
A preliminary study on BPEL process testability.∗

Sébastien Salva
LIMOS CNRS UMR 6158

Université d’Auvergne
Campus des Cézeaux,Aubière, FRANCE
sebastien.salva@u-clermont1.fr

Issam Rabhi
LIMOS CNRS UMR 6158
Université Blaise Pascal

Campus des Cézeaux,Aubière, FRANCE
rissam@isima.fr

ABSTRACT
WS-BPEL is an OASIS standard language used for describ-
ing interactions in Service Oriented Architectures (SOA).
BPEL processes are usually overlapped in large business ap-
plications composed of web services. Such applications are
more and more developed with respect of quality processes,
such as testability, which is the topic of this paper. Testabil-
ity helps to model systems where bug detection is relatively
easier and whose the testing cost is lower. In this paper, we
focus on two well-known testability criteria, observability
and controllability. To evaluate them, we propose to trans-
form ABPEL specifications into STS and to apply existing
methods. Then, from STS testability issues, we deduce some
patterns of ABPEL testability degradation. These latter
help to finally propose testability enhancement methods.

Keywords
BPEL, testability, observability, controllability, enhancement
methods

1. INTRODUCTION
WS-BPEL, or Web Services Business Process Execution

Language [6], is an OASIS standard language used for de-
scribing interactions in Service Oriented Architectures (SOA).
In such architectures, services are proposed through compo-
nents named web services which can be seen as independent
object instances called by operations (methods). Such web
services can be requested over a network like Internet and
take place recently in the ”Cloud” paradigm (virtualized re-
sources where control or expertise is unneeded). BPEL im-
plements Business processes over web services by orchestrat-
ing them by mean of a coordination logic: BPEL processes
receive specific client application requests, call some web

∗Research supported in part by the French National
Agency of Research within the WebMov Project
http://webmov.lri.fr

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QuoMBat 2010, Paris, France
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

services according to conditions and variables defined in the
process, and usually return a response.

BPEL processes are often written in large business appli-
cations gathering also many web services, composed them-
selves of many data management layers. For instance, such
applications may be used to manage transaction of goods
between customers and suppliers, or to make live statistics.
Nowadays, more and more companies developing web ser-
vices and BPEL processes follow several quality processes
and models, like the CMMI one (Capability Maturity Model
Integration). Software testability, which is one quality cri-
terion, aims to achieve a testable application, that is an ap-
plication from which the testing stage is able to detect the
largest number of bugs, with the less efforts with regards to
bug detection and time. Since, the testing process costs as
much as 50 % of the total development effort, testability is
seen as essential.

BPEL testability is a large field because this language
provides a large set of mechanisms (fault handling, cor-
relation,...), interacts with external web services and pro-
poses parallel programming. So, we propose, in this pa-
per, a preliminary testability study of sequential BPEL pro-
cesses, modeled with the APBEL (Abstract BPEL) lan-
guage. We focus on two well-known testability criteria, ob-
servability and controllability. To evaluate them, we trans-
form an ABPEL specification into a corresponding STS (Sym-
bolic Transition System) to flatten the nested BPEL activ-
ities, to spread fault handlers into sub-activities, and to re-
trieve irrelevant properties. We obtain a graph which can
be analyzed with existing testability algorithms.

Then, from some known STS testability issues, we deduce
the corresponding patterns of ABPEL testability degrada-
tion. These ones may help designers to write directly more
testable ABPEL specifications. These ABPEL testability
degradations are also used, in the following, to construct
some enhancement methods which detect testability issues
and modify semi-automatically ABPEL specifications. We
apply them on a real BPEL example, the ”Loan approval”
which is given in the WS-BPEL specification [6].

The remainder of this paper is structured as follow: Sec-
tion 2 provides an overview on the BPEL language and on
system testability, while describing some related works. In
section 3, we discuss on the testability evaluation, and in-
troduce some ABPEL testability degradation propositions.
Then, we describe, in section 4, some semi-automatic testa-
bility enhancement methods and an academic tool which
implements them. Section 5 leads to several perspectives on
BPEL testability by giving some ideas about other proper-

ties to analyze.

2. BPEL AND TESTABILITY OVERVIEWS

2.1 BPEL
BPEL defines and manages the process orchestrations,

that is the interactions between web services, called partners.
BPEL describes abstract and executable business processes.
An abstract process describes the element declarations (ex-
changed messages, partner roles, links, ...) which are going
to be used by this process. An executable BPEL process
models the orchestration and includes the internal details
(states, variables, requests,...). For this, BPEL gathers basic
activities, to perform basic operations (invoke, receive,...),
and structured activities (scope, flow,...) to set the activity
structuring. Among its possibilities, it supports fault han-
dler activities that manage fault messages or other excep-
tions returned by external web services (the process can be
compensated or terminated,...). BPEL processes also handle
web service WSDL descriptions which gather the required
informations to invoke a service, by defining the web service
interfaces, called enpoints, the accessible methods, called
operations, and the operation parameter/response types.

We illustrate, in figure 1, a graphical example of BPEL
process, the loan approval sample, which is derived of the
one which can be found in the WS-BPEL specification. A
part of the BPEL code, describing the two first activities is
given in figure 2. In this process, a customer sends a request
for a loan, the request gets processed, and the customer finds
out whether the loan was approved. The partners involved
are: web service ”loan assessor”, web service ”loan approval1”
and web service ”loan approval2”.

In the following, we consider gray box BPEL processes
were the external interactions with the partners are observ-
able. With such gray boxes, two kinds of test architectures
are proposed. These ones differ by the number of PCO
(point of control and observation). In the first one (figure 3
with continuous boxes), there is only one PCO, thus the web
service interactions are uncontrollable. We can only stim-
ulate the BPEL process from the client application. With
the second architecture (figure 3 with dashed boxes), more
PCO are added to control the messages sent from the part-
ners, which need to be simulated. Each message sent to the
BPEL process is then controllable. Some testing methods
use this architecture and some tools help to implement sim-
ulated partners by generating automatically partner stubs
[3].

Many works have been proposed on BPEL and some of
them tackle especially to its validation [14, 23, 16, 10, 25,
15]. The authors of [14] propose a BPEL unit testing ap-
proach and introduce a tool prototype, named BPEL-Unit,
which extends JUnit. The process, modeling web service in-
teractions, is translated to JAVA collaboration classes and
method calls, which are later tested by Junit. In [23], a
method is proposed to model web service compositions with
CSP (process algebra) by using a set of rules for translating
compositions. Afterwards, other methods are introduced for
model checking, model verification and model simulation by
using FDR tool(Failures-Divergence Refinement). In [16],
the authors use BPEL specifications, translated into Petri
nets (Using BPEL2oWFN), and test the existence of a part-
ner process, such that both can interact properly (interop-
erability test). In [10], the authors transform BPEL speci-

Figure 1: The Loan approval BPEL process

fications to PROMELA code, and then generate test cases
by using the SPIN model-checking tool. In [25], another
test case generation framework for BPEL compositions is
proposed. BPEL specifications are modeled by WSA (Web
Service Automata). SPIN and NuSMV tools are used to
generate test cases. In [15], the BPEL process is modeled
by BFG (BPEL Flow Graph). Test cases are generated by
covering each graph branch at least once. These ones are
executed and traces are analyzed to give a verdict. A test
selection minimization algorithm is also proposed.

2.2 Testability
Testability gathers several criteria which evaluate the sys-

tem capacity to reveal its faults, the accessibility of its com-
ponents and its testing cost [9]. Testability can be blend
into software life cycle as illustrated in figure 4. Designers
evaluate testability of a system after each life cycle step. So,
they can evaluate and anticipate the system parts which are
testable and those which are not. They can also measure
the testing cost.

Testability can be used to model and to implement testable
systems, by improving the fault detection and the fault cov-
erage [11]. It can also be evaluated to choose one specifica-
tion (the most testable) among others.

Testability has been studied on different untimed models
(automata, UML models, logical circuits, relational models
[9, 11, 24, 18]) and timed ones (timed automata)[20]. These
methods evaluate testability criteria one by one by return-
ing, for instance, a factor called degree (a number between
0 and 1), but also the number of potential faults which can
be detected, or the number of testability issues.

Many criteria have been studied, depending on the sys-

<bpel:receive createInstance="yes" operation="request"

partnerLink="customer" portType="lns:loanServicePT"

variable="request">

<bpel:sources>

<bpel:source linkName="receive-to-assess">

<bpel:transitionCondition>

($request.amount < 10000)

</bpel:transitionCondition>

</bpel:source>

<bpel:source linkName="receive-to-approval">

<bpel:transitionCondition>

($request.amount >= 10000)

</bpel:transitionCondition>

</bpel:source>

</bpel:sources>

</bpel:receive>

<bpel:invoke inputVariable="request" operation="check"

outputVariable="risk" partnerLink="assessor"

portType="lns:riskAssessmentPT">

<bpel:targets>

<bpel:target linkName="receive-to-assess" />

</bpel:targets>

<bpel:sources>

<bpel:source linkName="assess-to-setMessage">

<bpel:transitionCondition>

($risk.level = ’low’)

</bpel:transitionCondition>

</bpel:source>

<bpel:source linkName="assess-to-approval">

<bpel:transitionCondition>

($risk.level != ’low’)

</bpel:transitionCondition>

</bpel:source>

</bpel:sources>

</bpel:invoke>

Figure 2: A part of the BPEL code

Figure 3: The test architectures

Figure 4: Testability in software life cycle

tem, but observability and controllability are commonly tar-
geted:

• Observability aims to evaluate the system internal state
according to its observed outputs. For input output
systems, observability is defined in [9] by: ”a system
is observable if for each input given to the system, a
different output is observed”,

• Controllability denotes the ability to reach and to ac-
tivate specific parts of a system. It is defined in [9] by
”a system is controllable if for each observed output,
it exists an input which forces the observation of this
output”.

3. BPEL TESTABILITY STUDY
The first raised question is which formalism to choose for

BPEL process modeling? We found some different responses
in literature [22]. BPEL processes can be modeled with:

• high level languages, such as BPMN, ABPEL (Ab-
stract BPEL) or UML activity diagrams which de-
scribe the BPEL process overall behaviors by giving
for instance the partner roles, the exchanged messages
(requests and responses), and the conditions on these
messages,

• lower level languages, such as Petri nets, automata
(LTS,...) , process algebra, abstract state machines
(ASM). These ones describe BPEL processes with more
details (about variables, conditions, fault handling,...).

We base our choice on the ABPEL formalism because it
is widely used in software development companies and with
existing testing methods [2].

In the following, we first describe how to evaluate testa-
bility of ABPEL specifications. We focus on the ABPEL

observability and controllability degradations. From these
latter, we propose several testability enhancement methods.

3.1 How can ABPEL specifications be assessed
?

Analyzing ABPEL specifications directly to assess testa-
bility criteria is not an easy task. They are composed of
many information about partners, variables,... (see figure
2). But, above all, structured BPEL activities such as scope,
process, or fault handler activities may be nested with other
ones. For instance, the scope activity of figure 5 is composed
of a fault handler which is dedicated to each sub-activity of
the scope. Each sub-activity may be also composed of other
sub-activities and fault handlers. And so on.

Figure 5: An ABPEL process

As a consequence, some works propose to transform ABPEL
specifications into other formalisms [19, 5, 13, 2]. We pro-
pose, in this paper, to transform ABPEL specifications into
STS (Symbolic Transition Systems [8]). STS offer a large
formal background (definitions of implementation relations,
test case generation algorithms,...) and are semantically
close to UML state machines. Besides, some tools are pro-
posed to translate UML state machines into STS [1]. Last
but not least, a BPELtoSTS transformation has been pro-
posed in [17, 2]. The latter aims to flatten each nested BPEL
activity, to spread the fault handlers of one activity into each
of its sub-activities, and to eliminate the irrelevant activities
for testability analysis (for instance, the ”assign”, ”empty”
activities). Moreover, using STS offers the significant ad-
vantage to apply existing state machine testability analysis
algorithms or tools.

A Symbolic Transition System STS is a tuple < L, l0, V ar,
var0, I, S,→>, composed of symbols S = SI ∪ SO: inputs,
beginning with ”?” are provided to the system, while out-
puts, (beginning with ”!”) are observed from it. An STS
is composed of a location variable set V ar, initialized by
var0 and of an interaction variable set I. Each transition
(li, lj , s, ϕ, %) ∈→ from the location li to lj , labeled by the

symbol s, may update variables with % and may have a guard
ϕ on V ar ∪ I, which must be satisfied to fire the transition.

[8] defined the notion of stimulus (resp. reaction) which is
a pair (s, η), where s ∈ SI is an input symbol (resp. s ∈ SO

is an output one) and η is a mapping of the interaction
variables of s to ground terms. For a reaction (!o, η), η is
observable in the message !o. A reaction is observed from
BPEL processes either when a fault is thrown (with the
”throw” activity) or with the ”reply” and ”invoke” activities
when a partner operation is called with parameter values
(η).

We also denote out(l, η) the set of the first reactions reached
from the location l with the values η. out(l1, η) = {(!o1, η′1),
..., (!on, η

′
n) | ∀1 ≤ i ≤ n,∃p = (l1, l2, e1, ϕ1, %1)...(li, li+1, !oi,

ϕi, %i) such as (e1, ..., ei−1) ∈ Si−1
I and ∧(ϕ1(η), ..., ϕi(%i−1,

η′1)) true}.
We applied the BPELtoSTS transformation on the spec-

ification example, depicted in figure 1. We obtain the STS
of figure 6. All the structured activities (scopes, if, fault
handlers,...) were flatten. And all the fault handlers were
spread to sub-activities. For instance, A ”fault handler” ac-
tivity begins at the location A11. Each outgoing transition
models a ”catch” activity.

Figure 6: An STS modeling an ABPEL process

Once translated into STS, a BPEL process can be an-
alyzed with relative ease to measure many state machine

based testability criteria, such as the observability, the con-
trollability [11] or coverage criteria [4]. In the remainder of
this paper, we will consider observability and controllability
criteria only.

The testability measurement can be performed in different
ways, such as counting the number of testability issues. For
instance, consider the STS of figure 6. This one contains
five observability and six controllability issues:

• Observability issues: the stimuli (?amount, amount =
1000) and (?risk, risk = high, amount = 1000) give
the same reaction (!request1, amount = 1000). 2) In
the same way (?risk, risk = low) and (?approval2,
app2 = yes) are followed by the same reaction
(!approval,app2 = yes). 3) The last observability is-
sues are detected at the location A11 (Invoke Asses-
sor), where several input messages modeling ”catch”
activities are not followed by output ones,

• Controllability issues: these ones are often the conse-
quence of indeterminism states [11]. The STS of fig-
ure 6 has four indeterminism locations (locations A3
(invoke assessor), A4 (B.Invoke approval1), A6 (B. In-
voke Approval2), A9(B. Reply Customer)) on account
of partner roles not initialized in the APBEL specifica-
tion. Another controllability issue is detected from the
location A15 since the two conditions [amount ≤ 1000]
and [amount ≥ 1000] are not exclusive. The last case
is obtained from the location A11 where the same fault
?FaultId1 is labelled on two different transitions.

Such testability evaluations may help to choose the most
testable specification among many. However, it does not
identify testability issues on the ABPEL specification di-
rectly. These evaluations detect only issues in the corre-
sponding STS specification. So, these ones do not help de-
signers neither to write ABPEL processes with higher qual-
ity nor to improve them once testability issues are detected.

This is why we analyze, in the following, some properties
degrading the STS testability from which we deduce the
corresponding ABPEL testability degradation patterns.

In the following, we assume that the partners, taking part
to the BPEL orchestration, are testable (observable and con-
trollable). The BPELtoSTS transformation rules, that we
consider in the propositions, are those given in [17, 2]. Due
to lack of room, some of them are given in [21].

3.2 ABPEL observability degradation
Observability aims to evaluate the system internal state

from its observed outputs. According to the observability
definition, given in section 2.1, the system observability is
degraded if some inputs are followed by the same outputs or
by no output. For an STS sts =< L, l0, V ar, var0, I, S,→>,
this can be written with two degradation properties which
take into account stimuli and reactions. The first property
means that the observability is degraded if no reaction is
observed. The second one describes the case of different
stimuli which produce the same reaction set.

• Observability degradation 1: if it exists a stimulus
(?e, η) such as (k, l, ?e, ϕ, %) ∈→ and out(l, η) = ∅,

• Observability degradation 2: if it exists two stimuli
(?ei, ηi) 6= (?ej , ηj) with (li, l

′
i, ?ei, ϕi, %i) ∈→, ϕi(ηi)

true and (lj , l
′
j , ?ej , ϕj , %j) ∈→, ϕj(ηj) true such as

out(l′i, ηi) = out(l′j , ηj).

From the first STS rule, we have deduced two correspond-
ing ABPEL testability degradations: ”the lack of a reply
activity at the end of ABPEL processes” and ”the use of
conditions, in ”if” activities, which cannot be always satis-
fied”.

Proposition 3.1 An ABPEL specification not terminated
by a ”reply” (one-way ”invoke”) activity is not observable.

Proof. ”reply” and one-way ”invoke” activities are both
identical.
1. Consider an ABPEL process bpel, composed only of inter-
nal actions (for instance the ”assign” or ”empty” activities)
and not terminated by a reply activity. An ABPEL process
always begins by a ”receive” activity (see [6]). The transla-
tion of bpel into STS produces one transition (l, l′, ?e, ϕ, %)
labeled by an input symbol (”receive” activity” followed by
no transition labeled by an output one). So, ∀η, out(l′, η) =
∅. bpel is not observable.

2. Now, consider an ABPEL process bpel, composed of
partner interactions (the usual case) and not terminated
by a reply activity. We have supposed that the associated
partners are observable. Consequently, they always produce
a response once called. An ”invoke” activity is translated
by two transitions in STS, the first one labeled by an out-
put symbol and the other one labeled by an input sym-
bol. The last ”invoke” activity produces the STS transitions
(li, li+1, !o, ϕ, %), (li+1, li+2, ?e, ϕi+1, %i+1). Without ”reply”
activity, this transition cannot be followed by another one la-
beled by an output symbol. Consequently, ∀η, out(li+2, η) =
∅. bpel is not observable.

Proposition 3.2 An ABPEL specification, composed of an
”invoke” activity followed by an ”if” one if((cond1, act1),...,
(condn, actn)) which cannot be always satisfied (∃η,∨
1≤i≤n

condi(η) false), is not observable.

Proof. An invoke activity is transformed by the STS
transitions (l, l′, !o, ϕ, %), (l′, l′′, ?e, ϕ′, %′). The ”if” activity
yields the STS transitions ∀(1 ≤ i ≤ n) (l′′, li, τ, ϕi, %i) with
ϕi = condi. Suppose that it exists η such as∨
1≤i≤n

(ϕi(η)) false. None transition can be fired. The lo-

cation l′′ is blocked and is said quiescent [8]. So, it exists
a stimulus (?e, η) such as out(l′′, η) = ∅. Consequently, the
STS and the ABPEL specification are not observable.

With the second STS degradation property, we found four
corresponding cases of ABPEL testability degradation. With
STS, this degradation is obtained if it exists two transitions
(li, li+1, ?ei, ϕi, %i), (lj , lj+1, ?ej , ϕj , %j) from which the same
reaction (!o, η) is observed. This case can be derived from
ABPEL specifications having: ”two different catch activities
followed by the same invocation”, ”a catchall activity, trig-
gered by multiple faults, followed by the same invocation”,
”a pick activity with multiple onmessage branches followed
by the same invocation”, or having ”two (or more) successive
receive activities”.

Proposition 3.3 An ABPEL specification composed of a
couple of non identical ”catch” (”catchall”) activities (catchi,

catchj), catchi 6= catchj, followed by two ”invoke” activities
using the same operation and parameter values, is not ob-
servable.

Proof. In the WS-BPEL specification [6], two ”catch”
activities are said identical if their received faults are identi-
cal too. Each ”catch” activity is triggered by a received fault
?f = (faultName, faultElement, faultMessage Type).
Two different ”catch” activities (catchi, catchj) are trans-
lated by two STS transitions (li, li+1, ?faulti, ϕi, %i) and
(lj , lj+1, ?faultj , ϕj , %j), with ?faulti 6=?faultj . If catchi

and catchj are followed by the same operation call, using the
same parameter value η, the STS is composed of two transi-
tions (li+1, li+2, !o, ϕi+1, %i+1), (lj+1, lj+2, !o, ϕj+1, %j+1) such
as ∨(ϕi+1(η), ϕj+1(η)) true. Consequently, it exists two
stimuli (?faulti, ηi), (?faultj , ηj) such as out(li+1, η) =
out(lj+1, η) = (!o, η). The STS and the ABPEL specification
are not observable.

Proposition 3.4 An ABPEL specification composed of a
”catchall” activity, triggered by multiple faults and followed
by an ”invoke” activity whose the operation call is indepen-
dent of the triggered fault, is not observable.

Proof. A ”catchall” activity catchall((?faulti, ?faultj),
act) is a ”catch” one, triggered by all the faults received in
a fault handler, not already caught by other ”catch” activ-
ities. Let ?faulti = (faultName = ni, faultElement =
ei, faultMessage = mi Type = ti) and ?faultj = (fault−
Name = nj , faultElement = ej , faultMessage = mj Type
= tj) be two different faults. This one is translated into the
STS transitions (li, li+1, ?faulti, ϕi, %i) and (li, li+1, ?faultj ,
ϕj , %j), with ?faulti 6=?faultj . If this ”catchall” activity
is followed by an ”invoke” one, we also have the transition
(li+1, li+2, !o, ∅, %i+1) with !o = (op, req, partner).

Let η be a value obtained before the ”catchall” activ-
ity and (?faulti, ηi), (?faultj , ηj) be two stimuli. ηi (re-
spectively ηj) is obtained from η by applying the variable
update %i (%j) (%i : faultNamei = ni, faultElementi =
ei, faultMessagei = mi Typei = ti). If op does not handle
the fault, the variables req are independent of the ones in %i∧
%j . The mapping of req to ground terms equals to η. Conse-
quently, it exists two stimuli (?faulti, ηi), (?faultj , ηj) such
as out(li+1, ηi) = out(lj+1, ηj) = (!o, η). This corresponds to
the second degradation property. The STS and the ABPEL
specification are not observable.

Proposition 3.5 An ABPEL specification composed of a
”pick” activity with multiple ”onmessage” branches followed
by ”invoke” activities using the same operation and parame-
ter values, is not observable.

Proof. A ”pick” activity with two ”onmessage” branches
is translated by the STS transitions (l, li, ?ei, ϕi, %i), (l, lj ,
?ej , ϕj , %j), with ?ei 6=?ej and (li, li+1, !o, ϕi+1, %i+1), (lj ,
lj+1, !o, ϕj+1, %j+1). We obtain the same case as the one
described in proposition 3.3. Thus, the STS and the ABPEL
specification are not observable.

Proposition 3.6 An ABPEL specification, composed of two
(or more) successive ”receive” activities, is not observable.

Proof. k successive ”receive” activities are translated by
k STS transitions (l1, l2, ?e1, ϕ1, %1),..., (lk, lk+1, ?ek, ϕk, %k).
If these ”receive” activities are not followed by an ”invoke”

(”reply”) one, ∀(η1, ..., ηk)out(l2, η1) = ... = out(lk+1, ηk) =
∅. Otherwise, these ones are followed by an ”invoke” (”re-
ply”) activity which produces an STS transition (ln, ln+1, !on,
ϕn, %n) such as ∃ηn, ϕn(ηn) true. ∀(η1, ..., ηk) such as∧
1≤i≤k

(ϕi(ηi) true), out(l2, η1) = ... = out(lk+1, ηk) = (!on, ηn).

Consequently, The STS and the ABPEL specification are
not observable.

3.3 BPEL controllability degradation
Controllability depends firstly on the test architecture fea-

tures. As we suggest in section 2.1, using the test architec-
ture composed of real partners (architecture composed of
one PCO and of two PO, figure 3 with continuous boxes)
involves to an uncontrollable BPEL process. Indeed, mes-
sages, which are computed and returned by the partners to
the BPEL process, cannot be controlled by a tester. The sin-
gle PCO (point of control and observation) is on the Client
side only. This lack of controllability can be solved by us-
ing a test architecture composed on PCO where partners
are simulated. With this one, returned responses are input
messages given by the tester, so these ones are controllable.
In the following, we consider this king of architecture.

Controllability is also influenced by other properties. De-
terminism is one of them. The more indeterministic a system
is, the less controllable it becomes [11].

An STS sts =< L, l0, V ar, var0, I, S,→> is undetermin-
istic if it exists a location l ∈ L such as:

1. it exists two transitions (l, li, e, ϕi, %i), (l, lj , e, ϕj , %j)
labelled by the same symbol and η with (ϕi(η)∧ϕj(η))
true,

2. it exists two transitions (l, li, !oi, ϕi, %i), (l, lj , !oj , ϕj , %j)
with !oi 6=!oj and η with (ϕi(η) ∧ ϕj(η)) true,

3. it exists two transitions (l, li, ?e, ϕi, %i), (l, lj , !o, ϕj , %j)
and η with (ϕi(η) ∧ ϕj(η)) true.

From these indeterministic properties, we found three cor-
responding testability degradation properties in ABPEL spec-
ifications having: ”partner roles not initialized”, ”two suc-
cessive if activities whose the conditions may be satisfied
simultaneously” or having ”faulthandler activities composed
of identical catch ones”.

Proposition 3.7 ”invoke” activities, depending on partners
whose the role is not initialized, involve indeterministic and
uncontrollable ABPEL processes.

Proof. According to the WS-BPEL specification [6], ”in-
voke” activities, whose the partner role is not initialized,
must be composed of a ”catch”activity triggered by the fault
”uninitializedPartnerRole”. This activity is translated to the
two STS transitions (l, li, !o, ϕi, %i), (l, lj , ?fault, ϕj , %j) with
ϕi = ϕj = ∅. So, ∀η, (ϕi(η) ∧ ϕj(η)) true. This corresponds
to the third indeterminism case. Thus, the corresponding
STS and the ABPEL specification are not deterministic and
not controllable.

Proposition 3.8 An ABPEL specification, composed of an
”if” (”switch”) activity gathering two conditional branches
if((cond1, act1), (cond2, act2)) where the condition ∨(cond1,
cond2) may be satisfied simultaneously (∃η | (cond1(η)∧
cond2(η))true), is not controllable.

Proof. The ”if” (or ”switch”) activity if((cond1, act1),
(cond2, act2)) is translated by the STS transitions (l, l1, τ, ϕ1,
∅), (l, l2, τ, ϕ2, ∅) with ϕ1 = cond1 (ϕ2 = cond2). Suppose
that it exists η such as (ϕ1(η) ∧ ϕ2(η)) true. These transi-
tions represent the first indeterminism case given previously.
Consequently, the ABPEL process is not deterministic and
not controllable.

Another indeterminism case is raised on account of the
”flexibility”, allowed in the ”catch” activity construction by
the WS-BPEL specification [6]. Indeed, it is granted to con-
struct several identical ”catch” activities composed by the
same fault identification (faultName, faultElement, fault-
MessageType).

Proposition 3.9 An ABPEL process, composed of a ”fault-
handler” activity gathering two identical ”catch” activities, is
not controllable.

Proof. Let catchk((faultNamek, faultElementk,
faultMessagek), actk) and catchl((faultNamel, fault−
Elementl, faultMessagel), actl) be two ”catch” activities of
the same fault handler. These ”catch” activities are trans-
lated by two STS transitions (l, li, ?faulti, ϕi, ∅), (l, lj ,
?faultj , ϕj , ∅), with ϕi = ϕj = ∅. If (faultNamei, fault−
Elementi, faultMessagei), (faultNamej , faultElementj ,
faultMessagej) are identical, in accordance with the WS-
BPEL specification (identical values, two absent values are
identical), then ?faulti =?faultj . So, it exists η with (ϕi(η)∧
ϕj(η))
true such as two transition can be fired. This corresponds to

the first indeterminism case, given previously. The ABPEL
process is undeterministic and uncontrollable.

4. BPEL TESTABILITY ENHANCEMENT
The previous propositions, describing ABPEL testabil-

ity degradation patterns, are used here to propose some
testability enhancement methods and a corresponding tool.
This one parses an ABPEL specification, detects testabil-
ity degradations, according to the propositions 3.1-3.9 and
removes them. The tool architecture is given in figure 7.

Figure 7: A testability enhancement tool

The modification of ABPEL specifications by these en-
hancement methods may require the update of some partner
WSDL descriptions or code parts. This is why we denote
them as semi-automatic. These enhancement methods are
detailed below. In the following, we denote bpel, an ABPEL
specification.

4.1 BPEL observability enhancement
We improve the ABPEL specification observability by fo-

cusing on the propositions 3.1 and 3.3. The first enhance-
ment method adds a ”reply” activity when this one is miss-
ing. The second one distinguishes the observable behaviour
of ”catch” activities.

• ”reply” activity addiction: We check that each
branch of the ABPEL specification ends with a ”re-
ply” (invoke-only) activity. If one is missing, we com-
plete the specification with a ”reply” activity modeling
a response to the client which has called the ABPEL
process. The corresponding algorithm is given in Al-
gorithm 1. The response sent to the client is composed
of the message ”final message from locationi” which is
supposed to be a unique output message, not yet used
in the specification. (the observability is not degraded
with the addiction of this output message),

• ”catch” activity distinction: if two ”catch” activi-
ties catchi(?faulti, acti), catchj(?faultj , actj) are fol-
lowed by two ”invoke” activities using the same oper-
ation op, we compute, from the corresponding STS,
the values satisfying the execution of these invocation,
with constraint solvers [12, 7]. If a value satisfies both
the two ”invoke” activities (proposition 3.3 verified),
we modify them by adding a new parameter to op,
equals to ?faulti (?faultj respectively). According to
the proposition 3.3, since ?faulti and ?faultj are not
identical we obtain two different operation calls and
thus different reactions. However, this modification
also requires to update the
WSDL description and the code of the called partner.
The algorithm is given in Algorithm 2. The constraint
solvers construct values satisfying the guards of a spec-
ification path and hence satisfying its execution. We
use the solvers [7] and [12] which works as external
servers. The solver [12] manages ”String” types, and
the solver [7] manages most of the other simple types.

input : ABPEL specification bpel
Compute sts =< L, l0, V ar, var0, I, S,→> from bpel

if ∃li
e,ϕ,%−−−→ lf with e ∈ SI ∪ {τ} and lf a final location

then
Add a reply activity reply(param, partner, op) in
bpel with partner=client, op= client operation used
for calling the ABPEL process, param=”last
message from branchi”

end

Algorithm 1: ”reply” activity addiction

4.2 BPEL controllability improvement
We improve the controllability of ABPEL specifications

by considering the propositions 3.7 and 3.9. First, we add,
when needed, the missing partner roles. This solution re-
moves the faults whose the type is ”uninitializedPartner-
Role” and so an indeterminism case, described in proposi-
tion 3.7. This upgrade requires some data from the partner
WSDL descriptions. Then, referring to proposition 3.9, we
try to distinguish each fault in the same ”faulthandler” ac-
tivity. In the same way, this solves an indeterminism issue.
This modification requires some partner modifications.

• partner role addiction: For each ”invoke” activ-
ity invoke(mess, resp, partner, op), we check that the
partner role is described in the BPEL section ”Partner-
Link”. If not, we update it, in condition that all the
partner WSDL descriptions are provided. Once the

input : ABPEL specification bpel
if it exists two ”catch” activities catchi(?faulti, acti),
catchj(?faultj , actj) in bpel followed by the operation
call op with the parameters (p1, ..., pm) then

Compute sts =< L, l0, V ar, var0, I, S,→> from bpel

foreach paths pi = l0
e0,ϕ0,%0−−−−−→ l1,..., li

?faulti,ϕi,%i−−−−−−−−→

li+1
!op,∅,%i+1−−−−−−→ li+2 and pj = l0

e′
0,ϕ′

0,%′
0−−−−−→ l′1,...,

l′j
?faultj ,ϕ′

j ,%′
j−−−−−−−−−→ l′j+1

!op,∅,%′
j+1−−−−−−−→ l′j+2 do

Compute with solvers V1 the value set over
(p1, ..., pm) such as ∀v ∈ V1, ∧(ϕ0(v), ϕ1(%0),...,
ϕi(%i−1), %i+1true)
Compute V2 from the path pj

if V1 ∩ V2 6= ∅ then
Add to the first invoke activity a string
parameter ”fault” with the value ”?faulti”
Add to the second invoke activity a string
parameter ”fault” with the value ”?faultj”

end

end

end

Algorithm 2: ”catch” activity distinction

partner role is declared, the indeterminism case de-
scribed in proposition 3.5 is removed. The algorithm
is given in Algorithm 3,

• fault distinction in fault handlers: We check that
each ”faulthandler” is not composed of two ”catch” ac-
tivities catchi(?fault, acti), catchj(?fault, actj) trig-
gered by the same fault. Otherwise, we try to differen-
tiate these faults either by modifying the message type
or by naming them differently (if the type cannot be
modified, we modify the fault name). With this mere
modification, we distinguish the input faults and we
remove an indeterminism case (proposition 3.9). How-
ever, this modification implies to update the WSDL
description of the partner which sends this fault. The
algorithm is given in Algorithm 4.

input : ABPEL specification bpel
foreach ”invoke” activity
invoke(mess, resp, partner, op) do

if partner has not a role in the BPEL
”partnerLink” section then

add <partnerLink name= partner name
partnerRole=”partner nameProvider”
partnerLinkType=”ns:partner name”/>

end
, with ”ns” a new variable equals to the web service
WSDL URL (xmlns:ns=”http://...”)

end

Algorithm 3: PartnerRole addiction

We applied these enhancement methods on the ”Loan ap-
proval” example of figure 6 to produce a new specification.
The corresponding STS is illustrated in figure 8. This new
specification is much more testable since the testability degra-
dation number is reduced to 4 instead of 11. Three different
”reply” activities (locations A12, A13 and A14) and three

input : ABPEL specification bpel
foreach ”faulthandler” activity composed of the catch
activities catch1(fault1, act1),..., catchn(faultn, actn)
do

// ?faultk = (faultNamek, faultElementk, fault
Message Typek)
if it exists catchi(faulti, acti), catchj(faultj , actj)
with faulti == faultj then

if MessageTypei == null then
MessageTypei = type in (string, integer,...)
such as
∀(1 ≤ k 6= i ≤ n), faultMessageTypek 6=
type

end
else

Add a random integer value at the end of
faultNamei

end

end

end

Algorithm 4: Fault distinction

Figure 8: The modified STS

partner roles (locations A3, A6 and A9) have been added.
Two identical ”catch” activities (location A11) have been
distinguished.

5. CONCLUSION
This paper proposes a preliminary study on ABPEL testa-

bility and some propositions describing patterns of ABPEL
testability degradation. These ones can be used to directly
write more testable ABPEL specifications or to evaluate ob-
servability and controllability criteria. We also propose some
testability enhancement methods, which have been imple-
mented in an academic tool. This one parses the specifi-
cation, detects testability degradation cases and modifies it
semi-automatically.

This preliminary work may lead to several perspectives on
account of the large possibilities of the BPEL language. For
instance, other criteria can be studied such as:

• the execution time, which evaluates the testing cost ac-
cording to the minimal and maximal execution times.
Evaluating it is one step. But it is also possible to
reduce it, by translating independent sequential activ-
ities into parallel ones without modifying the whole
process behaviour. Improving this metric may how-
ever lead to other controllability issues since concur-
rent tasks are less controllable,

• the completeness, which gathers the completeness of
the states on the input message set, the completeness
of the condition guards in a ”if” activity or the com-
pleteness of the received messages (especially the re-
ceived faults). Incomplete processes may lead to dead-
locks. For instance, if a value does not satisfy any con-
dition in a ”if” activity, the conditions are incomplete
(conditions which do not cover the complete domain
of a variable), and the process hangs at this activity in
a deadlock. And the greater the number of potential
deadlocks is, the less testable the BPEL process is too.

This work does not take into account concurrent BPEL
processes. It could be extended by modifying/updating the
ABPEL transformation to a concurrent system modeling
language (synchronized STS, UML activity diagrams ?). The
main issue here is that the state number of an intermediate
specification may explode on account of the synchronization
of the concurrent processes. Testability of parallel BPEL
processes also offers new challenging issues: indeed, we don’t
have one execution handling a symbolic variable set but an
execution set composed of parallel processes, handling si-
multaneously shared variables. The previous testability def-
initions may become insufficient and metric evaluation may
be much more complicated.

6. REFERENCES
[1] Magicdraw homepage. In http://www.magicdraw.com.

[2] L. Bentakouk, P. Poizat, and F. Zäıdi. A formal
framework for service orchestration testing based on
symbolic transition systems. In TESTCOM/FATES
2009 - 21th IFIP International Conference on Testing
of Communicating Systems, LNCS, 5826/2009:16–32,
2009.

[3] A. Bertolino, G. Angelis, L. Frantzen, and A. Polini.
Model-based generation of testbeds for web services.

In TestCom ’08 / FATES ’08: Proceedings of the 20th
IFIP TC 6/WG 6.1 international conference on
Testing of Software and Communicating Systems,
pages 266–282, Berlin, Heidelberg, 2008.
Springer-Verlag.

[4] L. Briand, Y. Labiche, and Q. Lin. Improving the
coverage criteria of uml state machines using data flow
analysis. In Software Testing, Verification and
Reliability (STVR) journal. Wiley interscience, 2009.

[5] A. Brogi and R. Popescu. From bpel processes to yawl
workflows. In LNCS, editor, Web Services and Formal
Methods, september 2006.

[6] O. Consortium. Ws-bpel v2.0. April 2007.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-
v2.0-OS.pdf.

[7] N. Een and N. Sörensson. Minisat. 2003.
http://minisat.se.

[8] L. Frantzen, J. Tretmans, and T. Willemse. Test
Generation Based on Symbolic Specifications. In
J. Grabowski and B. Nielsen, editors, Formal
Approaches to Software Testing – FATES 2004,
number 3395 in Lecture Notes in Computer Science,
pages 1–15. Springer, 2005.

[9] R. S. Freedman. Testability of software components.
IEEE transactions on Software Engineering, 17(6),
1991.

[10] J. Garćıa-fanjul, J. Tuya, and C. D. L. Riva.
Generating test cases specifications for bpel
compositions of web services using spin. In Workshop
on WebServices Modeling and Testing, pages 83–94,
2006.

[11] K. Karoui, R. Dssouli, and O. Cherkaoui. Specification
transformations and design for testability. In IEEE
Globecom’96, Londre, Nov. 1996.

[12] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and
M. D. Ernst. Hampi: a solver for string constraints. In
ISSTA ’09: Proceedings of the eighteenth international
symposium on Software testing and analysis, pages
105–116, New York, NY, USA, 2009. ACM.

[13] M. Lallali, F. Zaidi, and A. Cavalli. Transforming bpel
into intermediate format language for web services
composition testing. In NWESP ’08: Proceedings of
the 2008 4th International Conference on Next
Generation Web Services Practices, pages 191–197,
Washington, DC, USA, 2008. IEEE Computer Society.

[14] Z. J. Li and W. Sun. Bpel-unit: Junit for bpel
processes. In Service-Oriented Computing, ICSOC,
pages 415–426, november 2006.

[15] Z. J. Li, H. F. Tan, H. H. Liu, J. ZHU, and N. M.
Mitsumori. Business-process-driven gray-box soa
testing. In IBM systems Journals, pages 457–472,
2008.

[16] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg.
Analyzing interacting bpel processes. In Lecture Notes
in Computer Science, pages 17–32, october 2006.

[17] R. Mateescu and S. Rampacek. Formal modeling and
discrete-time analysis of bpel web services. In Lecture
Notes in Business Information Processing, EOMAS
2008, volume 10, pages 179–193. Springer, June 2008.

[18] V. L. Narasimhan, P. T. Parthasarathy, and M. Das.
Evaluation of a suite of metrics for component based
software engineering (cbse). The Journal of Issues in

Informing Science and Information Technology (iisit),
6(5/6):731–740, 2009.

[19] J. M. Org, J. Mendling, and J. Ziemann.
Transformation of bpel processes to epcs. In In: Proc.
of the 4th GI Workshop on Event-Driven Process
Chains, 2005.

[20] S. Salva and H. Fouchal. Some Paramèters for Timed
System Testability. In ACS/IEEE International
Conference on Computer System and Applications,
AICCSA’01 (Beirut, Lebanon), June 2001.

[21] S. Salva and I. Rabhi. A preliminary study on bpel
process testability. In
http://sebastien.salva.free.fr/sr10.pdf.

[22] F. van Breugel and M. Koshika. Models and
verification of bpel. 2006.

[23] G. Xiwu and L. Zhengding. A formal model for
bpel4ws description of web service composition.
Wuhan University Journal of Natural Sciences, pages
1311–1319, 2006.

[24] B. B. Yves, Y. L. Traon, and G. Sunyé. Testability
analysis of a uml class diagram. In In Proceedings of
the Ninth International Software Metrics Symposium
(METRICS03, pages 54–66. IEEE Computer Society,
2002.

[25] Y. Zheng, J. Zhou, and P. Krause. An automatic test
case generation framework for web services. In Journal
of Software, pages 64–77, September 2007.

