
Automated Test Case Generation for Service
Composition from Event Logs

Sébastien Salva and Jarod Sue
LIMOS - UMR CNRS 6158

University Clermont Auvergne, France
email: sebastien.salva@uca.fr, jarod.sue@uca.fr

Abstract—Service compositions, e.g., Internet of Things (IoT)
compositions or RESTful service compositions are widely used
in the industry to enhance the interoperability and integration
of their systems and applications. Testing service compositions
is long and difficult activity as each service may be deployed
on different servers and often requires specialised testing tools.
In order to help developers in this activity, this paper proposes
an automated approach to generate test cases for experimenting
every service in isolation. These test cases can be later adapted or
used for regression testing. This approach is based upon 4 steps
that aim to: 1. extract traces from event logs, 2. gather similar
behaviours to reduce the final test case number and to extract
knowledge that will be used during the test case generation,
3. produce generic test cases given under the form of IOTS
(Input Output Transition Systems) that encode the use of mock
components and provide test verdicts, 4. generate test scripts
and mock components for every testable service. We report
experimental results obtained from 4 case studies and show that
our algorithms build effective test cases and scale well with the
event log size.

Index Terms—Service Composition; Test Case Generation; Mock
Generation; Event Log

I. INTRODUCTION

Events that occur in service compositions are now com-
monly recorded in log files. These files are more and more
analysed with tools allowing to continuously extract knowl-
edge helping IT personnel understand system behaviours or
performance. In this paper, we propose to use event logs to
automatically generate tests for service compositions. In this
scope, it is well admitted that the design and use of automatic
test generation approaches is quite interesting in the industry
since the testing of service compositions is usually performed
manually by writing test scripts. The design of automatic
approaches is also quite challenging as testing such systems
is known to be a hard and long process due to the problems
inherent in controlling or monitoring many concurrent com-
ponents interacting with one another simultaneously.

The literature offers several approaches that might be con-
sidered to generate test cases for a service composition under
test, which we denote SUT. Firstly, several Model based
Testing (MbT) approaches e.g., [1, 2, 3, 4, 5, 6], have been
proposed. Prior to test generation, a formal specification must
be written and verified. The main problem inherent in these
approaches is that such models are often not available or
not up-to-date. A combination of model learning followed by
test case generation might also be considered. Model learning

is a research field gathering algorithms specialised to the
construction of models by inference [7]. Once models are
retrieved, a classical MbT approach must be applied to produce
test cases. Test data along with concrete execution paths are re-
generated from models. Basically, this combination starts from
concrete events, such as event logs or observations obtained
by experimentations, generalises them with formal models and
re-generates concrete test cases. It results in a time consuming
process, which usually does not scale well. Finally, other
approaches, e.g., [8], propose a record and replay technique
of event sequences extracted from event logs. Unfortunately,
this technique does not work well for service compositions, as
SUT may include various possibly non deterministic services,
or not testable ones. Test cases must be adapted w.r.t. these
properties.

We present in this paper another test case generation
approach for service compositions from event logs, which
is devised with the previous attention points in mind. The
resulting test cases aim at experimenting every testable service
of SUT in isolation. Unlike the previous approaches, this
implies that our approach generates test scripts with verdicts
and mock components from event logs. Mocking objects or
components is a technique applied to improve the ability of
interaction with the component under test, which finally aims
to increase test coverage or to speed up performance. With
service compositions, our generated mock components aim
at simulating real services, and will be used to simplify the
dependencies that make testing difficult. Furthermore, mock
components should increase test efficiency by replacing slow-
to-access components.

Given an event log collected from SUT, our approach
performs four main steps. The first one converts an event log
into formatted event sequences called traces. The latter are
then gathered into clusters of similar traces, from which some
knowledge is extracted by means of an expert system. This
knowledge will be used to build test cases along with test
verdicts. Then, test cases modelled with IOTS (Input Output
Transition systems) are generated for every service. An IOTS
test case expresses both the behaviour of a tester and the
behaviours of mock components. Concrete test scripts and
mock components are eventually derived from IOTS test cases.

This paper also provides an empirical evaluation, which
investigates the effectiveness of our algorithms by assessing
the quality of the generated test cases, and the performance in



terms of execution times. The implementation of the approach
specialised for web service compositions is publicly available
in [9].

Paper organisation: Section II discusses related work.
Section III introduces our approach with an example used
throughout the paper, along with the related work. Section IV
provides some definitions, used by our algorithms, which are
detailed in Section V. The next section exposes our evaluation
performed on 4 service compositions. Section VII summarises
our contributions and draws some perspectives for future work.

II. RELATED WORK

A plethora of works have been proposed to generate test
cases without specification, by using random testing or model
learning. A few of them are specialised to communicating sys-
tems e.g., [10, 11, 12, 13, 14]. For instance, Arcuri proposed
algorithms to create test suites for Web service compositions
by considering the test case generation as a multi-objective
problem, whose objectives are related to metrics over source
code properties. EVOMaster [11] implements this algorithm to
generate robustness tests still for Web service compositions.
Unfortunately, this kind of white-box approach requires the
source code of the system to be accessible. We do not consider
this requirement in our approach. Instead of apply random
testing, the approach presented in [13] recovers, through active
model learning, a model MR of a reference implementation
R, which serves as input for a model based testing tool.
The obtained test cases are used for regression testing or
to check whether another implementation I conforms to MR.
Petrenko et al. improved this technique by relaxing some
requirements, e.g., the components may be unknown. [12].
The tests, produced while the recovery of the component
behaviours could be adapted to answer our problem. But this
approach is founded upon some assumptions that strongly limit
its adoption (the system should produce only a single message
at a time, it cannot be composed of concurrent components, all
of the components have to be testable). Zhang et al. proposed a
test case generation approach for Web applications from event
logs in [14]. The logs are initially covered to infer a Markov
chain whose states are labelled by URLs. A MbT technique is
then applied on this model. Specifically, test cases are built
by covering the branches of the Markov chain. Generally
speaking, we observed that model learning associated to MbT
tends to be time consuming, as logs or test results are lifted
to the level of models, and are then analysed to build again
concrete test cases. None of these approaches allows the
generation of mock components specialised for services.

III. OVERVIEW

We introduce, in this section, a motivating example along
with the presentation our algorithms at a high level. The
details of the test case generation are given in Section IV.
Our example, illustrated in Figure 1, is made up of 4 web
services providing approvals or rejects of loan requests. A
first service ”LoanApp” receives a loan request linked to a
given account. According to the amount requested, it calls a

second service ”AccMan” to get access to the bank account.
This service calls itself ”CheckRisk” to obtain the risk level
related to this account. If the amount is upper than 10000 euros
or if the risk is high, a third service ”AppMan” is requested
to let a human agent study the request and return a response.
Otherwise ”LoanApp” returns a positive response.

Fig. 1. Example of composition made up of 4 web services

A. Assumptions

The design of our algorithms is guided by the following
practical assumptions:
• A1 Event log: event logs are collected in a synchronous

environment made up of synchronous communications.
They include timestamps showing when the events oc-
curred. For simplicity, we consider having one event log;

• A2 Event content: services produce communication
events or non-communication events. The former include
parameter assignments allowing to identify the source and
the destination of each event. Besides, a communication
event can be identified either as a request or a response;

• A3 Service collaboration: work-flows of events are
correlated by means of parameter assignments. The pa-
rameter set is called correlation set;

• A4 Testable Service: we assume knowing the set of
services that can be experimented and monitored, which
is denoted PCO.

B. Approach overview

Fig. 2. Approach outline

Our approach is organised into four-steps, illustrated in
Figure 2. The examples used in the following description are
also referred in the figure. The user initially gives as input
an event log collected from SUT, and finally gets executable
test cases along with mock components to experiment every
testable service of SUT in isolation.

The first step converts an event log into a set Traces of
formatted event sequences, which intuitively correspond to
sequences of correlated events interchanged among different
services. Several tools or algorithms are available in the
literature to perform this task. We studied them and presented
a tool set in [15]. Consider the two traces of Figure 3 extracted



/askLoan(from:=Client , to:=LoanApp,method:=POST,body:=1000,acc:=99,id:=*)
/checkAccountRisk(from:=LoanApp,to:=AccMan,method:=GET,acc:=99,id:=*)
/ evaluateRisk (from:=AccMan,to:=CheckRisk,method:=GET,acc:=99,id:=*)
/ok(from:=CheckRisk,to:=AccMan,method:=GET,body:=HIGH,status:=200,id:=*)
/ok(from:=AccMan,to:=LoanApp,method:=GET,status:=200;id:=*)
/checkApp(from:=LoanApp,to:=AppMan,method:=GET,acc:=99,body:=1000,id:=*)
/ok(from:=AppMan,to:=LoanApp,method:=GET,status:=200,body:=ko,id:=*)
/ rejectLoan (from:=LoanApp,to:=AccMan,method:=GET,acc:=99,id:=*)
/ok(from:=AccMan,to:=LoanApp,method:=GET,status:=200,body:=Rejected,id:=*)
/ok(from:=LoanApp,to:=Client,method:=GET,status:=200,body:=Rejected,id :=*)

/askLoan(from:=Client , to:=LoanApp,method:=POST,body:=1000,acc:=99,id:=*)
/checkAccountRisk(from:=LoanApp, to:=AccMan,method:=GET,acc:=99,id:=*)
/ evaluateRisk (from:=AccMan,to:=CheckRisk,method:=GET,acc:=99,id:=*)
/ok(from:=CheckRisk,to:=AccMan,method:=GET,body:=LOWRISK,status:=200,id:=*)
/ok(from:=AccMan,to:=LoanApp,method:=GET,status:=200,id:=*)
/acceptLoan(from:=LoanApp,to:=AccMan,method:=GET,body:=1000,acc:=99,id:=*)
/ko(from:=AccMan,to:=LoanApp,method:=GET,status:=500,body:=ServerError,id:=*)
/ok(from:=LoanApp,to:=Client,method:=GET,status:=200,body:=ServerError , id :=*)

Fig. 3. Example of two traces collected from the composition of Figure 1

from the web service composition of Figure 1, made up
exclusively of testable services. The first trace t1 results from
the request of a small amount loan. We can observe that
AccMan is called and returns a high risk. AppMan is then
called to get a response from a bank agent. Here, the loan is
rejected. The parameter id used to correlate events is hidden
(assigned to ”*”) in order to start generalise the behaviours
found in traces. The second trace t2 follows the same scenario,
but a low risk is returned. While a request /acceptLoan is
performed to update the account, a server error occurs. An
error is returned to the client.

</askLoan(from:=Client,to:=LoanApp,method:=*,body:=*,acc:=*,id:=*){}>
</checkAccountRisk(from:=LoanApp,to:=AccMan,method:=*,acc:=*,id:=*),{}>
</evaluateRisk(from:=AccMan,to:=CheckRisk,method:=*,acc:=*,id:=*),{}>
</ok(from:=CheckRisk,to:=AccMan,method:=*,body:=*,status:=*,id:=),{}>
</ok(from:=AccMan, to:=LoanApp,method:=*,status:=*,id:=*),{}>
</acceptLoan(from:=LoanApp,to:=AccMan,method:=*,body:=*,acc:=*,id:=*),{}>
</ko(from:=AccMan,to:=LoanApp,method:=*,status:=*,body:=*,id:=*),{error}>
</ok(from:=LoanApp,to:=Client,method:=*,status :=*,body:=*,id :=*),{}>

Fig. 4. Example of abstract trace

Step 2 of our approach gathers the similar traces into
clusters. Two similar traces share the same sequence of events
and are performed by the same services. This step is performed
to avoid the generation of large test case sets, as many similar
traces, composed of the same event sequence accompanied by
different parameters, may be found in event logs. With our
previous example of two traces, we get two clusters cl(t1) and
cl(t2). The clusters are then analysed with an expert system to
extract some knowledge. At the moment, we try to extract
the fact that an event represents an error or a failure, the
fact that an event sequence represents a login process or a
token generation. This knowledge, shortened under the form
of labels, will be used for the generation of tests and of
test verdicts. These clusters and labels are assembled to form
abstract traces, which correspond to sequences of elements
< e(α), l >, with e(α) an event whose parameter values are
hidden and l a list of labels expressing some knowledge. With
our example, 2 abstract traces are built. Figure 4 gives the
abstract trace of the second trace of Figure 3. The seventh
event is recognised as an error.

<?/checkAccountRisk(from:=LoanApp,to:=AccMan,method:=*,acc:=*,id:=*),{}>
<!/evaluateRisk (from:=AccMan,to:=CheckRisk,method:=*,acc:=*,id:=*),{mock}>
<!/ok(from:=CheckRisk,to:=AccMan,method:=*,body:=*,status:=*,id:=) ,{mock}>
<!/ok(from:=AccMan,to:=LoanApp,method:=*,status:=*,id:=*),{}>
<?/acceptLoan(from:=LoanApp,to:=AccMan,method:=*,body:=*,acc:=*,id:=*),{}>
<!/ko(from:=AccMan,to:=LoanApp,method:=*,status:=*,body:=*,id:=*),{error}>

Fig. 5. Example of abstract trace for the service AccMan

From the set of abstract traces denoted ATraces, Step 3
builds test cases. A test case encodes interactions between a
tester and one service under test, along with the interactions
of this service with other dependee services. In our context of
isolation testing, the dependee services have to be replaced
with mock components. To generate test cases and mock
components, Step 3 starts by building the abstract trace set
ATraces(c) of every testable service c. In the meantime,
the algorithm decorates the events with the symbols ? and
! to express the notion of input and output. It also adds
the label ”mock” to the events produced by the dependee
services. These specific events will be used to generate mock
components. To avoid ambiguity, it is worth noting that an
input (resp. output) refers to the inputs (resp. outputs) of a
service under test, that is what it expects (returns). Figure 5
shows an abstract trace example for the service AccMan.

Step 3 then generate test cases, given under the form of
IOTS trees, for every testable component. The use of the IOTS
formalism allows to synthesize generic test cases from which
can be derived concrete test scripts. The resulting test cases
encode the interactions (inputs) that can be performed, all the
different behaviours that can be observed and the respective
test verdicts. These test cases are built w.r.t. the following
restrictions to ensure that they can be executed: at most one
input is doable at every state of a test case and any output
may be observed. Additionally, the next restriction aims at
limiting the number of output events that may performed by
mock components: at every state, one output event labelled by
”mock” is allowed only. The test verdicts are given by means
of the labels found within the abstract traces. Intuitively, the
test verdict is fail if the label ”error” is found with the last
output event. Otherwise, the verdict is pass. Figure 6 illustrates
an IOTS test case for the service AccMan, obtained from
Figure 5. A fail verdict is given as the event !ko corresponds to
an error. Besides, if no reaction is observed whereas an output
is expected, it returns fail. For readability, this corresponds to
the dotted transitions labelled with the symbol θ. If unexpected
outputs are received (dashed transitions labelled by ”!*”),
it returns the verdict inconclusive, meaning that we cannot
conclude. We cannot definitely conclude because the event
log may not include all the possible behaviours that can be
performed by a component.

Finally, Step 4 converts every IOTS test case into test
scripts. All the transitions labelled by ”mock” are put aside.
The remaining tree is converted into a test script. We exemplify
this step with the frameworks TESTNG 1 and Citrus 2, both

1https://testng.org
2https://citrusframework.org/



Fig. 6. IOTS Test Case for AccMan

based upon JUNIT. The later helps testers write test cases for
services upon varied message protocols, e.g., HTTP or TCP/IP.
The beginning of the test case related to the IOTS of Figure
6 is given in Figure 7. The service AccMan is called with
the request ”checkAccountRisk”. The test case then asserts
that a HTTP response is received with the status code 200.
A valid response includes only the session identifier. The test
ends by checking with verificationMock() whether the mock
components have been called the expected number of times.

On the other hand, the IOTS transitions labelled by ”mock”
are used to generate mock components, which are composed of
rules of the form ”request() . . . response()”. For every request
labelled by mock from a service c1 to c2, we search for the
next response from c2 to c1 and we build one rule. Figure 8
lists one rule of the mock ”CheckRisk”, which is written with
the framework Mockserver 3. These steps and algorithms are
now detailed in the following.

@Test @CitrusTest
2 public void testAccMan() throws FileNotFoundException{

HttpClient toClient = CitrusEndpoints
4 . http () . client () . requestUrl (” http :// AccMan/”).build() ;

$( http ()
6 . client ( toClient ) .send() . get (”checkAccountRisk”).message()

.header(” id ”,1) .body(”\”acc\”=99”).accept (MediaType.ALL VALUE));
8 $( receive ( toClient )

.message() . type(MessageType.PLAINTEXT).name(”Response”).extract(fromHeaders()
10 . header(HttpMessageHeaders.HTTP STATUS CODE, ”statusCode”))

.header(” id ”,” id”) ) ) ;
12 variable (”body”,” citrus :message(Response.body())”) ;

variable (” status ”, ”${statusCode}”) ;
14 String body = context . getVariable (”body”);

String status = context . getVariable (” status ”) ;
16 String id = context . getVariable (” id”) ;

If (body.equals (””) && id.equals(”1”) && status.equals (”200”)) assertTrue ( true ) ;
18 else Assumptions.assumeTrue(false ,” Inconclusive ”) ;

...
20 verificationMock () ; }

Fig. 7. Example of test script for the service AccMan

mockServer.when(
2 request () .withMethod(”GET”).withPath(”/EvaluateRisk”)

.withHeaders( new Header(”acc”, ”99”) ,new Header(”id”, ”1”))
4 ,Times. exactly (1) )

. respond(
6 response ()

.withHeaders(new Header(”id”, ”1”)) .withStatusCode(200)
8 .withBody(”LOWRISK”));

Fig. 8. Mock component piece of code, which implements the events
!/EvaluateRisk and !ok of the test case of Figure 6

3https://www.mock-server.com

IV. TEST CASE AND MOCK COMPONENT GENERATION

In our context of service composition, we consider that
events have the form e(α) with e some label and α an
assignment of parameters in P to a value in the set of values
V . These parameters allow the encoding of some specific
features for service compositions e.g., if an event is a request,
the receiver and sender of this request, etc. We write x := ∗
the assignment of the parameter x with an arbitrary element
of V , which is not of interest. E denotes the event set. The
concatenation of two event sequences σ1, σ2 is denoted σ1.σ2.
ε stands for the empty sequence. For sake of readability,
pre f ix(σ) denotes the set of initial segments of σ and we write
σ1 ∈ σ2 iff σ1 ∈ pre f ix(σ2). We also use additional notations
on events to make our algorithms more readable. In particular,
the notation deps(e(α)) returns the dependent service involved
in the exchange of the event e(α) with some dependee service:

Definition 1 Let e(α) be an event of E.
• f rom(e(α)) = c denotes the source component perform-

ing e(α);
• to(e(α)) = c denotes the destination;
• isreq(e(α)), isresp(e(α)) are boolean expressions ex-

pressing the nature of the event;

• deps(e(α)) =

 f rom(e(α)) iff isreq(e(α))
to(e(α)) iff isresp(e(α))
∗ otherwise

A test case is a deterministic IOTS having a tree form and
whose sink states are either pass, fail or inconclusive. IOTS

transitions are given under the form q
e(α),l−−−→ q′ with e(α) some

event and l a label set, which may be empty. Furthermore,
we use the notation θ labelled on transitions to represent the
absence of reaction from a service under test.

IOTS test cases should be constructed with a few restrictions
to avoid indeterministic behaviours while testing. To this end,
a test case should be deterministic and should allow at most
one input event at any state. In reference to [16], we formulate
this last restriction by saying that a test case is input restricted.
Additionally, still in the context of isolation testing and to keep
control of the testing process, a mock component should return
at most one response after being invoked with the same event.
As a consequence, test cases should also have states that offer
at most one output expressing a response. We say that a test
case is mock response restricted. This is formulated with:

Definition 2 A test case tc is a deterministic IOTS 〈Q,q0,Σ∪
{θ},L,→〉 where:
• Q is a finite set of states; q0 is the initial state; Q contains

three special states: pass, fail and inconclusive
• Σ is the finite set of events. ΣI ⊆ Σ is the finite set of

input events beginning with ”?”, ΣO ⊆ Σ is the finite set
of output events beginning with ”!”, with ΣO∩ΣI = /0

• L is a set of labels
• →⊆ Q×Σ∪{θ}×L∗×Q is a finite set of transitions. A

transition (q,e(α), l,q′) is also denoted q
e(α),l−−−→ q′



• tc has no cycles
• tc is input restricted i.e. ∀q ∈ Q : event(q) = ΣO ∪
{e(α)} for some e(α) ∈ ΣI or event(q) = ΣO ∪{θ} with

event(q) = {e(α) | ∃q′ ∈ Q : q
e(α),l−−−→ q′}

• tc is mock response restricted i.e. ∀q ∈ Q : |{q e(α),l−−−→ q′ |
isResp(e(α))∧mock ∈ l}| ≤ 1.

V. TEST CASE GENERATION

A. Step 1: Trace Extraction

We do not focus on this step in this paper and refer to
[15] instead. In short, the tool proposed in the paper returns
the set Traces along with a correlation set Corr(σ) for every
trace σ∈ Traces. All the assignments p := v found in σ whose
parameters are also used in Corr(σ) are replaced by p := ∗.

B. Step 2: Trace Clustering

This step takes as input the set Traces and builds a set of
abstract traces of the form < e1(α1), l1 > · · · < ek(αk), lk >
such that the parameter values are replaced by ”*” except
for the parameters from, to. l1, . . . , lk are label sets expressing
some business knowledge about the events.

Definition 3 (Abstract Traces) Let L be a set of labels. An
abstract trace is a sequence < e1(α1), l1 > · · ·< ek(αk), lk >∈
(E×L∗)∗ such that ei(αi)1≤i≤k ∈ E, and every parameter in
P\{ f rom, to} is assigned to ”*” and li ⊆ L(1≤ i≤ k).

Abstract traces ar extracted by partitioning the set Traces
into equivalent classes. Two traces are said equivalent when
they share the same sequence of abstract events. Given an
event e(α), an abstract event e(α′) simply results from the
replacement of the parameter values by ”*” excluding the
parameters from and to. The equivalence relation between two
traces is defined by means of a projection, which performs this
event abstraction:

Definition 4 Two event sequences σ1, σ2 ∈ E∗, are equiva-
lent, denoted σ1 ∼b σ2 iff pro j{ f rom,to}σ1 = pro j{ f rom,to}σ2
with: pro jQ : E∗ → E∗ is the projection e1(α

′
1) . . .ek(α

′
k) =

pro jQ(e1(α1) . . .ek(αk)) and α′i = {x := ∗ | x := v ∈ αi ∧ x /∈
Q}∪{x := v | x := v ∈ αi∧ x ∈ Q}

The equivalent classes {cl1, . . . ,cln} are derived with ∼b.
Given a class cl = {σ1, . . . ,σm}, our algorithm analyses the
events and parameter values to extract knowledge by means of
an expert system. Generally speaking, the latter is an inference
engine that applies a set of rules to infer new facts. In our
context, we devised rules to encode expert knowledge about
service compositions and to build abstract traces. It is worth
noting that an expert system offers the benefit to save time by
allowing its reuse on several service compositions.

We represent inference rules with this format: When condi-
tions on facts Then actions on facts. To ensure that this step
is performed in a deterministic way, the inference rules have
to be Modus Ponens (simple implications that lead to sound
facts if the original facts are true).

rule "LabelCrash 1"
when
$ev: Event(paramStatus>=500);
then
insert(new Aevent($ev, L("error"));
end

Fig. 9. Inference rule example
We devised inference some rules that analyse event content

or event sequences to recognise errors (bas status, crashes,
etc.). Figure 9 exemplifies a rule for recognising a server
crash by means of the HTTP status. It creates an abstract
event decorated with a new label ”error”. We also observed
in many component systems, that the proper functioning of
a component may initially require a login process or the
generation of Access tokens. These initial behaviours are
recognised with further rules, which create abstract events
composed of the labels ”login” or ”token”. We denote ID ⊂
L = {”login”,”token”}.

Once the equivalent class cl = {σ1, . . . ,σm} has been anal-
ysed by the expert system, we obtain one abstract trace of
the form < e1(α

′
1), l1 > · · · < ek(α

′
k), lk >. From n equivalent

classes of traces cl1, . . . ,cln, we obtain a set of n abstract traces,
which is denoted ATraces. Figure 4 illustrates an example of
abstract trace including a label ”error” added by means of the
previous inference rule.

C. Step 3: IOTS Test Case Generation

Algorithm 1: Component Atrace set gen.
input : ATraces
output: ATraces(c1), . . . ,ATraces(cn)

1 foreach t =< e1(α1), l1 > · · ·< ek(αk), lk >∈ ATraces do
2 tinit :=< e′1(α

′
1), l

′
1 > · · ·< e′m(α

′
m), l

′
m >∈ t such that li ∩ ID 6= /0 ;

3 Foreach c ∈ PCO, t(c) := tinit; cl(t(c)) := cl(t);
4 for 1≤ i≤ k do
5 if isreq(ei(αi))∧ (to(ei(αi) ∈ PCO) then
6 t(to(ei(αi)) := t(to(ei(αi)). <?ei(αi), li >;

7 if deps(ei(αi) ∈ PCO then
8 t(deps(ei(αi)) := t(deps(ei(αi)). <!ei(αi), li ∪{mock}>;

9 if isresp(ei(αi))∧ ( f rom(ei(αi) ∈ PCO) then
10 t( f rom(ei(αi)) := t( f rom(ei(αi)). <!ei(αi), li >;

11 foreach t(c) 6= tinit do
12 Update cl(t(c)) w.r.t. t(c);
13 if ∃t ′(c) ∈ ATraces(c) : t ′(c) = t(c) then
14 cl(t ′(c)) := cl(t ′(c))∪ cl(t(c));

15 else
16 ATraces(c) := ATraces(c)∪{t(c)};

The IOTS test case generation is implemented by Algo-
rithms 1 and 2. Algorithm 1 takes as input a set of abstract
traces ATraces and returns a set of ATraces(c) for every
service c ∈ PCO found in the events. To build these new
sets, Algorithm 1 covers every abstract trace t ∈ ATraces (line
1). As stated previously, the proper functioning of a service
may initially require a login process or a token generation.
Our algorithm firstly covers the abstract trace t to extract a
subsequence tinit encoding this initial behaviour. The later is
recognised with events associated with some labels in ID (line
2). The new abstract traces generated from t will all begin with
tinit, which may be empty. Then, Algorithm 1 builds a new
abstract trace t(c) for every service c found in t. Besides,



it inserts the notion of input and output: if the event is a
request to a testable service c ∈ PCO it decorates the event
with ”?” (line 5); if the event is a response from a testable
service (line 9 ), or an event for or from a dependee service,
it decorates the event with ”!”. For this last case, the label
”mock” is also added to events. This label will be used later
to generate mock components. Indirectly, this algorithm filters
out the other events, i.e.. the non communicating events or the
events performed by non testable services.

Finally, the algorithm updates the traces of the cluster
cl(t(c)) by deleting the events that belonged to the initial
abstract trace t but are no more available in t(c). t(c) is added
to the set ATraces(c). If t(c) was already in ATraces(c), only
the cluster cl(t(c)) is updated.

Algorithm 2: IOTS Test Case Generation
input : ATraces(c)
output: TC(c)

1 AT = ATraces(c);
2 while AT 6= /0 do
3 Take t =< e1(α1), l1 > · · ·< ek(αk), lk >∈ AT ;
4 Choose arbitrary σ ∈ cl(t) ;
5 tc := lts(t,σ,v(t));
6 Corr(tc) :=Corr(σ)
7 foreach σ2 ∈ cl(t2) : t2 ∈ ATraces(c)∧ pre f ix(σ)∩ pre f ix(σ2) 6= /0 do
8 tc2 := iots(σ2,v(t2));
9 tc2 := tc ‖ tc2;

10 if tc2 is input and mock response restricted then
11 tc := tc2; AT := AT \{t2};

12 tc := compl(tc); TC(c) := TC∪{tc}; AT := AT \{t};

Algorithm 2 now takes as input a set Atraces(c) and
produces an IOTS test case set TC(c). Given an abstract
trace t ∈ Atraces(c), the algorithm selects some trace σ of
the cluster cl(t) and builds an initial test case tc composed of
parameter values (lines 2-6). The IOTS tc is derived by means
of the operator iots : (E× L∗)∗×E∗×{ f ail, pass} → IOT S,
which returns an IOTS 〈Q,q0,Σ,→〉 defined by the rule <

e1(α
′
1), l1 > · · ·< ek(α

′
k), lk >,e1(α1) . . .ek(αk),v ` q0

e1(α1),l1−−−−−→
q1 . . .qk−1

ek(αk),lk−−−−−→ v. A verdict v of tc is established by
means of the labels found in the last event < ek(α

′
k), lk >.

This test verdict denoted v(< e1(α1), l1 > · · ·< ek(αk), lk > is
fail iff ”error” ∈ lk, otherwise the verdict is pass. Thereafter,
Algorithm 2 covers each abstract traces t2 ∈ Atraces(c) and
each trace σ2 ∈ cl(t2) that shares some prefix with the initial
trace σ (lines 7-12). Intuitively, the trace σ2 starts with a same
event sequence than the test case tc but may end with other
events, which encode other behaviours. In this case, tc must
be completed to include those behaviours that may happen
while testing. Algorithm 2 generates the IOTS tc2 from σ2
and performs a parallel synchronisation between tc and tc2. If
the resulting test case is input restricted and mock response
restricted, it meets the restrictions formulated in Definition 2.
In this case, this new test case is assigned to tc. Additionally,
as event logs do not necessarily encode all the behaviours of
SUT, the test case tc is completed (line 13) with the operator
compl : IOT S→ IOT S defined by these rules:

r1 :q1
?e(α),l−−−−→ q2,q2 ∈ {pass, f ail} ` q1

?e(α),l−−−−→ q11
θ−→ q2,q11

!∗−→ inconclusive,

q1
!∗−→ inconclusive

r2 :q1
?e(α),l−−−−→ q2 /∈ {pass, f ail} ` q1

?e(α),l−−−−→ q2,q1
!∗−→ inconclusive

r3 :q1
!e(α),l−−−−→ q2 ` q1

!e(α),l−−−−→ q2,q1
!∗−→ inconclusive

r4 :q1
!e(α),l−−−−→ q2,q1

?e(α),l−−−−→ q3 /∈→` q1
θ−→ f ail

The inference rule r1 means that when the test case tc
is finished by an input event, a transition to a verdict state
and labelled with θ is added to formulate that the absence of
event is expected. Two transitions to inconclusive are added
to express that we cannot conclude whether the behaviour is
correct when we observe any other unexpected output event
(label !*). r2 targets the remaining transitions labelled by
input events and similarly adds transitions to inconclusive. r3
completes the test case with a new transition to express the fact
that any unexpected output leads to the inconclusive verdict. r4
completes the previous rule in the case there are only outgoing
transitions labelled by output events from q1. The rule adds
a transition to fail modelling that the absence of reaction is
faulty. These rules were applied to add the transitions to fail
and inconclusive in the test case of Figure 6.

D. Step 4: Generation of Concrete Test Cases

Finally, executable test scripts are generated from IOTS
test cases. Different kinds of languages and frameworks may
be chosen. With regard to our evaluation, we have chosen
to generate test cases using the frameworks TestNG, Citrus
and Mockserver. Given an IOTS test case t ∈ TC(c), some
parameters may still be assigned to ”*”. These ones refer
to parameters used to identify sessions. We update these
assignments with concrete values available in the correlation
set Corr(t). In case it still remains unassigned parameters,
those are assigned with random values. In order to generate a
test script from t, the transitions of t labelled by ”mock” are
initially pruned. The resulting IOTS tree is converted into a
TESTNG test case. In short, every input event is converted into
code that calls the service under test c and waits for a response.
An example is given in Figure 7 (lines 1-20). The related
transitions labelled by an output are used to build assertions.
When there are several transitions expressing several correct
responses, we use the word ”AnyOf” to write an assertion that
accepts several conditions. The test script ends with the call of
the method ”verificationMock”, which aims to check whether
mock components behave as expected while the test execution.
At the moment, we check whether the number of calls to a
mocked request matches with the number of time the request
is found in t.

It remains to generate mock components. The previous
IOTS transitions labelled by ”mock” are used to derive rules
of the form request()...response(). More precisely, for each
request to a service c2 and its related response, a rule, which
mimics the behaviour of c2, is constructed. Figure 8 shows
an example of rule written with the language provided by the
framework MockServer. Then, the method ”verificationMock”
is written according to these rules.



Comp. Event log
size

# Test Cases # Mutants Mut.
score

Mut.
score 2

C1 6440 61 146 0.96 0.96
C2 1073 88 84 0.26 0.78
C3 292 67 101 0.33 0.65
C4 354 134 48 0.46 0.92

TABLE I
QUALITY EVALUATION OF THE TEST SUITES

VI. PRELIMINARY EVALUATION

We implemented our approach for web service compositions
and internet of things communicating over the HTTP protocol.
With this implementation, we evaluated these questions:
• RQ1: what is the quality of the generated test suites ?
• RQ2: how long does our approach take to generate test

suites? How our tool scales with the log size ?
The study was conducted on 4 web service compositions,

denoted C1 to C4, made up of 4 to 6 components. We
chose to consider different compositions in terms of code
quality. We wrote C1 by refactoring and putting care into the
code quality (no useless or duplicated code, strict parameter
validation, use of design patterns). C2 to C4 were written by
students and include useless getters, have improper error man-
agements. From each composition, event logs were collected
from scenarios performed by hands and completed by means
of the penetration testing tool ZAP 4. We obtained event logs
composed of 292 to 6440 events to also consider the impact
of the event log size. The source code in Java along with event
logs are available in [9].

A. RQ1: what is the quality of the generated test suites ?

To investigate RQ1, we firstly generated the test suites of
every service C1 to C4. The test suite quality is evaluated
with mutation testing. This software testing technique firstly
performs small changes to the source code, which are called
mutants. The later are then experimented with test cases. The
mutants that are detected by test cases are said killed. The
quality is measured by calculating the mutation score, obtained
by dividing the number of killed mutants by the total number
of mutants generated. A high mutation score indicates high test
quality. We generated mutants from every web service with
the tool PITest 5 completed by our own mutations specialised
to Web services (Deletion of Authentication Token, Header
removal, HTTP Verb change). Then, we experimented these
mutants with the generated test cases to calculate mutation
scores. The results are given in Table I, which provides the
number of generated test cases, the number of mutants and
the mutation score for C1 to C4. We obtain a high mutation
score for C1 but passable results for C2 to C4. For these
compositions, we observed that some mutants cannot be killed,
i.e. they cannot be detected by our tests. The later are indeed
built over communicating events found in event logs only.
In other terms, every service is considered as a black box
and test cases are not suited to detect local variable changes
in the source code. But many useless local variables and
prints in output console are used in C2 to C4. Besides, we

4https://www.zaproxy.org/
5https://pitest.org/

observed that the removal of the verb ”GET” produces non-
killable mutants because when there is no verb in the service
source code, then ”GET” is used by default. This is why
we chose to calculate a second score based upon the killable
mutants only. These scores are now between 65 to 96%. We
then analysed the killable mutants that are not detected by
test cases. We observed that some mutations changed some
parameter values. But these values are not used in test cases,
hence the mutants were not killed. This problem comes from to
the incompleteness of the event logs. Usually, event logs do not
include all the possible behaviours (all the scenarios allowed
in the real compositions). As a consequence, the generated
test suite is not exhaustive and cannot detect all the possible
mutants and faults. The more complete the event log is, the
more exhaustive the test suite will be. This is especially the
case for C3, whose event log includes only 292 events.This
point tends to suggest that a supplementary criterion seems
required to assess whether the event log is complete enough
before starting test case generation.

B. RQ2:how long does our approach take to generate test
suites? How our tool scales with the log size ?

R² = 0,9948

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

1400

1600

#t
es

t c
as

es
 g

en
er

at
ed

#Traces

Ti
m

e 
ta

ke
n 

(m
s)

Time taken ms #Test cases Created

Fig. 10. Execution times vs. trace number

R² = 0,9926

0
50
100
150
200
250
300
350
400
450
500

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

#T
es

t C
as

es
 c

re
at

ed

# Abstract Traces

Ti
m

e 
ta

ke
n 

(m
s)

Time Taken (ms) #Test Cases created

Fig. 11. Execution times vs. abstract trace number

The performance of our algorithms mainly depends on two
factors, the size of the event logs (steps 1 and 2) and the
number of abstract traces (steps 3 and 4). For the former factor,
we took back the log of C1 composed of 6440 events, we
extracted 650 traces and split them into sets of 50 to 650
traces. Then, we executed our tool to get execution times,
which are given in Figure 10 in milliseconds. The test case
generation took less than 2 seconds with the largest set. Figure
10 shows that the execution time curve increases linearly with
respect to the trace set size. To avoid any bias, Figure 10
also illustrates the curve of the generated test cases (mocks
included), which follows the same trend. The study of the



second factor was conducted by feeding our algorithms with
sets of 50 to 550 abstract traces by 50 increments. These sets
were constructed from 50 initial traces made up of ten events
at most, whose parameter were modified. Figure 11 depicts
execution times along with the number of generated test cases.
Again, we observe that the time complexity is linear.

All these results tend to suggest that our tool can take large
event logs and produce effective test cases in reasonable time.

C. Threats to validity

We have identified 5 possible threats to the validity of this
study. We identified 3 internal threats and 2 external threats.
The first three ones are related to the event log sizes, the fault
injection and the expert knowledge rules. The larger the event
log, the more complete the test case set will be. For this study,
we generated small to large event logs by manually executing
the service compositions and by applying ZAP. To compute
mutation scores, mutants are generated with PITest. This tool
builds a lot of mutants, but unfortunately the tool is nor
specialised for web services. To reduce this bias, we manually
checked the mutants and applied some additional mutations.
Test cases are built with labels inferred in Step 2 by means
of inference rules. We assume that the rules are sufficient to
infer all the correct labels for this evaluation. But more rules
are required to generalise the approach. The external validity
of our results is firstly threaten by the chosen case studies.
Even though we considered very different web services and
codes, it remains difficult to claim that our approach can be
generalised. We need to apply our approach to further service
compositions, made up of large service sets. One main issue
that may happen here is the explosion of test cases and of
mock components.The generalisation of our approach is also
restricted by the requirements A1-A4. We need to investigate
how these requirements could be relaxed in future work.

VII. CONCLUSION

We proposed in this paper an automated test case generation
for service compositions, from event logs. The originality of
the approach resides in the fact that test cases along with
mock components are generated for every testable service
to test them in isolation. Besides, our approach extracts
knowledge by means of an expert system to recognise some
specific behaviours considered while the test case construction.
We performed a preliminary evaluation and showed that the
generated test cases are effective when event logs contain
sufficient events, and that our algorithms scale well. As future
work, we plan to extend these algorithms with specialised test
case mutation operators to expand the initial test case set. In
particular, we will propose specific operators for simulating
some specialised security failures and for improving fault
localisation.

REFERENCES

[1] A. Ulrich and H. König, Architectures for Testing Dis-
tributed Systems. Boston, MA: Springer US, 1999, pp.
93–108.

[2] D. Cao, P. Felix, R. Castanet, and I. Berrada, “Testing
Service Composition Using TGSE tool,” in IEEE 3rd
International Workshop on Web Services Testing (WS-
Testing 2009), I. C. S. Press, Ed. Los Angeles, United
States: IEEE Computer Society Press, Jul. 2009.

[3] C. Torens and L. Ebrecht, “Remotetest: A framework
for testing distributed systems,” in 5th International
Conference on Software Engineering Advances, 2010, pp.
441–446.

[4] B. Kanso, M. Aiguier, F. Boulanger, and A. Touil,
“Testing of Abstract Components,” in ICTAC 2010 -
International Conference on Theoretical Aspect of Com-
puting., Brazil, Sep. 2010, pp. 184–198.

[5] M. H. E. Aouadi, K. Toumi, and A. R. Cavalli, “An active
testing tool for security testing of distributed systems,” in
10th International Conference on Availability, Reliability
and Security, ARES 2015, Toulouse, France, August 24-
27, 2015. IEEE Computer Society, 2015, pp. 735–740.

[6] R. Hierons, “Testing a distributed system: generating
minimal synchronised test sequences that detect output-
shifting faults,” Information and Software Technology,
vol. 43, no. 9, pp. 551–560, 2001.

[7] S. Ali, H. Sun, and Y. Zhao, “Model learning: A survey
on foundation, tools and applications,” 2018.

[8] A. Paiva, A. Restivo, and S. Almeida, “Test case gen-
eration based on mutations over user execution traces,”
Software Quality Journal, vol. 28, 09 2020.

[9] J. Sue and S. Salva, “Test case an mock generation tool,”
2023. [Online]. Available: https://github.com/JarodSue/
AutomatedTestGeneration

[10] B. K. Ozkan, R. Majumdar, and S. Oraee, “Trace aware
random testing for distributed systems,” Proc. ACM Pro-
gram. Lang., vol. 3, no. OOPSLA, oct 2019.

[11] A. Arcuri, “Restful api automated test case generation
with evomaster,” ACM Trans. Softw. Eng. Methodol.,
vol. 28, no. 1, jan 2019.

[12] A. Petrenko and F. Avellaneda, “Learning communi-
cating state machines,” in Tests and Proofs. Berlin,
Heidelberg: Springer-Verlag, 2019, p. 112–128.

[13] F. Aarts, H. Kuppens, J. Tretmans, F. W. Vaandrager, and
S. Verwer, “Improving active mealy machine learning for
protocol conformance testing,” Mach. Learn., vol. 96, no.
1-2, pp. 189–224, 2014.

[14] X. Tian, H. Li, and F. Liu, “Web service reliability test
method based on log analysis,” in 2017 IEEE Interna-
tional Conference on Software Quality, Reliability and
Security Companion (QRS-C), 2017, pp. 195–199.

[15] S. Salva, L. Provot, and J. Sue, “Conversation extraction
from event logs,” in 13th International Joint Conference
on Knowledge Discovery, Knowledge Engineering and
Knowledge Management, IC3K 2021. SCITEPRESS,
2021, pp. 155–163.

[16] J. Tretmans, Model Based Testing with Labelled Tran-
sition Systems. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 1–38.


