
A BPEL observability enhancement method. ?

Sébastien Salva1 and Issam Rabhi2

1 LIMOS CNRS UMR 6158, Université d’Auvergne,
Campus des Cézeaux, Aubière, FRANCE

sebastien.salva@u-clermont1.fr
2 LIMOS CNRS UMR 6158, Université Blaise Pascal,

Campus des Cézeaux, Aubière, FRANCE
rissam@isima.fr

Abstract. WS-BPEL processes are usually overlapped in large business
applications composed of several Web Services. Such applications are
more and more developed with respect of quality processes. Testability
is an important quality degree, which evaluates the fault detection cover-
age during the testing process and the testing cost. In this paper, we focus
on a well-known testability criterion called observability, which evaluates
if enough distinguishable events can be observed while testing. We study
the observability of ABPEL (Abstract-BPEL) specifications and we de-
scribe some ABPEL observability degradation properties (ABPEL code
patterns which do not respect the observability definition). From these,
we propose an observability enhancement method which detects observ-
ability issues in ABPEL specifications and semi-automatically updates
the code.

Keywords: BPEL, testability, observability, enhancement method

1 Introduction

Internet is emerging as a Web Service based platform where more and more or-
ganizations are implementing and deploying Business processes for the five last
years. Web Services offer many advantages such as the resource virtualization
or the externalization of functional code in a standardized way. They also repre-
sent the foundation stones of larger Business processes. WS-BPEL (Web Services
Business Process Execution Language [3]) gathers these ”stones” by providing
an upper layer which orchestrates Web Services by describing the service coor-
dination logic: BPEL processes receive specific client application requests, call
some Web Services according to conditions and variables defined in the process,
and usually return a response.

Such processes require strict software life cycle and so entail the use of quality
processes and models, like the CMMI one (Capability Maturity Model Integra-
tion [20]). Among these quality processes, the testing activity takes a solid place

? Research supported in part by the French National Agency of Research within the
WebMov Project http://webmov.lri.fr

since it costs as much as 50 % of the total development effort. To reduce this
substantial cost, there is a significant trend in the study of methodologies for
testable software development. Analyzing testability, all along the development
life cycle, helps to achieve an application from which the testing stage is able
to detect the largest number of bugs, with the less efforts in regards to bug
detection and time.

This paper focuses on the ABPEL (Abstract BPEL) specification observ-
ability. This latter is a well-known testability criterion whose the purpose is to
evaluate if enough distinguishable events can be observed during the testing pro-
cess to give a significant verdict. When observability is degraded, testing methods
may only cover a part of the implementation and give a distorted verdict [6].
Among the BPEL modeling languages (ABPEL, UML, Petri nets, process alge-
bra, abstract state machines (ASM),etc. [2]), we base our choice on the ABPEL
(Abstract BPEL) formalism since it is widely used in software development com-
panies and with existing testing methods [1].

To the best of our knowledge, there are few works on ABPEL (or BPEL)
observability in literature. Observability definitions are typically given on in-
put/ouput models [8] whereas ABPEL is composed of structured and basic ac-
tivities which can be nested, and gathers specific features (fault handlers, cor-
relations, etc.). To link ABPEL specifications with observability, we analyze an
intermediate model, the STS (Symbolic Transition System [7]) and the transfor-
mation rules, allowing to translate ABPEL specifications into STSs. From known
STS observability issues, we begin to deduce the corresponding ABPEL observ-
ability degradation properties. Then, we propose an observability enhancement
method which parses ABPEL specifications, recognizes observability issues and
semi-automatically removes them by modifying the ABPEL code. The method
goal is not to preserve the standard semantics of the ABPEL specification, but
to achieve a more testable one, at the expense of other properties such as the
performance for instance.

The remainder of this paper is structured as follow: Section 2 provides an
overview on the BPEL language and on system testability. In Section 3, we
describe the BPELtoSTS transformation and several BPEL observability degra-
dation propositions. Section 4, presents the observability enhancement method.
Section 5 concludes and gives some perspectives on BPEL testability.

2 BPEL and testability Overview

2.1 BPEL

Business Process Execution Language for Web Services (BPEL or BPEL4WS [3])
defines and manages business processes based on interactions of Web Services,
called partners. BPEL describes the element declarations (exchanged messages,
partner roles, links, etc.) and the partner orchestration which includes the inter-
nal details (states, variables, requests, etc.). BPEL proposes basic activities, to
perform basic operations (invoke, receive, etc.), and structured activities (scope,

Fig. 1. The Loan approval BPEL process

flow, etc.) to set the activity structuring. Among its possibilities, it supports
fault handler activities whose the purpose is to manage fault messages or other
exceptions returned by external Web Services (the process can be compensated
or terminated, etc.). BPEL processes also handle Web Service WSDL descrip-
tions [4] which gather the required data to invoke a service, by defining the Web
Service interfaces, the accessible methods, called operations, and the operation
parameter/response types.

The BPEL code is written by mean of the XML language. For readability
reason, we only illustrate in Figure 1 a graphical specification of the loan approval
sample, which is derived of the BPEL code which can be found in the WS-BPEL
specification [3]. This graphical example conceals a more complex code, as shows
Figure 3, where is given the ABPEL code of the two first activities. In this
process, a customer sends a request for a loan, the request gets processed, and
the customer finds out whether the loan was approved. According to the loan
amount, different Web Service partners (”loan assessor”, ”loan approval1” and
”loan approval2”) are involved to check the client creditworthiness. The final
response is either ”accept” or ”refused”.

Many works have been proposed on BPEL and some of them tackle espe-
cially to its validation [14, 21, 15, 9, 23, 13]. The authors of [14] propose a BPEL
unit testing approach and introduce a tool prototype, named BPEL-Unit, which

extends JUnit. The process, modeling web service interactions, is translated to
JAVA collaboration classes and method calls, which are later tested by Junit. In
[21], a method is proposed to model web service compositions with CSP (process
algebra) by using a set of rules for translating compositions. Afterwards, other
methods are introduced for model checking, model verification and model simula-
tion by using FDR tool(Failures-Divergence Refinement). In [15], the authors use
BPEL specifications, translated into Petri nets (Using BPEL2oWFN), and test
the existence of a partner process, such that both can interact properly (interop-
erability test). In [9], the authors transform BPEL specifications to PROMELA
code, and then generate test cases by using the SPIN model-checking tool. In
[23], another test case generation framework for BPEL compositions is proposed.
BPEL specifications are modeled by WSA (Web Service Automata). SPIN and
NuSMV tools are used to generate test cases. In [13], the BPEL process is mod-
eled by BFG (BPEL Flow Graph). Test cases are generated by covering each
graph branch at least once. These ones are executed and traces are analyzed to
give a verdict. A test selection minimization algorithm is also proposed.

2.2 Testability

Testability gathers several criteria which evaluate the system capability to reveal
its faults, the accessibility of its components and its testing cost [8]. Designers
evaluate the system testability after each life cycle step, so they can distinguish
the testable system parts from the untestable ones. They can also assess the
testing cost. Testability can be used to model and to implement more testable
systems, by improving the fault detection and the fault coverage [11]. It can also
be evaluated to choose one specification (the most testable) among others.

Testability has been studied on different untimed models (automata, UML
models, logical circuits, relational models [8, 11, 22, 18]) and timed ones (timed
automata [19]). These methods evaluate testability criteria one by one by return-
ing for instance, a factor called degree (a number between 0 and 1), the number
of potential faults which can be detected, or the number of testability issues.
Many criteria have been studied, depending on the system, but observability is
commonly used. For input output systems, observability is defined in [8] by:

Definition 1. A system is observable if for each input given to the system, a
different output is observed.

In testing methods, an observable specification is often required since it helps
to determine the system internal state according to the observed outputs, during
the test execution. To the best of our knowledge, few works have been proposed
to improve testability by mean of specification transformation. In [10], some ”C”
and ”Java” code transformations are proposed to improve the test set generation
by manipulating input variables. In [17], Java applications are transformed into
partial oracles which help to improve the test data generation.

Fig. 2. An ABPEL process

<bpel:receive createInstance="yes" operation="request"
partnerLink="customer" portType="lns:loanServicePT"
variable="request">
<bpel:sources>

<bpel:source linkName="receive-to-assess">
<bpel:transitionCondition>

($request.amount > 10000)
</bpel:transitionCondition>

</bpel:source>
<bpel:source linkName="receive-to-approval">

<bpel:transitionCondition>
($request.amount < 10000)

</bpel:transitionCondition>
</bpel:source>

</bpel:sources>
</bpel:receive> <bpel:invoke inputVariable="request"
operation="check" outputVariable="risk"
partnerLink="assessor"portType="lns:riskAssessmentPT">

<bpel:targets>
<bpel:target linkName="receive-to-assess" />

</bpel:targets>
<bpel:sources>

<bpel:source linkName="assess-to-setMessage">
<bpel:transitionCondition>
($risk.level = ’low’$)

</bpel:transitionCondition>
</bpel:source>
<bpel:source linkName="assess-to-approval">

<bpel:transitionCondition>
($risk.level != ’low’$)

</bpel:transitionCondition>
</bpel:source>

</bpel:sources>
</bpel:invoke>

Fig. 3. A part of the ABPEL code

3 BPEL observability study

Defining ABPEL observability degradations is not an obvious task since on the
one hand we have an observability definition based on input/output events, and
on the other hand we have the ABPEL language which is a melting pot of notions
(partners, correlations, fault management, etc.), where structured and basic ac-
tivities are nested. For instance, the scope activity of Figure 2 is composed of
a fault handler which is dedicated to each sub-activity of the scope. Each sub-
activity may be also composed of other sub-activities and fault handlers, and so
on.

So, our methodology consists in considering and analyzing an intermediate
model, the STS (Symbolic Transition System [7]) and the transformation rules,
allowing to translate ABPEL specifications into STSs. Then, from known STS
observability issues, we search for the corresponding ABPEL observability degra-
dation properties, thanks to the BPELtoSTS rules. We base our choice on the
STS formalism because this one is widely used in testing methods [7, 1], and be-
cause STSs are state machine based models, where the observability issues are
already known. Some works [16, 1] also introduce BPELtoSTS transformation
methods.

Fig. 4. Testability in software life cycle

In the following, we describe briefly the BPELtoSTS transformation. This
one flattens each nested BPEL activity, spreads the fault handlers of one ac-
tivity into each of its sub-activities, and eliminates the irrelevant activities for
testability analysis (for instance, the ”empty” one). We obtain a model which
can be analyzed with relative ease. Then, we focus on the ABPEL observability
degradation and we introduce a non exhaustive list of propositions.

3.1 BPEL to STS transformation

A BPELtoSTS transformation has been proposed in [16]. This one is mainly
based on rules, whose the semantics are expressed with a process algebraic style.
Nevertheless, nested activities are not supported, so scope, faulthandlers or pro-
cess activities cannot be used. Consequently, we extend this work by redefining
or completing the transformation rules. Most of them are given in Figure 8.
Basically, when a rule is composed of several parts, the upper one expresses a
condition while the lower part describes the STS transformation. Below, we also
propose an associated transformation algorithm which handles them.

Formally, we define that a BPEL activity belongs to SA ∪BA, where SA is
the set of structured activities and BA the set of basics activities, relative to the
WS-BPEL specification:

– a structured activity sa = ((sa1,, san), FHsa, CHsa, THsa) ∈ SA is
composed of a list (sa1,, san) of activities in (SA ∪ BA)n, of a fault
handler set FH ∈ SA, of a compensation handler set CH ∈ SA and of a
termination handler set TH ∈ SA. Compensation and termination handlers
are directly called by a fault handler when a fault occurs and are used to
reset or to terminate the current process. FH, CH and TH may be empty,

– a basic activity ba = (ba1, FHba, CHba, THba) ∈ BA is composed of an
action ba1 (invoke, receive, ...), of a fault handler FH ∈ SA, a compensation
one CH ∈ SA and a termination one TH ∈ SA. FH, CH and TH may be
empty as well,

– a fault handler activity fh(catch(?f1, act1), ..., catch (?fn, actn),
catchall(act))→ e ∈ SA is a structured activity triggered by received WSDL
faults ?f1, ..., ?fn. e is the state reached by fh once terminated. We also
denote FH→ e a fault handler activity set where each activity fhi→ e ∈
FH→ e reaches e once terminated. Each fault is itself composed by a variable
list (faultName, faultElement, faultMessageType).

In summary, the BPELtoSTS transformation algorithm successively develops
each structured activity to a graph of sub-activities. We start with the initial
BPEL process activity which is developed to a first STS transition set. Then,
each activity, encountered on a transition, is developed and so on, until there is
no other activity to develop. To transform basic and structured activities into
STS transitions, the algorithm refers to the rule set, given in figure 8.

BPEL to STS transformation algorithm

1. We construct the initial STS composed of the transition

e1
P ((p1,...,pn),FHp→en+1,CHp,THp)−−−−−−−−−−−−−−−−−−−−−−−→ en+1 where P is the initial BPEL process.

FHp→ en+1 means that if a fault handler fh ∈ FHp→ en+1 is thrown,
once this one ends, the execution proceeds from the state en+1. We set
SA = P ((p1, ..., pn), FHp→ en+1, CHp, THp),

2. Let the transition e1
SA−−→ en+1 with SA = ((sa1, ..., san), FH→ en+1, CH,

TH). We develop SA and construct the corresponding STS transitions:
– if SA is a ”while” (or ”if”, ”pick”) activity, we translate SA to SA′ =

((sa′1, ..., sa
′
n), ∅, ∅, ∅) with one of the rules given in figure 8 composed of

the condition FH 6= ∅. With this rule, we spread the fault handler set of
the initial structured activity into each nested sub-activity. For instance,
the fault handler set of a scope activity is spread into sub activities such
as ”while”, ”if” or ”invoke”. Then, we use one of the rules of figure 8 to
translate SA′ into STS transitions (rule with the condition FH = ∅),

– if SA is a structured activity different from ”while” (or ”if”, ”pick”), for
each sai ∈ (sa1, ..., san):
• If sai ∈ BA, we use one of the rules given in figure 8,
• if sai ∈ SA, we construct the transition ei

sai−−→ ei+1 with sai =
((sai1, ..., saim), FHsai→ ei+1 ∪ FH→ en+1, CHsai ∪ CH, THsai ∪
TH). As previously, we spread the fault handler of the initial struc-
tured activity into each nested sub-activity. We denote the fault han-
dler FHsai→ ei+1 owing to the activity sai which ends at the state
ei+1. If a fault handler of sai, fh→ ei+1 ∈ FHsai→ ei+1 is caught,
once executed, the process must proceed from the state ei+1.

3. While it exists a undeveloped activity ei
SA−−→ ej , we use 2.

We applied the BPELtoSTS transformation on the specification example,
depicted in Figure 1. We obtain the STS of Figure 5, which preserves the initial
ABPEL specification semantic. For instance, the first ”reply” activity is trans-
lated into the first transition from the location A1. A ”fault handler” activity
begins at the location A10. The outgoing transitions labeled by ”?faultId” mod-
els a ”catch” activity.

Below, we provide some definitions and notation to be used throughout the
paper.

A Symbolic Transition System STS is a tuple < L, l0, V ar, var0, I, S,→>,
composed of symbols S = SI ∪ SO: inputs, beginning with ”?” are provided to
the system, while outputs, (beginning with ”!”) are observed from it. An STS
is composed of: a location set L with l0 the initial one, an internal variable
set V ar, initialized by var0 and of an interaction variable set I. Each transition
(li, lj , s, ϕ, %) ∈→ from the location li to lj , labeled by the symbol s, may update
variables with % and may have a guard ϕ on V ar∪ I, which must be satisfied to
fire the transition.

[7] defined the notion of stimulus (resp. reaction) which is a pair (s, η), where
s ∈ SI is an input symbol (resp. s ∈ SO is an output one) and η is a mapping of

Fig. 5. An STS modeling an ABPEL process

the interaction variables of s to ground terms. For a reaction (s, η), η is observable
in the message s. We consider that a reaction is observed from BPEL processes
either when a fault is thrown (with the ”throw” activity) or with the ”reply”
and ”invoke” activities when a partner operation is called with parameter values
(η).

We also denote out(l, η) the set of the first reactions reached from the loca-
tion l with the values η. out(l1, η) = {(!o1, η′1), ..., (!on, η

′
n) | ∀1 ≤ i ≤ n, ∃p =

(l1, l2, e1, ϕ1, %1)...(li, li+1, !oi, ϕi, %i) such as (e1, ..., ei−1) ∈ Si−1
I and (ϕ1(η)∧, ...,

∧ ϕi(%i−1, η
′
1)) true}.

3.2 ABPEL observability degradation

In the following, we assume that the partners, taking part to the BPEL orches-
tration, are observable. The BPELtoSTS transformation rules, that we consider
in the propositions, are those given in Figure 8.

Observability aims to evaluate the system internal state from its observed
outputs. According to the definition given in Section 2.2, the system observabil-
ity is degraded if different inputs are followed by the same outputs or by no
output. For an STS sts =< L, l0, V ar, var0, I, S,→>, this can be written with
two degradation properties which take into account stimuli and reactions. The
first property means that the observability is degraded if no reaction is observed.
The second one describes the case of different stimuli which produce the same
reaction set (proofs are trivial).

– Observability degradation 1: if it exists a stimulus (?e, η) such as (k, l, ?e,
ϕ, %) ∈→ and out(l, η) = ∅,

– Observability degradation 2: if it exists two stimuli (?ei, ηi) 6= (?ej , ηj)
with (li, l

′
i, ?ei, ϕi, %i) ∈→, ϕi(ηi) true and (lj , l

′
j , ?ej , ϕj , %j) ∈→, ϕj(ηj) true

such as out(l′i, ηi) = out(l′j , ηj).

From the first STS degradation property, we have deduced two correspond-
ing ABPEL degradations: ”the lack of a reply activity at the end of ABPEL
processes” and ”the use of conditions with if activities which cannot be always
satisfied”.

Proposition 1. An ABPEL specification not terminated by a ”reply” (one-way
”invoke”) activity is not observable.

Proof. Both ”reply” and one-way ”invoke” activities produce an STS transition
(lj , lj+1, !o, ϕj , %j). The following proof considers ”reply” activities only. The rea-
soning is the same with one-way ”invoke” ones.
1. Consider an ABPEL process bpel, composed only of internal actions (for in-
stance the ”assign” or ”empty” activities) and not terminated by a reply activity.
An ABPEL process always begins by a ”receive” activity (see [3]). The trans-
lation of bpel into STS (rule 2) produces one transition (l, l′, ?e, ϕ, %) labeled
by an input symbol (”receive” activity” followed by no transition labeled by an
output one). So, ∀η, out(l′, η) = ∅. bpel is not observable.

2. Now, consider an ABPEL process bpel, composed of partner interactions
(the usual case) and not terminated by a ”reply” activity. We have supposed
that the associated partners are observable. Consequently, they always produce
a response once called. An ”invoke” activity is translated by two STS transi-
tions, the first one labeled by an output symbol and the other one labeled by an
input symbol (rule 8). The last ”invoke” activity of bpel produces the STS tran-
sitions (li, li+1, !o, ϕ, %), (li+1, li+2, ?e, ϕi+1, %i+1). If this last ”invoke” activity is
not followed by a ”reply” one, there is no path from li+2 composed of output
symbols. Consequently, no reaction can be observed, ∀η, out(li+2, η) = ∅. bpel is
not observable.

Proposition 2. An ABPEL specification, composed of an ”invoke” (or ”re-
ceive”) activity followed by an ”if” one if((cond1, act1),..., (condn, actn)) which

cannot be always satisfied (∃η,
∨

1≤i≤n

condi(η) false), is not observable.

Proof. An ”invoke” activity is transformed by the STS transitions (l, l′, !o, ϕ, %),
(l′, l′′, ?e, ϕ′, %′) (rule 8). A ”receive” activity is transformed by the last transition
only. The ”if” activity gives the transitions (rule 5) ∀(1 ≤ i ≤ n) (l′′, li, τ, ϕi, ∅)
with ϕi = condi. Suppose that it exists η such as

∨
1≤i≤n

(ϕi(η)) false. No tran-

sition can be fired. The location l′′ is blocked and is said quiescent [7]. So, it
exists a stimulus (?e, η) such as out(l′′, η) = ∅. Consequently, both the STS and
the ABPEL specification are not observable.

The four following ABPEL testability degradation propositions result from
the second STS degradation property. With STSs, this degradation is raised if
it exists two transitions (li, li+1, ?ei, ϕi, %i), (lj , lj+1, ?ej , ϕj , %j) from which the
same reaction (!o, η) is observed. This case can be derived from ABPEL specifi-
cation having: ”two different catch activities followed by the same invocation”,
”a catchall activity, triggered by multiple faults, followed by the same invoca-
tion”, ”a pick activity with multiple onmessage branches followed by the same
invocation”, or having ”a block of internal activities bound by two ”receive”
activities”.

Proposition 3. An ABPEL specification composed of a couple of non identi-
cal ”catch” (”catchall”) activities (catchi, catchj), catchi 6= catchj, followed by
two ”invoke” activities using the same operation and parameter values, is not
observable.

Proof. In the WS-BPEL specification [3], two ”catch” activities are said identi-
cal if their received faults are identical too. Each ”catch” activity is triggered by
a received fault ?f = (faultName, faultElement, faultMessage Type). Two
different ”catch” activities (catchi, catchj) are translated by two STS transi-
tions (rule 9) (li, li+1, ?faulti, ∅, %i) and (lj , lj+1, ?faultj , ∅, %j), with ?faulti 6=
?faultj . If catchi and catchj are followed by the same operation call, using
the same parameter value η, the STS is composed of two transitions (rule 8)
(li+1, li+2, !o, ∅, %i+1), (lj+1, lj+2, !o, ∅, %j+1). Consequently, it exists two stimuli
(?faulti, ηi), (?faultj , ηj) such as out(li+1, ηi) = out(lj+1, ηj) = (!o, η). The STS
and the ABPEL specification are not observable.

Proposition 4. An ABPEL specification composed of a ”catchall” activity, trig-
gered by multiple faults and followed by an ”invoke” activity whose the operation
call is independent of the triggered fault, is not observable.

Proof. A ”catchall” activity catchall((?faulti, ?faultj), act) is a ”catch” one,
triggered by all the faults received in a fault handler, not already caught by
other ”catch” activities. Let ?faulti = (faultName = ni, faultElement = ei,

faultMessage = mi Type = ti) and ?faultj = (faultName = nj , fault−
Element = ej , faultMessage = mj Type = tj) be two different faults. This
activity is translated into the STS transitions (rule 9) (li, li+1, ?faulti, ∅, %i)
and (li, li+1, ?faultj , ∅, %j), with ?faulti 6=?faultj . If this ”catchall” activity is
followed by an ”invoke” one, we also have the transition (li+1, li+2, !o, ∅, %i+1)
(rule 8) with !o = (op, req, partner).

Let (?faulti, ηi), (?faultj , ηj) be two stimuli and η a ground term such as
ηi = %i(η) (ηj = %j(η) respectively). If op does not handle the fault, the variables
req are independent of the ones in {%i∧%j}. The mapping of req to ground terms
equals to η. Consequently, it exists two stimuli (?faulti, ηi), (?faultj , ηj) such as
out(li+1, ηi) = out(lj+1, ηj) = (!o, η). This corresponds to the second degradation
property. The STS and the ABPEL specification are not observable.

Proposition 5. An ABPEL specification composed of a ”pick” activity with
multiple ”onmessage” branches followed by ”invoke” activities using the same
operation and parameter values, is not observable.

Proof. A ”pick” activity with two ”onmessage” branches is translated by the
STS transitions (l, li, ?ei, ϕi, %i), (l, lj , ?ej , ϕj , %j), with ?ei 6=?ej . The invoke
activities give the two transitions (li, li+1, !o, ϕi+1, %i+1), (lj , lj+1, !o, ϕj+1, %j+1)
(rule 6). We obtain the same case as the one described in Proposition 3. Thus,
the STS and the ABPEL specification are not observable.

Proposition 6. An ABPEL specification, composed of a block of n ≥ 0 inter-
nal activities (no ”invoke”, ”reply”, ”throw” activities) bound by two ”receive”
activities, is not observable.

Proof. Such an activity block is transformed by STS paths such as (l1, l2, ?e1, ϕ1,
%1), (l2, l3, e2, ϕ2, %1),..., (ln−1, ln, en−1, ϕn−1, %n−1), (ln, ln+1, ?en, ϕn, %n) with
(e2, ..., en−1) /∈ Sn−2

O (no output message). If this activity block is not followed
by an ”invoke” (or ”reply”or ”throw”) one, ∀(ηk, ηl), such as (ϕ1(ηk)true) and
(ϕn(ηl)true), out(l2, ηk) = out(ln+1, ηl) = ∅. Otherwise, the activity block is
followed by an ”invoke” (or ”reply” or ”throw”) activity which produces an
STS transition (lj , lj+1, !o, ϕj , %j) such as ∃ηj , ϕj(ηj) true. ∀(ηk, ηl) out(l2, ηk) =
out(ln+1, ηl) = (!oj , ηj). The second STS degradation property is satisfied, hence
both the STS and the ABPEL specification are not observable.

4 BPEL observability enhancement

The previous observability degradation propositions are used here to provide
some enhancement algorithms and a corresponding tool. This latter parses an
ABPEL specification, detects observability degradations, according to the Propo-
sitions 1-6 and removes them. The tool architecture is given in Figure 6.

The ABPEL specification modification may require the update of some part-
ner WSDL descriptions or of some source code parts. This is why we denote this
enhancement method as semi-automatic. The different enhancement steps are
detailed below. In the following, we denote bpel, an ABPEL specification:

Fig. 6. An observability enhancement tool

– ”reply” activity addition: we check that each branch of bpel ends with a
”reply” (invoke-only) activity (Proposition 1). If one is missing, we complete
the specification with a ”reply” activity, modeling a response to the client
which has called the ABPEL process. The corresponding algorithm is given in
Algorithm 1. The response sent to the client is composed of the message ”final
message from branchi” which is supposed to be a unique output message,
not yet used in the specification (line 3). (the observability is not degraded
with the addition of this output message),

– ”if” condition addition: according to Proposition 2, an ”if” activity if((
cond1, act1),..., (condn, actn)), which cannot be always satisfied

(∃η
∨

1≤i≤n

condi(η) false), may degrade the specification observability. We

complete such an ”if” activity by adding an ”<else>” conditional branch
which represents the disjunction of all other conditions. This new branch
ends in a ”reply” activity to not degrade the observability, in regards to
Proposition 1 (an ABPEL process must end in a ”reply” activity). More
precisely, the algorithm, given in Algorithm 2, adds a branch which throws
a new fault ”FLT : badConditionk” (line 4). This fault is caught by a new
”catch” activity, added in the current ”scope” block (lines 5-6). This activity
is composed of a ”reply” one sending the fault ”FLT : badConditionk” to
the client side,

– ”invoke” activity distinction: Propositions 3-5 refer to the same STS
observability degradation: ”2 different stimuli are followed by the same re-
action”. This reaction is produced by two ”invoke” activities which call the
same operation op with the same parameter values. We propose to distin-
guish the two partner calls (to produce different reactions), by completing
op with a new variable, taking a different value according to the stimulus.
For instance, in Proposition 3, the same reaction is observed on account of
two ”invoke” activities using the same operation after two different ”catch”
activities catchi(?faulti, acti), catchj(?faultj , actj). Here, the two ”invoke”
activities can be distinguished by the fault name. In this case, we add a
variable fault to op equals to the fault name.

Propositions 4-5 are based on the same idea. We only give, in Algorithm
3, the methodology dedicated to Proposition 3. The other ones require only
minor modifications. In Algorithm 3, if two ”catch” activities catchi(?faulti,
acti), catchj(?faultj , actj) are followed by two ”invoke” activities using the
same operation (line 1), we compute, from the corresponding STS, the values
satisfying the execution of these invocation, with constraint solvers [12, 5]

(lines 4-5). If at least one value satisfies both ”invoke” activities (Proposition
3 verified) (line 6), we modify them by adding a new parameter equals to
?faulti (?faultj respectively) (lines 7-8). According to Proposition 3, ?faulti
and ?faultj are not identical, so we obtain different reactions when op is
called. This modification also requires to update the WSDL description and
the source code of the called partner. The constraint solvers construct values
satisfying the guards of a specification path. We use the solvers in [12, 5]
which work as external servers and manage most of the simple types, ”string”
included,

– Asynchronous call modification: asynchronous calls correspond to part-
ner invocations whose the response receipt is delayed and where there is no
need to wait before proceeding further. Two asynchronous calls are modeled
by two first invoke-only activities invokei(opi, reqi, ∅, partneri, corri) and
invokej(opj , reqj , ∅, partnerj , corrj), followed later by two ”receive” ones
rcvi(opi, respi, partneri, corri), rcvj(opj , respj , partnerj , corrj), linked by
the same correlation sets. When the two ”receive” activities are successive,
the observability is degraded (Proposition 6). We propose here to insert
invokej between the two ”receive” activities to obtain observable reactions
after rcvi (Proposition 6 no more satisfied). However, we cannot only move
the invokej activity in the APBEL code since this one depends on the
variables reqj which may be updated in the process. Algorithm 4 replaces
invokej by an ”assign” activity which copies the reqj variables into new
ones, denoted req2j (line 3). These variables are only used with the invokej
activity which is inserted before rcvj (line 4).

We applied this enhancement method on the ABPEL specification illustrated
in Figures 1,5. This one is composed of six observability issues: (1) no reaction is
observed from the location A2 with the stimulus (τ , amount = 1000). (2,3) both
the stimuli (?risk, risk = low) and (?approval2, app2 = yes) are followed by the
same reaction (!approval,app2 = yes). (4,5,6) The last observability issues are
detected at the location A10 (Invoke Assessor), where three input messages mod-
eling ”catch” activities are not followed by output ones and where two messages
”?faultid1” give the same observation. Once the enhancement method applied,
we obtain a new ABPEL specification and its corresponding STS, illustrated
in Figure 7. This one is much more observable since the observability degrada-
tion number is lowered to one. Indeed, three different ”reply” activities (from
locations A12, A13 and A14) have been added, two identical ”catch(?faultid1)”

Algorithm 1: ”reply” activity addition

input : ABPEL specification bpel
1 Compute sts =< L, l0, V ar, var0, I, S,→> from bpel;

2 if ∃li
e,ϕ,%−−−→ lf with e ∈ SI ∪ {τ} and lf a final location then

3 Add reply(resp, partner, op) in bpel with resp=”last message from branchi”,
partner=client, op= client operation used for calling the ABPEL process;

Fig. 7. The new STS specification

Algorithm 2: ”if” condition addition

input : ABPEL specification bpel
1 foreach ”invoke” activity I followed by an ”if” activity
ifk((conf1, act1), ..., (condn, actn)) do

2 Compute V such as ∀v ∈ V
∨

1≤i≤n

(condi(v)) false with constraint solvers ;

3 if V 6= ∅ then
4 Add ”<else> <throw faultName= ”FLT : badConditionk”/></else>”;
5 Add this ”catch” activity in the faulthandler of the ”scope” activity

containing ifk: ”<catch faultName= ”FLT : badConditionk”> REPLY
</catch>”;

6 where REPLY=reply(resp, partner, op) with partner=client, op= client
operation used for calling the ABPEL process,
resp=”FLT : badConditionk”;

Algorithm 3: ”catch” activity distinction

input : ABPEL specification bpel
1 if it exists catchi(?faulti, acti), catchj(?faultj , actj) in bpel followed by the

same operation call op with the parameter types (p1, ..., pm) then
2 Compute sts =< L, l0, V ar, var0, I, S,→>;

3 foreach paths pi = l0
e0,ϕ0,%0−−−−−→ l1,..., li

?faulti,ϕi,%i−−−−−−−−→ li+1
!op,∅,%i+1−−−−−−→ li+2 and

pj = l0
e′0,ϕ

′
0,%

′
0−−−−−→ l′1,..., l′j

?faultj ,ϕ
′
j ,%

′
j−−−−−−−−−→ l′j+1

!op,∅,%′j+1−−−−−−−→ l′j+2 do
4 Compute with solvers the value set V1 over (p1, ..., pm) such as ∀v ∈ V1,

(ϕ0(v) ∧ ϕ1(%0)∧,..., ∧ϕi(%i−1)), true;
5 Compute V2 from the path pj ;
6 if V1 ∩ V2 6= ∅ then
7 Add to the first invoke activity a string parameter ”fault” with the

value ”?faulti” ;
8 Add to the second one a string parameter ”fault” with the value

”?faultj” ;

Algorithm 4: Asynchronous call modification

input : ABPEL specification bpel
1 foreach successive receive activities rcvi(opi, respi, parti, corri),
rcvj(opj , respj , partj , corrj), with corri 6= corrj 6= ∅ do

2 Find the invokeonly activity invokej(opj , reqj , ∅, partj , corrj);
3 Replace invokej by an ”assign” activity copying reqj into req2j ;
4 Insert invokej(opj , req2j , ∅, partj , corrj) between rcvi and rcvj , ;

activities (location A10) have been distinguished with ”?faultid1”, ?faultid2, and
the ”if” condition has been completed (location A2 with amount = 1000).

5 Conclusion

This paper proposes an observability enhancement method of ABPEL spec-
ifications. From known STS observability issues, we have deduced some cor-
responding ABPEL observability degradation propositions. These ones can be
used to directly write more testable ABPEL specifications or to evaluate observ-
ability. From these propositions, we provide several observability enhancement
algorithms, which have been implemented in an academic tool. This one parses
the specification, detects observability degradation patterns and modifies the
ABPEL code semi-automatically.

We have chosen to improve observability by modifying the ABPEL specifi-
cation and sometimes the interface of the involved partners. Instead of changing
these interfaces, another solution would be to add a ”logger” service whose the
role would be to give new observable reactions. This solution is interesting with

the ”reply” activity addition algorithm but we still need to modify the part-
ner interfaces with the ”invoke” activity distinction one. Nevertheless, we will
explore the benefit of a ”logger” service in a future work.

The ABPEL observability degradation set, that we have presented, is not
exhaustive. For instance, there are many cases where two stimuli produce the
same reaction. Some of them can be identified to provide new enhancement
algorithms. Other cases are more difficult to classify. For instance, the issue
detected in the location A9 (Figure 5 ((?risk, risk = low) and (?approval2,
app2 = yes) give the same reaction (!approval,app2 = yes)), depends on different
activities and may require a strong modification of the specification behaviour.

Many other quality criteria could be also studied such as the controllability,
which evaluates whether an implementation can be controlled enough to obtain
test results, the execution time, which evaluates the testing cost according to the
minimal and maximal execution times, or the accessibility of BPEL parts.

This observability enhancement method does not guarantee to preserve the
standard semantics of an ABPEL specification but to achieve a more testable
one. So, in a future work, it would be interesting to discuss about the trade-off
between the observability improvement and the degradation of other properties,
such as the performance.

References

1. Bentakouk, L., Poizat, P., Zäıdi, F.: A formal framework for service orchestration
testing based on symbolic transition systems. 21th IFIP International Conference
on Testing of Communicating Systems 5826/2009, 16–32 (2009)

2. van Breugel, F., Koshika, M.: Models and verification of bpel (2006)
3. Consortium, O.: Ws-bpel v2.0 (April 2007), http://docs.oasis-

open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
4. Consortium, W.W.W.: Web services description language (wsdl) (2001)
5. Een, N., Sörensson, N.: Minisat (2003), http://minisat.se
6. Escobedo, J.P., Gaston, C., Gall, P., Cavalli, A.: Observability and controllability

issues in conformance testing of web service compositions. In: 21st IFIP WG 6.1
International Conference on Testing of Software and Communication Systems and
9th International FATES Workshop. pp. 217–222. Springer-Verlag (2009)

7. Frantzen, L., Tretmans, J., Willemse, T.: Test Generation Based on Symbolic Spec-
ifications. In: Grabowski, J., Nielsen, B. (eds.) Formal Approaches to Software
Testing – FATES 2004. pp. 1–15. No. 3395 in Lecture Notes in Computer Science,
Springer (2005), http://www.cs.ru.nl/ lf/publications/FTW05.pdf

8. Freedman, R.S.: Testability of software components. IEEE transactions on Software
Engineering 17(6) (june 1991)

9. Garćıa-fanjul, J., Tuya, J., Riva, C.D.L.: Generating test cases specifications for
bpel compositions of web services using spin. In: Workshop on WebServices Mod-
eling and Testing. pp. 83–94 (2006)

10. Harman, M., Baresel, A., Binkley, D., Hierons, R.M., Hu, L., Korel, B., McMinn,
P., Roper, M.: Testability transformation - program transformation to improve
testability. In: Formal Methods and Testing. Lecture Notes in Computer Science,
vol. 4949, pp. 320–344. Springer (2008)

11. Karoui, K., Dssouli, R., Cherkaoui, O.: Specification transformations and design
for testability. In: IEEE Globecom’96, Londre (Nov 1996)

12. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: Hampi: a solver
for string constraints. In: ISSTA ’09: Proceedings of the eighteenth international
symposium on Software testing and analysis. pp. 105–116. ACM, New York, NY,
USA (2009)

13. Li, Z.J., Tan, H.F., Liu, H.H., ZHU, J., Mitsumori, N.M.: Business-process-driven
gray-box soa testing. In: IBM systems Journals. pp. 457–472 (2008)

14. Li, Z.J., Sun, W.: Bpel-unit: Junit for bpel processes. In: Service-Oriented Com-
puting ICSOC. LNCS, vol. 4294, pp. 415–426. Springer-Verlag (november 2006)

15. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting bpel
processes. Lecture Notes in Computer Science, vol. 4102, pp. 17–32. Springer-
Verlag (october 2006)

16. Mateescu, R., Rampacek, S.: Formal modeling and discrete-time analysis of bpel
web services. In: Lecture Notes in Business Information Processing, EOMAS 2008.
vol. 10, pp. 179–193. Springer-Verlag (Jun 2008)

17. McMinn, P.: Co-testability transformation. In: Schlingloff, H., Vos, T.E.J., We-
gener, J. (eds.) Evolutionary Test Generation. No. 08351 in Dagstuhl Seminar Pro-
ceedings, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, Dagstuhl,
Germany (2009)

18. Narasimhan, V.L., Parthasarathy, P.T., Das, M.: Evaluation of a suite of metrics for
component based software engineering (cbse). The Journal of Issues in Informing
Science and Information Technology (iisit) 6(5/6), 731–740 (2009)

19. Salva, S., Fouchal, H.: Some parameters for timed system testability. Computer
Systems and Applications, ACS/IEEE International Conference on 0, 0335 (2001)

20. Software-Engineering-Institute: Capability maturity model integration (2010),
http://www.sei.cmu.edu/cmmi/

21. Xiwu, G., Zhengding, L.: A formal model for bpel4ws description of web service
composition. Wuhan University Journal of Natural Sciences pp. 1311–1319 (2006)

22. Yves, B.B., Traon, Y.L., Sunyé, G.: Testability analysis of a uml class diagram.
In: In Proceedings of the Ninth International Software Metrics Symposium (MET-
RICS03. pp. 54–66. IEEE Computer Society (2002)

23. Zheng, Y., Zhou, J., Krause, P.: An automatic test case generation framework for
web services. JSW 2(3), 64–77 (2007)

BPEL STS transformation rules

assign(var update) or empty ei
τ,∅,%−−−→ ei+1, % = var update

receive(op, resp, partner, corr, fhk∈FH

ei
?(op,resp,partner,corr),[ci==corr],%(resp)−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ei+1∧ei

fhk−−→en+1

FH,CH, TH)

reply(op, req, partner, corr, ei
!(op,req,partner,corr),∅,(ci:=corr)−−−−−−−−−−−−−−−−−−−−−−→ ei+1

FH,CH, TH)

throw(!f, FH,CH, TH) fhk∈FH

ei
!f,∅,∅−−−→ei1

fhk−−→eifk

if((cond1, act1), ..., 1≤l≤n∧FH=∅

ei
τ,[condl],∅−−−−−−−→eil

actl−−→ei+1l

(condn, actn), FH,CH, TH)

or switch 1≤l≤n∧FH 6=∅
if(((cond1,act′1),...,(condn,act

′
n)),∅,∅,∅) with act′

k
=

((act′
k1
,...,act′

km
),FHactk∪FH,CHactk∪CH,THactk∪TH)

pick((mess1, act1), ..., 1≤k≤n∧FH=∅

ei
?messk,∅,%(respk)−−−−−−−−−−−−→eik

actk−−−→ei+1k

(messn, actn), onalert(t, actn+1),
ei(reset timer(t))

τ,[t>=Time],∅−−−−−−−−−→ein+1

actn+1−−−−→ei+1n+1

FH,CH, TH) with messk = (
∧ei

τ,[t<TIME],∅−−−−−−−−−→ei

opk, respk, partnerk, corrk)
1≤k≤n+1∧FH 6=∅

pick(((m1,act
′
1),...,(mn,act

′
n),(onalert(t,actn+1′)),∅,∅,∅)

with act′
k
=((act′

k1
,...,act′

km
),FHactk∪FH,

CHactk∪CH,THactk∪TH)

while(cond, act, FH,CH, TH) FH=∅

ei
[cond]−−−−→ek

τ,[act],∅−−−−−→ei∧ei
τ,[¬cond],∅−−−−−−−→ei+1

1≤k≤n∧FH 6=∅
while(cond,(act′1,...,act

′
n),∅,∅,∅) with act′

k
=((act′

k1
,...,act′

km
),

FHactk∪FH,CHactk∪CH,THactk∪TH)

invoke(op, req, resp, partner, resp 6=null,fhk→em∈FH

ei
!(op,req,partner),∅,%=(ci:=corr)−−−−−−−−−−−−−−−−−−−−−→el∧

corr, FH,CH, TH)
el

?(op,resp,partner),[ci==corr],∅−−−−−−−−−−−−−−−−−−−−−→ei+1∧el
fhk−−→em

resp=null

ei
!(op,req,partner)−−−−−−−−−−−→ei+1

fh(catch1(?f1(n1, e1,m1), act1) ∀1 ≤ l ≤ n, ei
?fl,∅,%l−−−−−→ eil

actl−−→ eilf

, ..., catchn(?fn((nn, en,mn)), ei
?f [f 6=f1,...,f 6=fn],%n−−−−−−−−−−−−−−→ ein+1

act−−→ en+1f

actn), catchall(?f(nn+1, en+1, %l = (faultNamel = nl, faultEltl = el,
mn+1), act)) faultMessl = ml)

scope((act1, ..., actn), ∀1 ≤ l ≤ nel
actl−−→ el+1

FH,CH, TH) ∀1 ≤ k ≤ n, act′k = ((act′k1, ..., act
′
km),

or process FHactk→ ek+1 ∪ FH→ en+1,
or sequence CHactk ∪ CH, THactk ∪ TH)

Fig. 8. BPELtoSTS transformation rules

