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Abstract—The Android intent messaging is a mechanism
that ties components together to build Mobile applications.
Intents are kinds of messages composed of actions and data,
sent by a component to another component to perform sev-
eral operations, e.g., launching a user interface. The intent
mechanism eases the writing of Mobile applications, but it
might also be used as an entry point for security attacks. The
latter can be easily sent with intents to components, that can
indirectly forward attacks to other components and so on. In
this context, this paper proposes a Model-based security testing
approach to attempt to detect data vulnerabilities in Android
applications. In other words, this approach generates test
cases to check whether components are vulnerable to attacks,
sent through intents, that expose personal data. Our method
takes Android applications and intent-based vulnerabilities
formally expressed with models called vulnerability patterns.
Then, and this is the originality of our approach, partial
specifications are automatically generated from configuration
files and component codes. Test cases are then automatically
generated from vulnerability patterns and the previous specifi-
cations. A tool, called APSET, is presented and evaluated with
experimentations on some Android applications.

Keywords-Security testing, Android applications, Model-
based testing, Mobile device security

I. INTRODUCTION

Flaws and security vulnerabilities are common issues
in any complex software system. Mobile device operating
systems and applications are no exceptions. Many security
reports and some recent papers [1], [2] show the presence of
several security flaws and proposed some solutions to correct
them. An important flaw concerns the intent mechanism of
Android. Android applications consist of components that
are joined together: user interfaces and background process-
ing are coded with Activities and Services, instantiated by the
Android operating system. Data can be stored in a device by
various options, e.g., in raw files or SQLite databases. The
Content-Provider component represents a more elegant and
secure solution which makes data available to applications.
The composition mechanism is performed with intents,
which is an IPC (Inter Process Communication) mechanism,
used to call or launch another component. The Content-
Provider access can be restricted with permissions. Without
permission (the default mode), data cannot be directly read
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by external applications. Considering this case, data can still
be exposed by the components which have a full access
to Content-Providers, i.e. those composed with Content-
Providers inside the same application. These components
can be attacked by malicious intents [1], composed of
incorrect data or attacks, that are indirectly forwarded to
Content-Providers. As a result, data may be exported or
modified. This work tackles this issue by proposing a Model-
based testing method which automatically generates test
cases from intent-based vulnerabilities.

Some works, relative to security vulnerabilities associated
with intents, have been recently proposed in the literature:
Zhong et al. showed that pre-installed Android applications
receiving oriented intents can re-delegate wrong permissions
[3]. Some tools have been developed to detect this issue.
However, these tools are not tailored to detect other vulner-
abilities. Jing et al. proposed a model-based conformance
testing framework for the Android platform as well [4]. Ba-
sic specifications (only intent descriptions) are constructed
from the configuration files of a project. Test cases are
generated, from these specifications, to check whether intent-
based properties hold. The set of properties defined in this
paper is only based on the intent functioning and cannot be
upgraded hence this approach lacks of scalability. Our work
takes as input a larger set of vulnerability.

Based upon these remarks, we propose the following
contributions: our method takes intent-based vulnerabilities
formally expressed with vulnerability patterns. The latter are
specialised ioSTSs (input output Symbolic Transition Sys-
tems [5]) which formally exhibit intent-based vulnerabilities
and help define test verdicts without ambiguity. From vul-
nerability patterns, our method performs both the automatic
test case generation and execution. The test case generation
is achieved from vulnerability patterns, class diagrams and
specifications automatically generated from the information
provided in the Android documentation [6], the component
compiled classes and the configuration files of an Android
project. These class diagrams and specifications are used
to determine the nature of each component (type, links to
other components) and describe the functional behaviours
that should be observed from components after receiving
intents. These items help refine and reduce the test case
generation. In particular, since the paper is dealing with



data vulnerabilities, test cases shall be constructed from the
components that are composed with Content-Providers only.
Afterwards, we introduce the evaluation of the tool APSET
((Android aPplications SEcurity Testing)) which implements
this method. The experimentation results show that this tool
is effective in detecting vulnerability flaws.

The paper is structured as follows: Section II recalls some
ioSTS definitions and notations. Vulnerability patterns are
defined in Section III. The testing methodology is described
in Section IV. We give some experimentation results in
Section V and we conclude in Section VI.

II. MODEL DEFINITION AND NOTATIONS.
We shall consider the input/output Symbolic Transition

Systems (ioSTS) model [5] to generate partial specifications
of Android components and to express vulnerabilities. An
ioSTS is a kind of automata model which is extended with
two sets of variables, internal variable to store data, and
parameters to enrich the actions. Transitions carry actions,
guards and assignments over variables. The action set is
separated with inputs beginning by ? to express actions
expected by the system, and with outputs beginning by !
to express actions produced by the system. An ioSTS does
not have states but locations.

Below, we give the definition of an ioSTS extension,
called ioSTS suspension, which also expresses quiescence
i.e., the authorised deadlocks observed from a location. For
an ioSTS S, quiescence is modelled by a new action !δ and
an augmented ioSTS denoted Sδ , obtained by adding a self-
loop labelled by !δ for each location where no output action
may be observed.

Definition 1 (ioSTS suspension) A deterministic ioSTS
suspension Sδ is a tuple < L, l0, V, V 0, I,Λ, →>, where:
• L is the finite set of locations, l0 the initial location,
• V is the finite set of internal variables, I is the finite

set of parameters. We denote Dv the domain in which
a variable v takes values. The internal variables are
initialised with the assignment V 0 on V , which is
assumed to be unique,

• Λ is the finite set of symbolic actions a(p), with p =
(p1, ..., pk) a finite list of parameters in Ik(k ∈ N). p
is assumed unique. Λ = ΛI ∪ΛO ∪{!δ}: ΛI represents
the set of input actions, (ΛO) the set of output actions,

• → is the finite transition set. A transition
(li, lj , a(p), G,A), from the location li ∈ L to

lj ∈ L, denoted li
a(p),G,A−−−−−−→ lj is labelled by an action

a(p) ∈ Λ. G is a guard over (p ∪ V ∪ T (p ∪ V ))
which restricts the firing of the transition. T (p ∪ V )
is a set of functions that return boolean values only
(a.k.a. predicates) over p ∪ V . Internal variables
are updated with the assignment function A of the
form (x := Ax)x∈V , Ax is an expression over
V ∪ p ∪ T (p ∪ V )

• for any location l ∈ L and for all pair of transitions
(l, l1, a(p), G1, A1), (l, l2, a(p), G2, A2) labelled by the
same action, G1 ∧G2 is unsatisfiable.

An ioSTS is also associated to an ioLTS (Input/Output
Labelled Transition System) to formulate its semantics.
Intuitively, ioLTS semantics correspond to valued automata
without symbolic variable, which are often infinite: ioLTS
states are labelled by internal variable valuations while
transitions are labelled by actions and parameter valuations.
The semantics of an ioSTS S =< L, l0, V, V0, I,Λ,→> is
the ioLTS JSK =< Q, q0,

∑
,→> composed of valued states

in Q = L ×DV , q0 = (l0, V0) is the initial one,
∑

is the
set of valued symbols and → is the transition relation. The
ioLTS semantics definition of can be found in [5].

Intuitively, for an ioSTS transition l1
a(p),G,A−−−−−−→ l2, we

obtain an ioLTS transition (l1, v)
a(p),θ−−−−→ (l2, v

′) with v a
set of valuations over the internal variable set, if there exists
a parameter valuation set θ such that the guard G evaluates
to true with v∪θ. Once the transition is executed, the internal
variables are assigned with v′ derived from the assignment
A(v ∪ θ). Runs and traces of an ioSTS can now be defined
from its semantics:

Definition 2 (Runs and traces) For an ioSTS S = < L,
l0, V, V 0, I,Λ,→>, interpreted by its ioLTS semantics
JSK =< Q, q0,

∑
,→>, a run q0α0...αn−1qn is an alternate

sequence of states and valued actions. Run(S) = Run(JSK)
is the set of runs found in JSK. RunF (S) is the set of runs
of S finished by a state in F ×DV ⊆ Q, with F a location
set in L.

It follows that a trace of a run r is defined as the projec-
tion proj∑(r) on actions. TracesF (S) = TracesF (JSK) is
the set of traces of all runs finished by states in F ×DV .

Below, we recall the definition of some classic operations
on ioSTSs. The same operations can be also applied on
underlying ioLTS semantics.

An ioSTS can be completed on its output set to express
incorrect behaviours that are modelled with new transitions
to the sink location Fail, guarded by the negation of the
union of guards of the same output action on outgoing
transitions:

Definition 3 (Output completion) The output completion
of a deterministic ioSTS S =< L, l0, V, V 0, I,Λ,→>
gives the ioSTS S! =< L ∪ {Fail}, l0, V, V 0, I,Λ,→
∪{(l, Fail, a(p),

∧
(l,l′,a(p),G,A)∈→

¬G, (x := x)(x∈V )) | l ∈

L, a ∈ ΛO} >

Definition 4 (ioSTS product ×) The product of the ioSTS
S1 =< L1, l01, V1, V 01, I1,Λ1,→1> with the ioSTS S2
= < L2, l02, V2, V 02, I2, Λ2,→2>, denoted S1 × S2, is



the ioSTS P =< LP, l0P, VP, V 0P, IP,ΛP,→P> such that
VP = V1 ∪ V2, V 0P = V 01 ∧ V 02, IP = I1 ∪ I2,
LP = L1 × L2, l0P = (l01, l02), ΛP = Λ1 ∪ Λ2. The
transition set→P is the smallest set satisfying the following
inference rules:
(1) l1

a(p),G1,A1−−−−−−−→S1
l2, l
′
1

a(p),G2,A2−−−−−−−→S2
l2′ ` (l1, l

′
1)

a(p),G1∧G2,A1∪A2−−−−−−−−−−−−−→P (l2, l
′
2)

(2) l1
a(p),G1,A1−−−−−−−→S1

l2, a(p) /∈ Λ2, l
′
1 ∈ L2 ` (l1, l

′
1)

a(p),G1,A1∪{x:=x}x∈V2−−−−−−−−−−−−−−−−→P (l2, l
′
1) (and symmetrically for

a(p) /∈ Λ1, l1 ∈ L1)

The parallel composition of two ioSTSs is a specialised
product which illustrates shared behaviours only of the two
original ioSTSs that are compatible:

Definition 5 (Compatible ioSTSs) An ioSTS S1 = <
L1, l01, V1, V 01, I1,Λ1,→1> is compatible with S2 = <
L2, l02, V2, V 02, I2, Λ2,→2> iff V1 ∩ V2 = ∅, ΛI1 = ΛI2,
ΛO1 = ΛO2 and I1 = I2.

Definition 6 (Parallel composition ||) The parallel com-
position of two compatible ioSTSs S1, S2, denoted S1||S2,
is the ioSTS P =< LP, l0P, VP, V 0P, IP,ΛP,→P> such
that VP = V1 ∪ V2, V 0P = V 01 ∧ V 02, IP = I1 ∪ I2,
LP = L1 × L2, l0P = (l01, l02), ΛP = Λ1 ∪ Λ2. The
transition set →P is the smallest set satisfying the first rule
of the product definition only.

Lemma 1 (Parallel composition traces) If S2 and S1 are
compatible then TracesF1×F2(S1||S2) = TracesF1(S1) ∩
TracesF2

(S2), with F1 ⊆ LS1
, F2 ⊆ LS2

.

III. VULNERABILITY MODELLING

Several formalisms have been proposed in the literature
to describe security vulnerabilities or attacks, e.g., regular
expressions, temporal and deontic logics or state machines.
We chose the latter because it sounds more user-friendly
to express intent-based vulnerabilities that do not require
obligation, permission, and related concepts.

Rather than defining the vulnerabilities of a specifica-
tion, (which have to be written for each specification), we
chose defining vulnerability patterns for describing intent-
based vulnerabilities of an Android component type. A
vulnerability pattern, denoted V, is a specialised ioSTS
suspension composed of two distinct final locations V ul,
NV ul which aim to recognise the vulnerability status over
component executions. Intuitively, runs of a vulnerability
pattern, starting from the initial location and ended by V ul,
express the presence of the vulnerability. By deduction, runs
ended by NV ul express functional behaviours which show
the absence of the vulnerability. V is also output-complete
to recognise a status whatever the actions observed while
testing.

Naturally, a vulnerability pattern V has to be equipped
of actions also used for describing behaviours of Android
components. We denote AuthActtype the action set that can
model a type of component in accordance with the Android
documentation. Transition guards can also be composed of
specific predicates to ease their writing. In the paper, we
consider some predicates such as in, which stands for a
Boolean function returning true if a parameter list belongs to
a given value set. In the same way, we consider several value
sets to categorise malicious values and attacks: RV is a set
of values known for relieving bugs enriched with random
values. Inj is a set gathering XML and SQL injections
constructed from database table URIs found in the tested
Android application. URI is a set of randomly constructed
URIs completed with the URIs found in the tested Android
application. New sets can be also added upon condition that
real value sets with the same name would be added to the
testing tool.

Definition 7 (Vulnerability pattern) A Vulnerability pat-
tern is a deterministic and output-complete ioSTS sus-
pension V such that the sink locations of LV belong to
{V ul,NV ul}. type(V) is the component (or component
composition) type targeted by V. The action set ΛV =
AuthActtype where type is equal to type(V).

In this paper, we focus on intent-based vulnerabilities of
components exposing personal data managed by Content-
Providers. Activities, and Services are the two Android
components that can interact with Content-Providers. A
Vulnerability pattern V is then composed of actions of a
component Comp (Activity or Service), composed with a
Content-Provider Cp. Consequently, ΛV = AuthActComp∪
AuthActCp. For readability, we consider Activities only in
the paper.

Activities are the most common Android components
which display screens to let users interact with programs.
We denote !Display(A) the action modelling the display
of a screen for the Activity A. Activities may also throw
exceptions that we group into two categories: those raised by
the Android system on account of the crash of a component
and the other ones. This difference can be observed while
testing with our framework. This is modelled with the
actions !SystemExp and !ComponentExp respectively.

Components are tied together with intents, denoted
intent(Cp, a, d, c, t, ed) with Cp the called component, a
an action which has to be performed, d a data expressed as
a URI, c a component category, t a type which specifies
the MIME type of the intent data and finally ed which
represent additional (extra) data [6]. Intent actions have
different purposes, e.g., the action VIEW is called to display
something, the action PICK is called to choose an item
and to return its URI to the calling component. Hence, in
reference to the Android documentation [6], the action set,



Figure 1: Vulnerability pattern example

denoted ACT , is divided into two categories: the action
set ACTr gathers the actions requiring the receipt of a
response, ACTnr gathers the other actions. We also denote
C, the set of predefined Android categories, T the set
of types. Finally, one deduce that AuthActActivity is the
set {?intent(Cp, a, d, c, t, ed), !Display(A), !SystemExp,
!ComponentExp, !δ}.

Content-Providers are components which receive
SQL-oriented requests (no intents) denoted
!call(Cp, request, tableURI) and eventually
return responses denoted !callResp(Cp, resp).
Consequently, AuthActContent−Provider = {!call(Cp,
request, tableURI), !callResp(Cp, resp), !δ, !Component
Exp, !SystemExp}.

Figure 1 illustrates a straightforward example of vulner-
ability pattern, related to data integrity. It aims to check
whether an Activity, called with an intent composed of
malicious data, cannot alter the content of a database table
managed by a Content-Provider. Intents are constructed with
data and extra data composed of malformed URIs or String
values known for relieving bugs or XML/SQL injections. If
the called component crashes, it is considered as vulnerable.
Once the intent is performed, the Content-Provider is called
with the query function of the Android SDK to retrieve all
the data stored in a table whose URI is given by the variable
tableURI. If the result set is not composed of incorrect data
given in the intent, then the component is not vulnerable.
Otherwise, it is vulnerable. The label !∗ is a shortcut notation
for all valued output actions that are not explicitly labelled
by other transitions.

Considering an ioSTS S compatible with a vulnerability
pattern V, the vulnerability status of S is given when its
suspension traces are recognised by the locations V ul and
NV ul:

Definition 8 (Vulnerability status of an ioSTS) Let S be
an ioSTS, V be a vulnerability pattern such that Sδ is
compatible with V. We define the vulnerability status of S

(and of its underlying ioLTS semantics JSK) over V with:
• S is not vulnerable to V, denoted S |= V if

Figure 2: Test case generation

Traces(Sδ) ⊆ TracesNV ul(V),
• S is vulnerable to V, denoted S 2 V if Traces(Sδ) ∩
TracesV ul(V) 6= ∅.

IV. SECURITY TESTING METHODOLOGY

A component under test (CUT ) is regarded as a black
box whose interfaces are known only. However, one usually
assumes the following test hypotheses to carry out the test
case execution:
• the functional behaviours of the component under test,

observed while testing, can be modelled by an ioLTS
CUT . CUT is unknown (and potentially nondetermin-
istic). CUT is assumed input-enabled (it accepts any
of its input actions from any of its states),

• to dialog with CUT , one assumes that CUT is a
composition of an ACtivity or Service with a Content-
Provider, whose type is equal to type(V) and that it is
compatible with V.

The test case generation involves the following major
steps, illustrated in Figure 2: we assume having a set of vul-
nerability patterns modelled with ioSTS suspensions. From
a decompiled Android application, a partial class diagram
is extracted which lists the components and the associations
between them. We keep only the components composed with
Content-Providers here. From the Android configuration file
called Manifest, an ioSTS suspension is generated for each
component. It describes the component behaviours after the
receipt of intents combined with Content-Providers requests.
Models, called vulnerability properties, are then derived
from the composition of vulnerability patterns with specifi-
cations. Test cases are obtained by concretising vulnerability
properties to obtain executable test cases only. Finally, the
latter are translated into JUNIT test cases. These steps are
detailed below.

A. Model generation

Android applications gather a lot of information that can
be used to produce partial specifications. For this method,
we generate the following structures and models:

1) a simplified class diagram is generated by means of
Java reflection. This class diagram depicts Android



components with their types and gives some infor-
mation about the relationships between components.
In particular, this step gives the Activities or Services
composed with Content-Providers: LC = {cti × cpj}
is the set gathering the combinations of a component
cti with a Content-Provider cpj .

Figure 3: Content-Provider specification

2) an ioSTS suspension Scti×cpj = (Scti×Scpj )! is gen-
erated for each item of LC such that type(cti × cpj),
e.g., Activity × Content-Provider is also the type of
the vulnerability pattern V. Scpj is an ioSTS suspen-
sion modelling the call of the Content-Provider cpj ,
derived from a generic ioSTS where only the Content-
Provider name and the variable tableURI are updated
from the information found in the projet configuration
file called Manifest. An example is depicted in Fig-
ure 3 for the Contact-Provider with the table ”Con-
tactsContract.RawContacts”. The Contact-Provider is
a specialised Content-Provider managing contact in-
formation. Naturally, this specification is written in
accordance with the set AuthActContent−Provider.
Scti is the ioSTS suspension of the component cti
constructed by means of the intent filters listed in
the Manifest file of the Android project. An intent
filter IntentFilter(act,cat,data,type) declares a type of
intent accepted by the component. For readability, we
present the algorithm dedicated to Activities only in
Algorithm 1. Initially, the action set of ΛScti

is set
to AuthActActivity. Then, Algorithm 1 produces the
ioSTS suspension Scti from intent filters and with
respect to the intent functioning, described in the
Android documentation. It covers each intent filter
and adds one transition carrying an intent followed by
two transitions labelled by output actions. (lines 7-15).
Depending on the action type read in the intent filter,
the guard of a transition equipped by an output action
is completed to reflect the fact that a response may
be received or not. For instance, an action in ACTr
(line 9), implies both the display of a screen and the
receipt of a response. If the action of the intent filter
is unknown (lines 13,14), no guard is formulated on
the output action (a response may be received or not).
Finally, the product (Scti × Scpj ) is completed on
the output action set to express incorrect behaviours,
modelled with new transitions to a Fail location. The

Fail location shall be particularly useful to refine the
test verdict by helping recognise correct and incorrect
behaviours of an Android component w.r.t. its specifi-
cation. For the Service components, the specification
generation algorithm is similar.

Algorithm 1: Component specification Generation
input : Manifest file MF
output: Partial specifications Scti

1 foreach component cti in MF do
2 it := 0;
3 Scti is the ioSTS specification of cti ;
4 ΛScti

= AuthActtype(cti);

5 Add l0Scti

!δ−→Scti
l0Scti

to→Scti
;

6 if type of cti == Activity then
7 foreach IntentFilter(act,cat,data,type) of cti in MF do
8 it := it + 1 ;
9 if act ∈ ACTr then

10 Add l0Scti

?evt
(1)
1−−−−−→Scti

(lit,1)

!di
(2)
1 ,[cti.resp 6=Null]−−−−−−−−−−−−−−−→ l0Scti

to→Scti

11 else if act ∈ ACTnr then

12 Add l0Scti

?evt
(1)
1−−−−−→Scti

(lit,1)

!di
(2)
1 ,[cti.resp=Null]−−−−−−−−−−−−−−−→ l0Scti

to→Scti

13 else

14 Add l0Scti

?evt
(1)
1−−−−−→Scti

(lit,1)
!di

(2)
1−−−−→ l0Scti

to→Scti

15 Add (lit,1)
!ComponentExp−−−−−−−−−−−−→Scti

l0Scti
to→Scti

;

16 (1) ?intent(Cp, a, d, c, t, ed)[Cp = cti ∧ a = act ∧ d =
data ∧ c = cat ∧ t = type], A = (x := x)x∈VScti

17 (2) !Display(Activity a)[Cp = cti], A = (x := x)x∈VScti

Figure 4 illustrates a specification example which stems
from the product of one Activity with the Contact-Provider.
This composition accepts intents composed of the action
PICK and data whose URI corresponds to the contact list
stored in the device. It returns responses (probably a chosen
contact). This composition also accepts requests to the
Contact-Provider. Incorrect behaviours are expressed with
transitions to Fail.

B. Test case selection
Test cases are extracted after composing vulnerability

patterns with specifications. Given a vulnerability pattern V

compatible with a specification Scti×cpj , the composition
VPcti×cpj = (V||Scti×cpj ) is called a vulnerability property
of Scti×cpj . It represents the vulnerable and non-vulnerable
behaviours that can be observed from cti × cpj . Besides,
the parallel composition V||Scti×cpj produces new locations
and, in particular, new final verdict locations:

Definition 9 (Verdict location sets) Let V be a vulnera-
bility pattern and Scti×cpj a specification compatible with



Figure 4: A specification example

V. The vulnerability property VPcti×cpj = V||Scti×cpj is
composed of new locations recognising vulnerability status:

1) NVUL = NV ul × LScti×cpj
. NVUL/FAIL =

(NV ul, Fail) ∈ NV UL aims to recognise incorrect
behaviours w.r.t. the specification Scti×cpj and not
vulnerable behaviours w.r.t. V,

2) VUL = V ul × LScti×cpj
. VUL/FAIL = (V ul, Fail)

aims to recognise incorrect behaviours w.r.t. Scti×cpj
and vulnerable behaviours w.r.t. V.

Test cases are achieved with Algorithm 2 which performs
two main steps. Firstly, it splits a vulnerability property
VPcti×cpj into several ioSTSs. Intuitively, from a location l
having k transitions carrying an input action, e.g., an intent,
k new test cases are constructed to experiment CUT with
the k input actions and so on for each location l having
transitions labelled by input actions (lines 1-4). Then, a set
tuple of valuations is computed for the list of undefined
parameters of each input action (line 5). For instance,
intents are composed of several variables whose domains are
given in guards. These ones have to be concretised before
testing. Instead of using a cartesian product to construct
a tuple of valuations, we adopt a Pairwise technique [7].
This technique strongly reduces the coverage of a variable
domain by constructing discrete combinations for pair of
parameters only. The set of valuation tuples is constructed
with the Pairwise procedure which takes the list of undefined
parameters and the transition guard to find the domain of
each parameter. In the second step (line 6-13), input actions
are concretised, i.e. each undefined parameter of an input
action is assigned to a value. Given a transition t and its set
of valuation tuples P (t), this step constructs a new test case
for each tuple pv = (p1 = v1, ..., pn = vn) by replacing the

guard G with G ∧ pv if G ∧ pv is satisfiable. Finally, if the
resulting ioSTS suspension tc has verdict locations, then tc
is added in the test case set TC. Steps 1. and 2. are iteratively
applied until until each combination of transitions carrying
input actions and each combination of valuation tuples are
covered. Since the algorithm may produce a large set of test
cases, depending on the number of tuples of valuations given
by the Pairwise function, the algorithm also ends when the
test case set TC reaches a cardinality of tcnb (lines 17,18).

Algorithm 2: Test case generation
input : A vulnerability property VPcti×cpj , tcnb the maximal

number of test cases
output: Test case set TC

1 begin 1. input action choice
2 foreach location l having outgoing transitions carrying input

actions do

3 Choose a transition t = l
?a(p),G,A−−−−−−−→VPcti×cpj

l2;
4 remove the other transitions labelled by input actions;
5 P (t) = Pairwise(p1, ..., pn, G) with (p1, ..., pn) ⊆ p

the list of undefined parameters;

6 begin 2. input concretisation

7 foreach t = l
?a(p),G,A−−−−−−−→VPcti×cpj

l2 do
8 Choose a valuation tuple pv = (p1 = v1, ..., pn = vn)

in P (t);
9 if G ∧ pv is satisfiable then

10 Replace G by G ∧ pv in t;

11 else
12 Choose another valuation tuple in P (t);

13 tc is the resulting ioSTS suspension;

14 begin 3.
15 if tc has reachable verdict locations then
16 TC := TC ∪ {tc} ;

17 if Card(TC) ≥ tcnb then
18 STOP;

19 Repeat 1. and 2. until each combination of transitions
carrying input actions and each combination of valuation
tuples are covered;

A test case example, derived from the specification of
Figure 4 and the vulnerability pattern of Figure 1 is depicted
in Figure 5. It expresses the sending of an intent with the
extra data parameter composed of an SQL injection. Then,
the data managed by the Contact-Provider must not have
been modified. Otherwise, the component is vulnerable. If
it crashes, it is vulnerable as well.

A test case constructed with Algorithm 2, from a vul-
nerability property VPcti×cpj , produces traces that belong
to the trace set of VPcti×cpj . In other words, the test
selection algorithm does not add new traces leading to
verdict locations. Indeed, a test case is composed of paths
of a vulnerability property, starting from its initial location.
Each guard G′ of a test case transition carrying a input action
stems from a guard G completed with a tuple of valuations
such that if G′ is satisfied then G is also satisfied. This is



Figure 5: A test case example

captured by the following Proposition:

Proposition 10 Let VPcti×cpj = V||Scti×cpj be a vul-
nerability property. TC is the test case set generated
from VPcti×cpj with Algorithm 2. We have ∀tc ∈ TC,
Traces(tc) ⊆ Traces(V||Scti×cpj ).

C. Test case execution definition

The test case execution is defined by the parallel compo-
sition of the test cases with the implementation under test
CUT :

Proposition 11 (Test case execution) Let TC be a test
case set obtained from the vulnerability pattern V and the
specification Scti×cpj . CUT is the ioLTS of the component
under test, assumed compatible with V. For all test case
tc ∈ TC, the execution of tc on CUT is defined by the
parallel composition tc||CUT δ .

Remark 12 A test case tc obtained from a vulnerability
pattern V, can be experimented on CUT since tc and CUT
are compatible. Indeed, tc is produced from a vulnerability
property VPcti×cpj = (V||Scti×cpj ) such that the action set
ΛScti×cpj

= ΛV. From this equality and Algorithm 2, one
can deduce that tc has the same action set as VPcti×cpj and
as V. Since we assume that CUT is compatible with V, tc
can be experimented on CUT .

The above proposition leads to the test verdict of a compo-
nent under test against a vulnerability pattern V. Intuitively,
the test verdict refers to the Vulnerability status definition,
completed by the detection of incorrect behaviours described
in the specification with the verdict locations VUL/FAIL and
NVUL/FAIL. An inconclusive verdict is also defined when

a verdict location has not been reached after a test case
execution:

Definition 13 (Test verdict) We take back the notations of
Proposition 11. The execution of the test case set TC on
CUT yields one of the following verdicts:
• CUT is vulnerable to V iff ∃tc ∈ TC, tc||CUT

produces a trace σ such that σ is also a
trace of TracesV UL(tc). If σ is a trace of
TracesV UL/FAIL(tc) then CUT does not also re-
spect the component normal functioning modelled by
Scti×cpj ,

• CUT is not vulnerable to V iff ∀tc ∈ TC, tc||CUT
produces a trace σ such that σ is also a trace
of TracesNV UL(tc). However, if σ is a trace of
TracesNV UL/FAIL(tc) then CUT does not respect
the component normal functioning,

• CUT has an unknown status iff ∃tc ∈ TC, tc||CUT
produces a trace σ such that σ /∈ TracesV UL(tc) ∪
TracesNV UL(tc).

Proof:
Sketch of proof of 1: ∃tc ∈ TC such that JtcK||CUT δ

produces a trace σ ∈ TracesV UL(tc).
TracesV UL(tc) ∩ Traces(CUT δ) 6= ∅ (Lemma 1)
TracesV UL(V||Scti×cpj ) ∩ Traces(CUT δ) 6= ∅
(Proposition 10)
TracesV UL(V||Scti×cpj ) = TracesV ul(V) ∩
TracesLScti×cpj

(Scti×cpj ) since Scti×cpj is compatible
with V (Algorithm 1 and Lemma 1)
We have (TracesV ul(V) ∩ TracesLScti×cpj

(Scti×cpj ))) ∩
Traces(CUT δ) 6= ∅. Hence, TracesV ul(V) ∩
Traces(CUT δ) 6= ∅ (a) and TracesLScti×cpj

(Scti×cpj ) ∩
Traces(CUT δ) 6= ∅ (b). From (a), we obtain CUT 2 V

(Definition 7). Consequently, CUT is vulnerable to V.
If σ ∈ TracesV UL/FAIL(tc) then, from (b) we have
TracesFail(Scti×cpj ) ∩ Traces(CUT δ) 6= ∅. σ represents
an incorrect behaviour of the partial specification Scti×cpj .

V. EXPERIMENTATION

The above security testing method has been implemented
in a tool called APSET (Android aPplications SEcurity
Testing), publicly available in a Github repository 1. It
takes an Android application (uncompressed .apk file) and
vulnerability patterns, builds ioSTS specifications and gen-
erates JUNIT test cases. Then it executes them on Android
emulators or devices and displays the final verdicts. For any
action defined in Section III, a corresponding function has
to coded in the tool. For instance, the action !Display(A) is
represented by the function Display() which returns true if
a screen is displayed. The guard solving, used in Algorithm

1https://github.com/statops/apset.git



2 and during the test case execution, is performed by the
SMT (Satisfiability Modulo Theories) solver Z3 2, whose
language is augmented with the predicates given in Section
III.

We experimented several real Android applications pro-
vided by the Openium company3and popular applications
from Google play store 4(eg. app8=Youtube) with three
vulnerability patterns: V1, corresponds to the vulnerability
pattern taken as example in the paper. V2 checks whether
an Activity called with intents composed of malicious data,
cannot alter the structure of a database managed by a
Content-Provider (modification of attribute names, removal
of tables, etc.). V3 checks that incorrect data, initially stored
into a database, are not displayed by an Activity after having
called it with an intent. A part of the experimentation results
are depicted in Table I which illustrates respectively the
number of tested components, the number of issues detected
with each vulnerability pattern and the total number of test
cases providing a vulnerable verdict. All the applications in
Table I have vulnerability issues. For instance, with app 3,
102 test cases were generated and 17 showed vulnerability
issues. 10 test cases showed that app 3 is vulnerable to V1.
More precisely, 1 test case showed that personal data can
be modified by using malicious intents. app 3 crashed with
the other test cases probably because of the bad handling
of malicious intents by the components. 2 test cases also
revealed that the structure of the database is modified (V2).
These modification or deletion issues are closely related
to the implementation of the Content-Provider methods
which are probably not protected against malicious requests.
Finally, 5 test cases revealed the display of incorrect data
stored in database (V3). This means that the database content
is directly displayed to the user interface, without any
validation.

Table I also gives the average test case execution time,
measured with Mid 2011 computer with a CPU 2.1Ghz
Core i5. The execution time is included between some
milliseconds up to 2.3 seconds, depending of the code of
the tested components. Benli et al. showed in [8] that the
execution time per test case may be up to 17s. All these
results tend to show that our approach is effective and can
be used in practice.

VI. CONCLUSION

In this paper, we have presented a security testing method
of Android applications which aims at detecting data vulner-
abilities based on the intent mechanism. The originality of
this work resides in the automatic generation of partial spec-
ifications, used to generate test cases. These specifications
also enrich the test verdict with the verdicts NVUL/FAIL
and VUL/FAIL, pointing out that the component under test

2http://z3.codeplex.com/
3www.openium.fr
4https://play.google.com/store

Applications Test results
Name # com-

ponent
V1 V2 V3 #vul/ #test-

cases
Time

app 1 7 8 - 3 11/54 0,85
app 2 16 1 - 3 4/164 0,18
app 3 15 10 2 5 17/102 2,3
app 4 9 2 - 9 11/97 1,56
app 5 7 19 - 2 21/73 0,77
app 6 8 - - 4 4/71 1,05
Maps 38 28 - 11 39/370 1,67

Youtube 12 3 - - 3/131 3,21

Table I: Experimentation results

does not meet the recommendations provided in the Android
documentation. In future works, we intend to extend the
generation of partial specifications. An immediate solution
would be to compose the partial specifications of each
component together to test a composite component. The
latter could be tested by injecting malicious intents headed
to sub-components.
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