experts who have a good knowledge of the system, describe the
requirements to be tested (test purposes), which are generally
the important or critical parts of the system. Then, either test
cases are constructed manually or are generated from these
requirements and from specification parts, thereby reducing
the specification exploration in comparison with exhaustive
methods.

Some test purpose based methods [13], [11], [2], [8] are
introduced below: In [13], specifications and test purposes are
modelled with TIOA (Timed Input Output Automata). Specifi-
cation paths which can be synchronized with test purposes are
extracted. Then, these paths and test purposes are transformed
into region graph to sample the time domain. Specification
paths are synchronized with test purposes to generate test
cases. In [11], test cases are constructed by adapting the TGV
untimed method (Test Generation with Verification methodol-
ogy). Specification and test purposes, modelled with timed
automata, are synchronized. The result is translated into a
non real-time model (SEA). Then, test cases are obtained
by extracting the visible behaviour and by separating input
and output actions. In [2], the authors use specifications and
test purposes modelled by TIOA. Specification paths are first
extracted to synchronize them with the test purposes, then
time intervals of the test purpose and of the specification are
synchronized. The main interest of this method lies in the
computation of feasible paths which are the paths that can be
executed from their initial state to their final one. The final
test case set is composed of these feasible paths.

Test purpose based methods are suitable for testing: test
costs are reduced and large systems or protocols can be
tested without having a memory space explosion. Nevertheless,
such methods lead to a significant issue : test purposes are
essentially constructed by hand. This is why some works
about test purpose generation have been proposed, for un-
timed systems [5] and distributed ones [10]. We make our
contribution in this field by proposing test purpose generation
methods for timed protocols. Another originality of this paper
is to define a test purpose description language which takes
into account testability. Thanks to this language, our methods
target the tests of protocol properties (critical states, service
invocation,...) by giving some specific expressions.

III. DEFINITIONS AND NOTATIONS

A. The Timed Input Output Automaton model
TIOA (Timed Input Output Automata) are graphs describing

timed systems. This model, extended from the timed automa-
ton [1], expresses time with a set of clocks which can take
real values (dense time representation) and by time constraints,
called clock zones, composed of time intervals which sample
the time domain. Actions of the system are modelled by
symbols labelled on transitions. Clocks are all evolving with
the same speed, and it is possible to reset some of them while
firing a transition. Two kinds of symbols are used, the input
ones given to the system, and the output ones observed from
it. Actions may be executed if the clock zone of the transition
is satisfied by the clocks.

Definition III.1 (Clock zone) A clock zone Z over a clock
set C is a tuple < Z(x1), ...Z(xn) > of intervals such as
card(Z) = card(C). Z(xi) is a time interval for the clock
xi, Z(xi) ∈ {[ai bi], [ai +∞[| ai ∈ IR+, bi ∈ IR+}.

We say that a clock valuation v = (X1, ..., Xn) satisfies Z,
denoted v |= Z iff Xi ∈ Z(xi), with 1 ≤ i ≤ n.

For two clock zones Z and Z ′, we denote some operators:
Z ∩Z ′ = {v | v |= Z and v |= Z ′} and Z + d = {[ak bk + d] |
[ak bk] ∈ Z}

Dialog

pending
TMP1 TMP2

Dialog

accepted

Dialog

establish
TMP3

TMP4

IDLE

Wait for

User

Request

TMP6

TMP5
?I2

?I11 !O6

?I7

?I4!O3

!O3 ?I4

?I3

?I1

!O1

?I16
?I15

!O5

!O9

X[2 +inf[

Y[0 +inf[

X[2 +inf[

Y[0 +inf[

X[0 2]

Y[0 +inf[

X[0 2]

Y[0 +inf[

X[0 2]

Y[0 +inf[

X[0 1[

Y[0 2]

X:=0

X[0 +inf[

Y[0 2]

X[0 3]

Y[0 +inf[

X[0 2]

Y[0 +inf[

X[2 +inf[

Y[0 +inf[

X[2 +inf[

Y[0 +inf[

X[4 +inf[

Y[0 +inf[

X[4 +inf[

Y[4 +inf[

X[0 2]

Y[0 +inf[

X[0 2]

Y[0 +inf[

?I1 : map_u_abort_request

?I2 : tc_begin_indication

?I3 : map_open_request

?I4 : map_request

?I7 : map_open_rsp

?I11 : map_delimiter_rsp

?I13 : tc_continue_indication

?I14 : tc_end_indication

?I15 : tc_p_abort_indication

?I16 : tc_p_abort_indication

!O1 : tc_u_abort_req;terminated

!O3 : service_invoked

!O5 : tc_ind_req;terminated

!O6 : tc_continue_request

!O9 : map_p_abort;terminated

X:=0

Y:=0

X:=0

Y:=0

Y:=0

X:=0

Y:=0

Fig. 1. A TIOA modelling a part of the MAP-DSM protocol

Definition III.2 (Timed Input Output Automata (TIOA))
A TIOA A is a tuple < ΣA, SA, s0

A, CA, EA > such as:
• ΣA is a finite alphabet composed of input symbols (begin-

ning by "?") and of output symbols (beginning by "!"),

2

• SA is a finite set of states, s0
A is the initial one,

• CA is a finite set of clocks,
• EA is the finite transition set. A tuple < l, l′, a, λ, Z >

models a transition from the state l to l′ labelled by
the symbol a. The set λ ⊆ CA gathers the clocks
which are reset while firing the transition, and Z =<
Z(1), ..., Z(n) >(n=card(CA)) is a clock zone.

A TIOA, modelling a part of the MAP-DSM protocol, is
given in figure 1. Among the protocols used with GSM (Global
system for Mobile communication), nine protocols are grouped
together into the MAP (Mobile application part). Each one
corresponds to a specific service component. The Dialog State
Machine (DSM) manages dialogs between MAP services and
their instantiations (opening, closing...). A DSM description
can be found in [4]. The specification of figure 1 describes
the request of the MAP service by a user(?I3). This one can
invoke several requests (?I4) which aim to start some services
(!O3). A dialog can be accepted then established or it can be
stopped (!O5 or !O9).

IV. TESTABILITY

Testability [9] gathers quality criteria which evaluate the
capacity of the system to reveal its faults, the accessibility of
its components and the test costs (test execution, state space)
depending on the system modelling. Testability is measured
with the specification analysis and on the evaluation of factors,
called testability degrees. These degrees help designers to
improve the specification so that the final system should be
completely tested. Figure 2 summarizes the software life cycle
which takes into account testability measurements.

Specification
Design

Specification
Verification

Testability
Measurement

Verdict

Implementation
Generation

Test execution

Verdict

ok

Industry
okko

ko

Fig. 2. Testability in life cycle

In [12], we have defined the testability of timed systems
modelled with TIOA. We have proposed several testability
degrees based on the time properties analysis. We give here
an overview of these degrees. Their complete definitions as

well as examples and algorithms, can be found in [12]. Each
degree is based on a polynomial algorithm. These ones are:

• the Timed shape Degree, denoted St, 0 ≤ St ≤ 1,
measures, for each specification path, the amount of
infinite clock zones, that is the clock zones composed of
unbounded intervals, and measures the number of inter-
vals which are unbounded per clock zone. Infinite clock
zones are always bounded arbitrarily by testing methods,
consequently, infinite clock zone are not covered by the
tests. So, the system is only partially tested. Thereby, for
a path p, the closer to 1 St(p) is, the fewer p has infinite
clock zones and the more covered by the tests, the system
is,

• the Time interval reachability Degree, denoted Rt, 0 <
Rt ≤ 1 evaluates the reachability of clock zones and of
transitions from the initial one. This factor performs a
reachability analysis on the clock zones to determine if
specification paths can be completely executed. If some
clock zones are not reachable by the clocks, then several
transitions cannot be reached and tested. So the system is
not testable and can only be partially tested. For a clock
zone Z and a path p, the closer to 1 Rt(Z, p) is, the more
the clock zone Z is reachable from the initial one, and
the more testable p is. To compute this degree, we use
a forward symbolic analysis using a post operator, able
to construct the next clock zone of a state after firing a
transition,

• The Observability Degree, denoted Obs, 0 ≤ Obs ≤ 1,
measures the observability of system paths. For a path p,
this degree analyzes if for a transition labelled by an input
symbol, there exists a consecutive transition labelled by
an observable output one. The closer to 1 Obs(p) is, the
more observable and testable p is.

• The Determinism Degree, denoted Det, 0 < Det ≤ 1,
measures the system determinism. It is well known that if
a system is not deterministic, it cannot be controlled and
tested. For a path p, this factor determines whether each
state of p is deterministic. For a state s, we consider the
different cases of indeterminism: 1. outgoing transitions
labelled by the same symbol, 2. outgoing transitions
labelled by different symbols but labelled by clock zones
with a non-empty intersection, 3. at least one outgoing
transition labelled by an input symbol and transitions
labelled by output symbols, all of these ones labelled with
clock zones with a non-empty intersection. The closer to
1 Det(p) is, the more deterministic and testable the states
of p are.

• The Time Execution Degree, denoted TEt, 0 ≤ TEt ≤
1, measures the execution cost of system paths. For timed
systems, this cost depends basically on the minimal and
the maximal execution time of each path (Emin and
Emax). For a path p, the closer to 1 TEt(p) is, the shorter
the average time execution of p is and the more reduced
the test costs of p are.

During the test purpose generation, a vector (x1, ...xn)

3

composed of the previous degrees is used to generate the most
testable test purposes by using the most testable paths of the
specification. The choice of the vector belongs to designers but
we suggest to use all the previous degrees since each expresses
a specific criteria. The testability degrees Obs, Det, St and
Rt enable to use the most testable paths to construct test
purposes, that is the most observable (Obs), whose states are
the most deterministic (Det) and whose time intervals are the
most reachable and bounded (Rt, St). The Time Execution
degree TEt chooses the paths with the lowest average time
execution. Therefore, the overall time of the test execution is
reduced as well.

Notice that it can be useful to refine the testability evaluation
by adding a “weight” which gives more or less significance
to each degree. If we suppose that we give a vector W =
(w1, ..., wn) of weights, then the testability evaluation in the
algorithm would become Dpi

=
∑

1≤j≤n

wjxj(pi). Since the

principle is similar, we do not consider this in the following.

V. TIMED TEST PURPOSE MODELLING

To express the test purpose generation in the methods
of section VI, we need of a model which can take into
consideration testability degrees and which can easily model
test purpose sets with few expressions. Since the TIOA model
is not sufficient, we propose to define a rational language,
called TPDL (Test Purpose Description Language). Comparing
to the TIOA model, this one is still composed of clock zones,
states and transitions. So, it is still possible to add and test
temporal restrictions associated to transitions. But it is also
composed of operators which handle testability degrees and
return path sets. From one TPDL expression, and after having
executed the expression operators, we obtain a test purpose
set composed of TIOA states and transitions. So, these test
purposes could be later used with most of the test purpose
based methods [2], [8], [11], [7] to produce the final test
cases (see section VII). Note that this language may be easily
extended, according the user needs, with new operators.

Definition V.1 (TPDL Language) Let A =< ΣA, SA,
s0

A, CA, EA > be a TIOA and (x1, ..., xn) be a testability
degree vector chosen by designers. The rational language
TPDL, modelling test purposes over A, is composed of the
keywords described in figure 3.

The interesting feature of this language is the use of
operators which automatically produce the most testable paths
between two states. Designers don’t need to search them in
the specification. The max and noloop operators produce
specification paths by using a classical DFS (Depth First path
Search) algorithm. This algorithm performs a search of the
shortest path between two states deep-wise in polynomial time.
It stores only one path at time and so uses few memory
space. The noloop operator algorithm corresponds to DFS
one between two states si and sj . The max operator, which
takes an important place in the language (used by Pre and

Label 〈a, Z, λ〉 with a ∈ ΣA, Z a
clock zone and λ a clock reset set

State Statek with sk ∈ SA

Trans Statei.〈a, Z,λ〉.Statek with (si, sk, a, λ, Z) ∈
EA

noloop Statei.noloop.Statej models a set of paths P
from si to sj without loop: ∀p ∈
P, ∀ path r, s,

t ∈ E∗
A such as path = r.s.t, si

r−→ sk
s−→

sl
t−→ sj =⇒ sk 6= sl. noloop = ∅ iff P = ∅.

max Statei.max(x1,...xn).Statej models a path p
of Statei.noloop.Statej such as p is the most
testable path of Statei.noloop.Statej .
(algorithm given below).

Pre Pre(x1,...xn).Statej = s0
A.max(x1,...xn).

Statej models the most testable path from the
initial state to sj .

Post Statej .Post(x1,...xn) models the system reset.
If it exists a reset function reset() then
Statej .Post(x1,...xn) = reset(),
otherwise Statej .Post(x1,...xn) =
Statej .max(x1,...xn).State0

Path = ∅ | Trans | Statei.max(x1,...xn).
Statej | Pre(x1,...xn).Statej | Statej .
Post(x1,...xn) | Path∗ | Path ∪ Path

TP = Pre.Path.Post = {tp1, ..., tpn}(n ≥ 1) is
a test purpose set where tpi is composed of
a preamble, a path and a postamble of the
specification.

Fig. 3. TPDL keywords

Post operators), computes the most testable path whose the
testability degrees (x1, ...xn) are the closest to 1. For instance,
if the degree list is (Obs, TEt) this is the path, the most
observable and which requires the less time to be executed.
The algorithm of the max operator is given below.

Algorithm

statei.max(x1, ...xn).statej

Input: A(TIOA), (x1, ...xn) (a vector of testability degrees)
Output: p (a path)
P a path set
P = DFS(si, sj)
For each pi ∈ P

Compute the testability degrees x1(pi), ..., xn(pi),
Dpi =

∑

1≤j≤n

xj(pi)

EndFor
p is the path of P such as Dp = max(Dpi | pi ∈ P)

With this language, we can construct test purposes by giving
mere expressions. For instance, TP = Pre(x1,...,xn).

4

Statedialog_accepted. <?I4, (X[01]Y [01]), ∅ > .
Post(x1,...,xn), models one test purpose which uses the most
testable path to reach the state Dialog_accepted, fires the
transition labeled by "?I4" with a restrictive clock zone, and
uses the most testable postamble to reset the system. After
having executed each operator, we automatically obtain the
specification path composed of the labels "?I2?I7?I16!O5" (see
figure 1).

VI. TEST PURPOSE GENERATION

We propose two method categories : (1) the first one is
composed of two semi-automatic approaches which test the
accessibility of critical states or of transitions. (2) the second
category gathers two automatic approaches which use different
strategies to generate test purposes: the first one test service
invocations and the second one the conformance of critical
states.

A. Semi-automatic test purpose generation

1) Semi-automatic test purpose generation for critical state
testing: This method generates test purposes to test whether
each critical state of a set SF can be reached from an
initial one sinit. This method is especially suitable when the
specification states have a precise meaning, which is often the
case in protocols.

So, let A =< ΣA, SA, s0
A, CA, EA > be a TIOA. And let

sinit ∈ SA be a state and SF = {q1, ..., qm} ⊂ SA be a
critical state set. The expression, given below, produces a set
of test purposes which test if each state qj ∈ SF can be visited
from sinit with all the acyclic paths from sinit to qj . The most
testable preamble is used to reach sinit from the initial state
s0, and the most testable postamble is used to reset it.

TP =
⋃

1≤j≤m

{Pre(x1,...,xn).Stateinit.noloop.Statej .

Post(x1,...,xn) | Stateinit.noloop.Statej 6= ∅}

Dialog

pending
Idle

Dialog

accepted

Tmp1

?I2 ?I7

?I16

!O5

X[0 1[

Y(0 2]

X:=0

X[0 +inf[

Y(0 2]

Y:=0 X[0 2]

Y(0 +inf[

X:=0

Y:=0
X[0 2]

Y(0 +inf[

Dialog

pending
Idle

Dialog

accepted
Tmp3

?I2 ?I7 ?I11

X[0 1[

Y(0 2]

X:=0

X[0 +inf[

Y(0 2]

Y:=0

X[2 +inf[

Y(0 +inf[

Dialog

establish
Tmp2

?I15

!O6

X[2 +inf[

Y(0 +inf[

X[4 +inf[

Y(0 +inf[

!O9

X[4 +inf[

Y(4 +inf[

X:=0

Y:=0

Fig. 4. Test purposes for testing critical states

For instance, on the specification of figure 1, to test if
a pending dialog can be established, we can use the ini-
tial state sinit = Dialog_pending and the states SF =
{Dialog_accepted, Dialog_establish}. With the previous
expression, we obtain the two test purposes illustrated in figure
4.

2) Semi-automatic test purpose generation from a transition
list T : This second method generates test purposes to test
if a successive list of critical transitions can be executed.
So, let A =< ΣA, SA, s0

A, CA, EA > be a TIOA and let
T = {(q1, q

′
1, a1, λ1, Z1)... (qn, q′n, an, λn, Zn)} be a transi-

tion list. The following expression constructs one test purpose
which tries to fire each transition of T successively. The first
transition is reached, from the initial state s0, by the most
testable preamble, and the other ones with the most testable
paths obtained by the operator "max".

TP = Pre(x1,...,xn).State1. < a1, Z1, λ1 > .State′1.

F2.F3...Fn.Post(x1,...,xn)}

where Fi = max(x1,...,xn).Statei. < ai, Zi, λi > .State′i

!O1

X[0 2]
Y[0 +inf[

X[2 +inf[
Y[0 +inf[

IDLE
Wait for

User
Request

TMP5
?I3 ?I1

X[2 4]
Y[0 2]

x:=0
Y:=0

Fig. 5. Test purpose for critical transition testing

For instance, on the specification described in figure 1,
to test if after having requested the end of a map invo-
cation, this one is stopped only 2 seconds later (with the
clock zone X[2 4]Y [0 2]), we can use the transition list

{Wait_for_User_Request
?I1 X[2 +∞[Y [0 +∞[−−−−−−−−−−−−−−→ TMP5,

TMP5
!O1 X[2 4]Y [0 2]−−−−−−−−−−→ IDLE}. By using the previous

expression, the resulting test purpose is described in figure
5.

B. Automatic test purpose generation

The following methods automatically generate test pur-
poses from a specification. The main issue is to construct a
limited number of test purposes, without accomplishing an
exhaustive test. To do this, we propose two methods which
use specific strategies. The first one produces test purposes
for testing protocol service invocations by supposing that
invocations are named classically ("service_name" followed
by "begin","open","request",...). The second method tests the
critical state conformance by supposing that the critical states
are the most visited ones. These assumptions can be modified,
since they do not interact on the test purpose expressions.

5

1) Test purpose generation for testing service invocation:
Protocols are often composed of service invocations that
call functionalities of other layers or systems. Services are
usually named and are called explicitly by their names with
transition labels. So, this method tries to recognize all the
complete service invocations and generates test purposes to
test them. Usually, a service invocation corresponds to a list
of steps (labels) which are: (1) the service can be initialized
(though not necessarily) which is often modelled by a label
of the form "service_name" followed by "begin", or "open",
or "request". (2) the service can be called (used) which is
often modelled by a label of the form "service_name" followed
by "request" or "call". It may receive a response which is
modelled by a label of the form "service_name" followed by
"indication" or "response". (3) the service can be terminated
(not necessary) which is often modelled by a label of the form
"service_name" followed by "end" or "terminated" or "abort"
or "confirmation".

First, this method searches for the service invocation
lists and gathers them into a set, denoted IS. Then, for
each list (l1, ..., ln) ∈ IS, the method extracts, from the
specification, the tuples of transitions T = {(t1, ..., tn) |
ti is labelled by li}. Finally, the method generates one test
purpose for each transition tuple (t1, ..., tn) ∈ T which aims
to test if each transition can be fired. The final test purpose
set is:

TP =
⋃

(t1,...,tn)∈T

{tp(t1,...,tn)}

with tp(t1,...,tn) the test purpose expression used for testing
the invocation (t1, ..., tn):

tp(t1,...,tn) =

∅ if ∃(1 ≤ i < n) | State′i.max(x1,...,xn).Statei+1 = ∅
Pre(x1,...,xn).State1. < a1, Z1, λ1 > .State′1.F2.F3...
Fn.Post(x1,...,xn) otherwise

where Fi = max(x1,...,xn).Statei. < ai, Zi, λi > .State′i
This expression produces one path which aims to invoke the

service completely from the initial state of the specification,
with the condition that each transition ti+1 could be reached
from the previous one ti. Otherwise, the service cannot be
completely invoked, consequently the test purpose is not
generated (the max operator produces an empty path ∅).

The specification, described in figure 1, is composed
of several service invocations. For example, the la-
bels ?map_open_request ?map_request ?map_u_abort
_request (?I3?I4?I1) model one of them. From these labels,
we obtain one tuple of transitions :
(IDLE

?I3−−→ Wait_for_user_request,Wait_for_user_
request

?I4−−→ TMP6, Wait_for_user_request
?I1−−→

TMP5). The previous expression gives one test purpose,
expressed in figure 6.

IDLE
Wait for

User
Request

TMP6 TMP5

!O3?I4?I3 ?I1

!O1

X[2 max]
Y[0 max]

X[2 max]
Y[0 max]

X[0 2]
Y[0 max]

X[0 2]
Y[0 max]

X[0 2]
Y[0 max]

X:=0
Y:=0

Wait for
User

Request

Fig. 6. Testing services with test purposes

2) Test purpose generation for testing critical states: Test
purposes are often used to test the critical parts or properties
of implementations. This method tries to determine the critical
states of TIOA and generates test purposes to test their
conformance. It is not obvious to set which state is critical
since no general and formal definition is given in literature. So,
in this paper, we suggest that the critical states are the most
potentially visited states in the specification from its initial
one. Nevertheless, other criteria could be chosen, such as the
less visited states, or the quiescent states ([3]).

To detect these critical states, we use the following al-
gorithm on the specification A to extract its acyclic paths.
While constructing them, the algorithm counts the number
of times each state is visited. The most visited ones are the
critical states. The algorithm, derived from the DFS one, has
a polynomial complexity.

Algorithm

Critical − state(A, s)
Input: A =< ΣA, SA, s0

A, CA, EA >(TIOA), s = s0

Output: CS (Critical state set)
For each t = (s, s′, a, λ, Z) ∈ OutgoingTransition(s)

If Label(t) == UNEXPLORED
Label(t)=VISITED, Count(s)=Count(s)+1
Critical − state(A, s′)

Else Count(s’)=Count(s’)+1
End For

CS = { state s | Count(s) >
∑

si∈SA
Count(si)

card(SA)
}

Then, we propose to test all the outgoing transitions of each
critical state with test purposes. So, for a state si and for
each outgoing transition t = (si, s

′
i, ai, λi, Zi), the expression,

given below, constructs one test purpose which aims to reach
si, to fire t and to reset the system.

TP =
⋃

si∈CS

{tp(si)}

where tp(si) is one test purpose expression which aims to
test all the outgoing transitions of the state si.

tp(si) =
⋃

(si,s′i,ai,λi,Zi)∈EA

{Pre(x1,...,xn).Statei.

〈ai, Zi, λi〉.State′i.Post(x1,...,xn)}

6

With the specification of figure 1, we have 3 critical states
IDLE, Dialog_accepted and Wait_for_user_request. For
the state IDLE, we obtain the test purposes of figure 7.
These ones test the outgoing transitions of IDLE and reset
the system.

Dialog

pending
Idle

Dialog

accepted
Tmp1

?I2 ?I7 ?I16

!O5

X[0 1[

Y(0 2]

X:=0

X[0 +inf[

Y(0 2]

Y:=0

X[0 2]

Y(0 +inf[

X:=0

Y:=0

X[0 2]

Y(0 +inf[

Wait for

user request
Idle TMP5

?I3 ?I1

X[0 2[

Y(0 +inf[

X[2 +inf[

Y(0 +inf[

!O1

X[2 +inf[

Y(0 +inf[

X:=0

Y:=0

Fig. 7. Test purposes testing critical states

VII. TEST CASE GENERATION AND EXECUTION

Once test purposes have been constructed, test methods are
used to generate test cases [11], [8]. We give in this section an
overview of this generation. These methods basically synchro-
nize test purposes and the specification to produce: complete
paths (specification paths from the initial state which include
the test purpose labels in the same order), pass clock zones
(time constraints which satisfy both the specification and the
test purpose) and inconclusive ones (time constraints which
satisfy the specification but not the test purpose). These incon-
clusive clock zones are used to give an inconclusive verdict
if the test purpose is not satisfied and if the implementation
does not contradict the specification.

By using our proposed methods, the generated test purposes
are already complete specification paths (and the most testable
ones). So, the test case generation corresponds to the construc-
tion of the inconclusive clock zones only. If the inconclusive
verdicts are not required then our generated test purposes are
the final test cases where the clock zones are the PASS ones.

Test case execution methods can be found in [13], [8]:
each test case is executed by a tester; if all observable output
actions, of each test case, can be successively observed in the
Pass clock zones, then the PASS verdict is given which means
the test purpose is satisfied during the test execution. If one
output action is observed in an inconclusive clock zone then
the test purpose is not satisfied but the implementation is not
faulty (inconclusive verdict). Otherwise, the verdict is fail.

VIII. CONCLUSION

We have proposed, in this paper, four semi-automatic and
automatic test purpose generation methods for timed protocols,
modelled by TIOA. The originality of these methods is the use
of testability degrees by mean of the TPDL language. With

the testability degree evaluation during the generation, the test
purposes are the most efficient for detecting faults and are
executed with the lowest time execution.

We have experimented with success these methods on the
complete timed MAP-DSM communication protocol. We have
firstly applied the automatic methods, and have observed that
many critical properties may be automatically tested, but of
course not all of them. So, to refine the tests, we have used
the semi-automatic methods to target the test of other states
and especially the test of critical transitions with reduced clock
zones. For instance, we have generated test purposes to test
whether some communication delays between a client and a
MAP-DSM server could be reduced without modifying the
MAP-DSM server behaviour (any following action should be
yet executable).

The TPDL language can be easily extended to propose
other test strategies for timed systems or can be improved
to test other systems. For example, we are implementing a
method which tries to detect all the autonomous sub-systems
of a complete TIOA for generating test purposes whose the
goal will be to test completely each sub-system. Obviously,
other properties like the quiescence or some specific clock
constraints can also be easily tested by constructing new
expressions.

REFERENCES

[1] R. Alur and D. Dill. A theory of timed automata. TCS, 126:183–
235, 1994.

[2] I. Berrada, R. Castanet, and P. Felix. A formal approach for
real-time test generation. In WRTES, satellite workshop of FME
symposium, pages 5–16, 2003.

[3] L. B. Briones and E. Brinksma. A test generation framework for
quiescent real-time systems. In FATES04 (Formal Approached
to Testing of Software),Kepler University Linz, Austria, pages
71–85, 2004.

[4] N. Carrere. Dsm specification in lotos and test cases generation.
INT (French Telecommunication National Institute), 2001.

[5] R. Castanet, C. Chevrier, O. Kone, and B. L. Saec. An Adaptive
Test Sequence Generation Method for the User Needs. In
IWPTS’95, Evry, France, 1995.

[6] K. Drira, P. Azema, and P. de Saqui Sannes. Testability analysis
in communicating systems. Computer Networks, 36:671–693,
2001.

[7] A. En-Nouaary. A test purpose based method for testing timed
input output automata. In International Journal of Software
Testing, Verification, and Reliability (JSTVR), 2007.

[8] A. En-Nouaary and R. Dssouli. A guided method for testing
timed input output automata. In 15th IFIP International Con-
ference, TestCom 2003, France, pages 211–225, May 2003.

[9] R. S. Freedman. Testability of software components. IEEE
transactions on Software Engineering, 17(6), june 1991.

[10] O. Henniger, M. Lu, and H. Ural. Automatic generation of test
purposes for testing distributed systems. In FATES03 (Formal
Approaches for Testing Software), Canada, pages 185–198, Oct.
2003.

[11] A. Khoumsi, T. Jeron, and H. Marchand. Test cases generation
for nondeterministic real-time systems. In FATES03 (Formal
Approaches for Testing Software), Canada, Oct. 2003.

[12] S. Salva and H. Fouchal. Some Parameters for Timed System
Testability. In ACS/IEEE International Conference on Computer
System and Applications, AICCSA’01 (Beirut, Lebanon), June
2001.

[13] S. Salva, E. Petitjean, and H. Fouchal. A simple approach to
testing timed systems. In FATES01 (Formal Approaches for
Testing Software), a satellite workshop of CONCUR, Aalborg,
Denmark, Aug. 2001.

7

