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Abstract: The intent mechanism is a powerful feature of the Android platform that helps compose existing components
together to build a Mobile application. However, hackers can leverage the intent messaging to extract personal
data or to call components without credentials by sending malicious intents to components. This paper tackles
this issue by proposing a security testing method which aims at detecting whether the components of an
Android application are vulnerable to malicious intents. Our method takes Android projects and intent-based
vulnerabilities formally represented with models called vulnerability patterns. The originality of our approach
resides in the generation of partial specifications from configuration files and component codes to generate
test cases. We also enrich the Android test platform to refine the flaw detection. A tool, called APSET, is
presented and evaluated with experimentations on some Android applications.

1 INTRODUCTION

As Mobile usage grows, so should security: this sen-
tence summarises well the conclusions of several re-
cent reports (Report, 2012) providing analysis in Mo-
bile threats. These reports accentuate the idea that
Mobile security continues to be a global issue, inde-
pendently of the platform. As the perfect mobile se-
curity product does not (and will probably never) ex-
ist, security testing represents the most valuable solu-
tion to detect vulnerability flaws in Mobile systems
and applications. The latter are experimented with
test cases, during the testing process, usually con-
structed by hands from known attacks or vulnerabil-
ities. Model-based testing, which is the topic of the
paper, is another approach which brings some advan-
tages, e.g., the automatisation of some steps or the
definition of the confidence level of the test.

Mobile security testing is a very large field that
depends on several different concepts such as threats
families, internal mechanisms provided by the Mobile
platform or more sophisticated concepts such as com-
position of software. This paper focuses on the An-
droid inter component communication mechanism,
called intent, and describes an original testing method
to detect intent-based vulnerabilities. This vulnera-
bility family, originally discovered by (Chin et al.,
2011a), stems from the Android application structure:
these applications consist of one or more core com-

ponents glued together by means of the intent con-
cept, which is an IPC (Inter Process Communication)
mechanism, used to call or launch another compo-
nent, e.g., an activity (a component which represents a
single screen), or a service (component which can be
executed in background). Any component can freely
interact with other exposed components, for exam-
ple to request data. A malicious component can also
leverage the intent mechanism to send Availability
or Integrity-based attacks. So considered, the intent
mechanism becomes an attack vector

The security testing method, introduced in this pa-
per, aims at detecting whether components are vulner-
able to malicious intents. The notion of vulnerability
of a component is modelled with specialised ioSTSs
(input output Symbolic Transition Systems (Frantzen
et al., 2005)) called vulnerabilities patterns. This for-
mal model leads to define vulnerability patterns and
test verdict without ambiguity. Then, from vulnerabil-
ity patterns, our method performs both the automatic
test case generation and execution.

Contribution: our first contribution resides in
the test case generation. First, partial class diagrams
and partial ioSTS specifications are generated from
component compiled classes and configuration files.
These class diagrams and specifications are used to
determine the nature of each component (type, link
to other components) and represent the functional be-
haviours that should be observed from each compo-



nent after the receipt of an intent (in reference to the
Android documentation (AD, 2013)). These items
help refine and reduce the test case generation. For
instance, vulnerability patterns dedicated to Activity
components shall be only applied on the Activities
of an application. IoSTS test cases are derived from
a combination of vulnerability patterns with partial
specifications. These test cases are finally translated
into JUNIT test cases to ease their executions.

Then, we introduce a test execution framework
that offers a better flaw detection than the Android
tools. This one supports the distinction of two class
of exceptions: those raised by the Android system
when applications crash only and the other ones. This
distinction is also taken into account in the vulnera-
bility pattern modelling to augment the vulnerability
expressiveness.

The paper is structured as follows: Section 2 gives
ioSTS definitions and notations to be used throughout
the paper. Vulnerability patterns are defined in Sec-
tion 3. The testing methodology is described in Sec-
tion 4. We describe the implementation of the method
in a tool called APSET and give experimentation re-
sults in Section 5. Finally, Section 6 compares our
approach with some related works and we conclude
in Section 7.

2 MODEL DEFINITION AND
NOTATIONS

We shall consider the input/output Symbolic Transi-
tion Systems (ioSTS) model to generate partial spec-
ifications of Android components and to express vul-
nerabilities. The use of this formal model offers the
advantage to define without ambiguity test verdicts
and to define ioSTS operations in an algebraic manner
instead of providing complex algorithms.

An ioSTS is a kind of automata model which is ex-
tended with two set of variables, internal variable to
store data, and parameters to enrich the actions. Tran-
sitions carry actions, guards and assignments over
variables. The action set is separated with inputs be-
ginning by ? to express actions expected by the sys-
tem, and with outputs beginning by ! to express ac-
tions produced by the system. Inputs of a system can
only interact with outputs provided by the system en-
vironment and vice-versa. An ioSTS does not have
states but locations.

Below, we give the definition of an ioSTS exten-
sion, called ioSTS suspension which also expresses
quiescence i.e., the authorised deadlocks observed
from a location. For an ioSTS S, quiescence is mod-
elled by a new action !δ and an augmented ioSTS de-

noted Sδ, which is obtained by adding a self-loop la-
belled by !δ for each location where no output action
may be observed. More details about ioSTSs can be
found in (Frantzen et al., 2005).
Definition 1 (ioSTS suspension). A deterministic
ioSTS suspension is a tuple < L, l0,V,V 0, I,Λ, →>,
where:
• L is the finite set of locations, with l0 the initial

one,
• V is the finite set of internal variables, while I is

the finite set of parameters. We denote Dv the do-
main in which a variable v takes values. The inter-
nal variables are initialised with the assignment
V 0 on V , which is assumed to be unique,
• Λ is the finite set of symbolic actions a(p), with

p = (p1, ..., pk) a finite set of parameter variables
in Ik(k ∈N). p is assumed unique. Λ = ΛI ∪ΛO∪
{!δ}: ΛI represents the set of input actions, (ΛO)
the set of output actions,

• → is the finite transition set. A transition
(li, l j,a(p),G,A), from the location li ∈ L to l j ∈

L, denoted li
a(p),G,A−−−−−→ l j is labelled by an action

a(p) ∈ Λ. G is a guard over (p∪V ∪T (p∪V ))
which restricts the firing of the transition. T (p∪
V ) is a set of functions that return boolean values
only (a.k.a. predicates) over p∪V . Internal vari-
ables are updated with the assignment function A
of the form (x := Ax)x∈V Ax is an expression over
V ∪ p∪T (p∪V )

• for all location l ∈ L and for all pair of transitions
(l, l1,a(p),G1,A1), (l, l2,a(p),G2,A2) labelled by
the same action, G1∧G2 is unsatisfiable.
An ioSTS is also associated to an ioLTS (In-

put/Output Labelled Transition System) to formulate
its semantics. Intuitively, an ioLTS semantics corre-
sponds to a valued automaton: the ioLTS states are la-
belled by internal variable valuations while transitions
are labelled by actions and parameter valuations.
Definition 2 (ioLTS semantics). The semantics of
an ioSTS S =< L, l0, V, V 0, I,Λ,→> is the ioLTS
JSK =< Q,q0,∑,→> where:
• Q = L×DV is the set of states,
• q0 = (l0,V 0) is the initial state,
• ∑ = {(a(p),θ) | a(p) ∈ Λ,θ ∈ Dp} is the set of

valued actions. ∑
I is the set of input actions and

∑
O is the set of output ones,

• → is the transition relation Q×Σ×Q deduced by
the following rule:

l1
a(p),G,A−−−−−→l2,θ∈Dp,v∈DV ,v′∈DV ,v∪θ|=G,v′=A(v∪θ))

(l1,v)
a(p),θ−−−→(l2,v′)



Remark 3. An ioSTS suspension Sδ is also associated
to its ioLTS semantics suspension by JSδK = JSKδ.

All the paths and action sequences of an ioLTS
semantics represent runs and traces of a system.

Definition 4 (Runs and traces). For an ioSTS S =
< L, l0,V,V 0, I,Λ,→>, interpreted by its ioLTS se-
mantics JSK =< Q,q0,∑,→>, a run q0α0...αn−1qn
is an alternate sequence of states and valued actions.
Run(S) = Run(JSK) is the set of runs found in JSK.
RunF(S) is the set of runs of S finished by a state in
F×DV ⊆ Q with F a location set in L.

It follows that a trace of a run r is defined as
the projection pro j∑(r) on actions. TracesF(S) =
TracesF(JSK) is the set of traces of all runs finished
by states in F×DV .

Below, we recall the definition of the parallel com-
position which is a classical state-machine operation
used to represent the parallel execution of two sys-
tems. We give this definition for ioSTSs. However,
the same operation can be also applied between two
underlying ioLTS semantics. For ioSTSs, this paral-
lel execution illustrates shared behaviours of the two
original ioSTSs that are compatible:

Definition 5 (Compatible ioSTSs). An ioSTS S1 = <
L1, l01,V1,V 01, I1,Λ1,→1> is compatible with S2 =
< L2, l02,V2,V 02, I2, Λ2,→2> iff V1 ∩V2 = /0, ΛI

1 =

ΛI
2, ΛO

1 = ΛO
2 and I1 = I2.

Definition 6 (Parallel composition ||). The
parallel composition of the ioSTS S1 =<
L1, l01,V1,V 01, I1,Λ1,→1> with the com-
patible ioSTS S2 = < L2, l02,V2,V 02, I2,
Λ2,→2>, denoted S1||S2, is the ioSTS
P =< LP, l0P,VP,V 0P, IP,ΛP,→P> such that
VP = V1 ∪ V2, V 0P = V 01 ∧ V 02, IP = I1 ∪ I2,
LP = L1×L2, l0P = (l01, l02), ΛP = Λ1 ∪Λ2. The
transition set →P is the smallest set satisfying the
following rule:

l1
a(p),G1 ,A1−−−−−−→S1 l2,l′1

a(p),G2 ,A2−−−−−−→S2 l2′

(l1,l′1)
a(p),G1∧G2 ,A1∪A2−−−−−−−−−−−→P(l2,l′2)

Lemma 1 (Parallel composition traces). If S2
and S1 are compatible then TracesF1×F2(S1||S2) =
TracesF1(S1) ∩ TracesF2(S2), with F1 ⊆ LS1 , F2 ⊆
LS2 .

Notation Meaning
?intent(a,d,
c, t,ed)

an intent composed of: action a, data
d, action category c, data type t, extra
data ed

ACTr set of actions which require a response
ACTnr set of actions which do not require a

response
C set of categories
T set of types
URI set of URI
RV set of predefined and random values
In j set of SQL and XML injections
!Display display of a screen by an Activity
!Compo-
nentExp

Exception raised by a component

!SystemExp Exception raised by the system

Table 1: Android component notations

3 VULNERABILITY
MODELLING

3.1 Android applications and notations

In this Section, we define some notations to model
intent-based behaviours of Android components with
IOSTSs. These notations are also given in Table 1.
Android applications are usually constructed over a
set of components. A component belongs to one
of the four basic types: Activities (user interfaces) ,
Services (background processing), Content providers
(SQLite database management) and Broadcast re-
ceivers (broadcast message handling). For readabil-
ity, we essentially focus on Activities in the paper.

The inter-component communication is
performed with intents. An intent, denoted
intent(a,d,c, t,ed) is a kind of bundle of infor-
mation which gathers: an action a which has to
be performed, a data d expressed as a URI, and
eventually a component category c, a type t which
specifies the MIME type of the intent data and
extra data ed which represent additional data (AD,
2013). Intents are divided into two groups: explicit
intents which explicitly target a component and
implicit intents (the most generally ones) which let
the Android system choose the most appropriate
component by means of a list of intent filters. Both
can be exploited by a malicious application to send
attacks to components at runtime: sending implicit
malicious intents is easier than sending explicit ones
though since the targeted component has to be known
for the latter. But, because extracting a component
list in an Android system is possible, we consider
both implicit and explicit intents in this work.

The mapping of an implicit intent to a component



is expressed with items called intent filters stored in
Manifest files. A Manifest file, is a part of any An-
droid project and specifies configuration information
about the whole application.

Intent actions have different purposes, e.g., the ac-
tion VIEW is called to display something, the action
PICK is called to choose an item and to return its URI
to the calling component. Hence, in reference to the
Android documentation (AD, 2013), the action set,
denoted ACT , is divided into categories to ease the
vulnerability and component modelling: the action set
ACTr gathers the actions requiring the receipt of a re-
sponse, ACTnr gathers the other actions. We denote C,
the set of predefined Android categories, T the set of
types.

Android components may raise exceptions that we
group into two categories: those raised by the An-
droid system on account of the crash of a component
and the other ones. This difference can be observed
while testing with our framework. This is modelled
with the actions !SystemExp and !ComponentExp re-
spectively.

Finally, Android components, called by intents,
produce different behaviours in reference to their
types. For instance, the Activity role has to dis-
play screens (denoted !Display(Activity a)) with a
response message or not, while a service usually
aims to return a response only. To ease the writing
of vulnerability patterns, we denote AuthActtype the
action set that can be used with a type of component
in accordance with the Android documentation.
For instance, for Activities AuthActActivity =
{?intent(a,d,c, t,ed), !Display(A), !SystemExp,
!ComponentExp}.

3.2 Vulnerability Patterns

Several formalisms have been proposed to represent
vulnerabilities e.g., regular expressions, temporal and
deontic logics, core typed languages ((Chaudhuri,
2009)) or state machines. We chose the latter because
it sounds more user-friendly to express intent vulnera-
bilities that do not require obligation, permission, and
related concepts.

Instead of defining the vulnerabilities of a speci-
fication, which have to be written for each specifica-
tion, we prefer firstly defining vulnerability patterns
for describing intent-based vulnerabilities in general
terms. A vulnerability pattern is a specialised ioSTS
suspension composed of two distinct final locations
Vul, NVul which aim to recognise the vulnerability
status over component executions: runs of a vulner-
ability pattern starting from the initial location and
ended by Vul express functional behaviours com-

Figure 1: Test pattern for availability testing

posed of malicious intents which exhibit the presence
of the vulnerability. By deduction, runs ended by
NVul express functional behaviours which show the
absence of the vulnerability.

Such patterns have to be composed with actions
which matches one component type. For instance, if
a vulnerability pattern is dedicated to Activities, then
its action set must be equal to AuthActActivity. Guards
can also be composed of specific predicates to ease
their writing. In the paper, we consider some pred-
icates such as in which represents a Boolean func-
tion returning true if the parameter belongs to a given
value set. In the same way, we consider several value
sets to categorise malicious values and attacks: RV
is a set of values known for relieving bugs enriched
with random values, and In j is a set gathering XML
and SQL injections. URI is a set of URI constructed
randomly which start by file: or content: or https:
and whose paths, which indicate the data location, are
constructed over the RV set. New sets can be also
added in condition that real value sets which the same
name would be added to the testing tool.

Definition 7 (Vulnerability pattern). A Vulnera-
bility pattern is a deterministic ioSTS suspension
VP =< LVP, l0VP,VVP,V 0VP, IVP,ΛVP,→>VP>
such that the final locations of LVP belong to
{Vul,NVul}. ΛVP = AuthActtype with type the com-
ponent type targeted by VP.

Figure 1 illustrates a straightforward example of
vulnerability pattern to test the Availability of An-
droid Activities. The intent action must belong ei-
ther to the Android action set or in the RV(String)
set which stands for String values known for reliev-
ing bugs, e.g., ”$” or ”;” and random values. The data
d takes a value either in URI or in RV (String) or in
In j. This vulnerability pattern means that an Activ-
ity is unavailable and consequently vulnerable when
quiescence is observed or when the Activity crashes,
which is observed when an exception is raised by the
Android system. More complex patterns, composed
of several input and output actions, can be defined.



Figure 2: Test case generation

Considering an ioSTS S compatible with a vul-
nerability pattern VP, the vulnerability status of S is
given when its suspension traces are recognised by the
VP locations Vul and NVul:

Definition 8 (Vulnerability status of an ioSTS). Let S
be an ioSTS, VP be a vulnerability pattern such that
Sδ is compatible with VP. We define the vulnerability
status of S (and of its underlying ioLTS semantics JSK)
over VP with:

• S is not vulnerable to VP, denoted S |= VP if
Traces(Sδ)⊆ TracesNVul(VP),

• S is vulnerable to VP, denoted S 2 VP if
Traces(Sδ)∩TracesVul(VP) 6= /0.

4 SECURITY TESTING
METHODOLOGY

The different steps of our approach are illustrated in
Figure 2 and can be summarised as follows: we as-
sume having a set of vulnerability patterns modelled
with ioSTS suspensions. From an Android project
(compiled classes and configuration files), we extract
a partial class diagram by introspection. This one lists
the components, gives their types and the associations
between classes. Furthermore, ioSTS suspensions ex-
pressing partial specifications of one component, are
extracted from the Manifest file. Vulnerability prop-
erties are then derived from the combination of vul-
nerability patterns with partial specifications. These
properties still express vulnerabilities but are refined
with the implicit and explicit intents that a compo-
nent may accept. Test cases are obtained by concretis-
ing vulnerability properties i.e., parameter values are
computed and the unreachable transitions are pruned
to obtain executable test cases only. Finally, the lat-
ter are translated into JUNIT test cases to be executed
with classical development tools. All these steps are
detailed below.

4.1 Model generation

Experimenting directly Android components with
vulnerability patterns would lead to several issues.
For example, an Activity which displays a screen on
a Smartphone has a different purpose than a service
component which does not interact directly with a
user. Performing blind testing without considering the
component features would often lead to false negative
results. Besides, Android applications gather plenti-
ful of information that can be used to produce partial
models in order to refine the test case generation:
1. a simplified class diagram, depicting Android

components of the application and their types, is
initially computed. The component method and
attribute names are established by applying re-
verse engineering based on Java reflection. This
class diagram also gives some information about
the relationships between components. This step
aims to later reduce the test case generation. For
instance, the verification of data Integrity has to be
done on components which interact with Content-
provider components only. This relationship is
established when a component has a Contentre-
solver attribute,

2. one partial specification Sct = (S1ct ,S2ct) is gen-
erated for each component found in the Android
application. S1ct is an ioSTS suspension com-
posed of the implicit intents given in the Manifest
file while S2ct models any (explicit) intent except
the implicit ones. This separation shall be particu-
larly useful to distribute the test case set between
implicit and explicit intents when the number of
test cases is limited.
Algorithm 1 constructs a partial specification
Sct = (S1ct ,S2ct) from the intent filters IntentFil-
ter(act,cat,data) found in a Manifest file. The ac-
tion set of ΛSict (i = 1,2) is equal to AuthActtype(ct)
with type(ct) the type of the component, e.g.,
Activity. For readability, we present the algo-
rithm dedicated to Activities only. It produces
two ioSTSs w.r.t. the intent functioning described
in the Android documentation. For instance, the
call of an intent composed of a PICK action, in
ACTr, implies both the display of a screen and the
receipt of a response. Firstly, Algorithm 1 con-
structs S1ct with the implicit intents found in the
intent filters (lines 6-16). Depending on the action
type read, the guard of the output action is com-
pleted to reflect the fact that a response may be
received or not. If the action of the intent filter is
unknown (lines 12,13), no guard is formulated on
the output action (a response may be received or
not). While the generation of S1ct , the algorithm



also produces a guard G equals to the negation of
the union of guards added with the ?intent action
(line 15). Then, S2ct is constructed by means of
this guard: it models the call of an intent with the
guard G ( intuitively, any intent except the intents
of S1ct ) followed by a transition carrying the ac-
tion !Display without guards and a transition la-
belled by !ComponentException.
Finally, both S1ct and S2ct are completed on the
output set to express incorrect behaviours mod-
elled with new transitions to the Fail location,
guarded by the negation of the union of guards
of the same output action on outgoing transitions
(lines 17-20). The new Fail location shall be par-
ticularly useful to refine the test verdict by help-
ing recognise correct and incorrect behaviours of
an Android component w.r.t. its specification.
For the other Android component types, the al-
gorithms are very similar.

Figure 3 illustrates a partial specification example
composed of implicit intents (S1ct ). Two intents are
accepted by the component, one composed of the ac-
tion VIEW that is called to display information about
the first person in the contact list of the mobile phone
and another action PICK which aims to ask the user
to choose a contact that is returned to the calling com-
ponent. Transitions to Fail represent undesired be-
haviours. For instance, after a PICK action, the re-
sponse must not be null.

Figure 3: An Activity specification

4.2 Test case selection

A component under test (CUT ) is regarded as a black
box whose interfaces are known only. However, one
usually assumes the following test hypotheses to per-
form the test case execution and to formalise the con-
fidence level of the test of CUT w.r.t. a vulnerability
pattern VP:

Algorithm 1: Partial Specification Generation
input : Manifest file MF
output: Partial specifications Sct = (S1ct ,S2ct)

1 foreach component ct in MF do
2 it := 0;G := /0;
3 Sct = (S1ct ,S2ct) is a partial specification of ct /

ΛSict (i = 1,2) = AuthActtype(ct);

4 Add l0Sict

!δ−→Sict l0Sict to→Sict ;(i = 1,2)
5 if type of ct == Activity then
6 foreach IntentFilter(act,cat,data) of ct in

MF do
7 it := it +1 ;
8 if act ∈ ACTr then

9 Add l0S1ct

?evt(1)1−−−→S1ct (lit,1)
!di(2)1 ,[ct.resp6=Null]
−−−−−−−−−−−−→ l0S1ct to→S1ct

10 else if act ∈ ACTnr then

11 Add l0S1ct

?evt(1)1−−−→S1ct (lit,1)
!di(2)1 ,[ct.resp=Null]
−−−−−−−−−−−−→ l0S1ct to→S1ct

12 else

13 Add l0S1ct

?evt(1)1−−−→S1ct (lit,1)
!di(2)1−−−→ l0S1ct to→S1ct

14 Add (lit,1)
!CompExp−−−−−−→S1ct l0S1ct to→S1ct ;

15 G := G∧¬G1;

16 Add

l0S2ct

?intent(a,d,c,v),G,A=(x:=x)x∈VS2ct−−−−−−−−−−−−−−−−−−−−→S2ct l1
!di(2)2−−−→ l0S2ct , l1

!CompExp−−−−−−→S2ct l0S2ct to→S2ct ;

17 foreach l1 ∈ LSict (1≤ i≤ 2) such that

l1
!a,G,A−−−−→Sict l2 do

18 foreach a ∈ ΛO
Sict

do
19 Ga =

∧
l1

a(p),G,A−−−−−→Sict l
¬G;

20 Add l1
?a(p),Ga,Aa=(x:=x)x∈V−−−−−−−−−−−−−−→Sict Fail to→Sict

21 (1) ?intent(a,d,c,v),G1 = [a = act ∧d = data∧ c =
cat],A = (x := x)x∈VS1ct

(2)!Display(Activity ct),A = (x := x)x∈VSict

• the functional behaviours of the component un-
der test, observed while testing, can be modelled
by an ioLTS CUT . CUT is unknown (and poten-
tially nondeterministic). CUT is assumed input-
enabled (it accepts any of its input actions from
any of its states). CUT δ denotes its ioLTS sus-
pension,

• to be able to dialog with CUT , one assumes that
CUT is a component whose type is the same as
the component type targeted by the vulnerability



pattern VP and that it is compatible with VP.

Test cases stem from the composition of vulnera-
bility patterns with compatible partial specifications.
Given a vulnerability pattern VP and a partial speci-
fication Sct = (S1ct ,S2ct), the composition V (Sct) =
(VP||S1ct ,VP||S2ct) is called a vulnerability property
of Sct . It represents the vulnerable and non-vulnerable
behaviours which may be observed from the compo-
nent with implicit or explicit intents. The parallel
compositions (VP||Sict)(i = 1,2) produce new loca-
tions and in particular new final verdict locations:
Definition 9 (Verdict location sets). Let VP be a
vulnerability pattern and Sct = (S1ct ,S2ct) a partial
specification with Sict(i = 1,2) compatible with VP.
(VP||Sict)(i = 1,2) are composed of new locations
recognising vulnerability status:

1. NVUL = NVul×LSict . Particularly, NVUL/FAIL
= (NVul,Fail) ∈ NVUL aims to recognise incor-
rect behaviours w.r.t. the partial specification Sct
and not vulnerable behaviours w.r.t. VP,

2. VUL = Vul × LSict . Particularly, VUL/FAIL
= (Vul,Fail) aims to recognise incorrect be-
haviours w.r.t. Sct and vulnerable behaviours
w.r.t. VP.

From a vulnerability property V (Sct) = (VP||S1ct ,
VP||S2ct), test cases are extracted by splitting the par-
allel compositions into several test cases and by con-
cretising them with values. Intuitively, if n transi-
tions carrying an intent can be fired from a location
l of (VP||Sict)(i = 1,2), then n test cases are con-
structed to experiment CUT with the n intents and
so on for each next location reachable from the lo-
cation l. While splitting (VP||Sict)(i = 1,2), actions
have to be concretised with set of values to make con-
crete test cases. This is particularly the case for the
intent(a,d,c, t,ed) actions composed of several vari-
ables. In the paper, we adopt a Pairwise technique to
construct sets of tuples of values (Cohen et al., 2003)
instead of using a cartesian product. Assuming that
errors can be revealed by modifying pairs of variables,
this technique strongly reduces the coverage of a vari-
able domain by constructing discrete combinations
for pair of parameters only. These steps are performed
with Algorithm 2 which covers recursively, in a finite
number of times, the locations of (VP||Sict)(i = 1,2)
while splitting/concretising transitions.

Algorithm 2 achieves the test case generation by
covering each ioSTS suspension (VP||Sict)(i = 1,2),
from its starting location with the Cover function
which takes a location, a set of internal variable valua-
tions and a test case being constructed. When the cur-

rent location has outgoing transitions l
a(p),G,A−−−−−→ l2 la-

belled by an output action, these ones are added to the

current test case (lines 4,5). Then, the algorithm con-
tinues to cover the ioSTS from each arrival location
l2 of these transitions upon condition that the guard G
has a solution. This is checked by the call of a Solver
function (lines 6-8). Otherwise the next transitions
reachable from l2 are implicitly pruned and are not
added to the test case. In the second part of the algo-
rithm, if the current location has outgoing transitions

l
a(p),G,A−−−−−→ l2 labelled by an input action (line 9), the

current test case is stored into tc′ to construct several
new test cases originating from tc′. For each transi-
tion t carrying an input action and for each tuple of
values p = (p1 = v1, ..., pn = vn) computed with the
Pairwise function (lines 11-13), the algorithm checks
whether the guard G evaluates to true with p and with
the current internal valuations V , before adding t, con-
cretised with p, to the test case tc. The arrival location
l2 is covered recursively. Once all the transitions ac-
cessible from l2 are covered, the final test case tc is
added to the set TC (line 21). The algorithm ends
when all the transitions labelled by an input action
are covered at least on time and concretised by all the
values computed by the Pairwise function. Since the
algorithm may produce a large set of test cases, de-
pending on the number of tuple of values given by the
Pairwise function, the algorithm also ends when the
test case set TCSict reaches a cardinality of tcnb (lines
20, 21). This condition limits the test case number
but also allows to balance the generation of test cases
executing implicit intents (those obtained from S1ct )
with the test cases executing explicit intents (obtained
from S2ct ).

A test case example is depicted in Figure 4. It
originates from the ioSTS suspension S1ct of Figure
3 and expresses the sending of an intent with the ex-
tra data part composed of an SQL injection. In other
terms, it illustrates the call of the component under
test with a malicious intent composed of the classi-
cal SQL injection ”’or 1=1–”. Other test cases are
also generated from S2ct to send intents composed of
malicious actions, categories, etc.

The test cases constructed with Algorithm 2 are
composed of complete paths of a vulnerability prop-
erty, starting from its initial locations and concretised
with values that meet the original guards. Hence, one
can deduce that the test case traces belong to the trace
set of the vulnerability property:

Proposition 10. Let V (Sct) be a vulnerability prop-
erty derived from the composition of a vulnerabil-
ity pattern VP and a partial specification Sct =
(S1ct ,S2ct). TC is the test case set generated
from V (Sct). We have ∀tc ∈ TC, Traces(tc) ⊆
(Traces(VP||S1ct)∪Traces(VP||S2ct)).



Algorithm 2: Test case generation
input : A vulnerability property V (Sct), tcnb the

maximal number of test cases per ioSTS
output: Test case set TC

1 Cover(location l,Variable set V , test case tc)
2 BEGIN
3 if l has outgoing transitions labelled by output

actions then

4 foreach t = l
a(p),G,A−−−−−→Sict l2 do

5 Add t to→tc;

6 foreach t = l
a(p),G,A−−−−−→Sict l2 do

7 if Solve(G,V ) returns a non-empty solution
(p1 = v1, ..., pn = vn) then

8 Cover(l2,A(V ), tc);

9 if l has outgoing transitions labelled by input actions
then

10 tc′ := tc;

11 foreach l
a(p),G,A−−−−−→Sict l2 with p = (p1, ..., pn) do

12 P = pairwise((p1, ..., pn),G);
13 foreach (p1 = v1, ..., pn = vn) ∈ P do
14 tc := tc′;
15 if Solve(G,V ∪{(p1 = v1, ..., pn =

vn)}=true) then

16 Add l
a(p),G∧(p1=v1,...,pn=vn),A−−−−−−−−−−−−−−−−→ l2 to

→tc;
17 Cover(l2,A(V ), tc);
18 if Card(TCSict )> tcnb then
19 STOP;

20 else
21 TCSict := TCSict ∪{tc};

22 END
23 reset tc ;
24 Cover(l0S1ct , V 0S1ct , tc);
25 reset tc;
26 Cover(l0S2ct , V 0S2ct , tc);

27 TC =
⋃

i=1,2
TCSict ;

4.3 Test case execution definition

The test case execution is usually defined by the par-
allel composition of the test cases with the implemen-
tation under CUT :

Proposition 11 (Test case execution). Let TC be a
test case set obtained from the vulnerability pattern
VP. CUT is the ioLTS of the component under test,
assumed compatible with VP. For all test case tc ∈
TC, the execution of tc on CUT is defined by the par-
allel composition JtcK||CUT δ.

Remark 12. A test case tc obtained from a vul-
nerability pattern VP, can be experimented on

Figure 4: A test case example

CUT since tc and VP are compatible. In-
deed, tc is produced from a vulnerability property
V (Sct) = (VP||S1ct ,VP||S2ct) such that ΛSict (i =
1,2) = AuthActtype(ct). The action set of VP is also
equal to AuthActtype(ct). We deduce that tc, Sict(i =
1,2) and VP are compatible.

The above proposition leads to the test verdict of
a component under test against a vulnerability pat-
tern VP. Intuitively, this one refers to the Vulnera-
bility status definition, completed by the incorrect be-
haviours described in the partial specification of the
component. Indeed, the verdict locations VUL/FAIL
and NVUL/FAIL augment the expressiveness of the
vulnerability status by pointing out that CUT does not
also respect the component normal functioning w.r.t.
the Android documentation:

Definition 13 (Test verdict). We take back the nota-
tions of Proposition 11. The execution of the test case
set TC on CUT yields one of the following verdicts:

• CUT is vulnerable to VP iff ∃tc ∈ TC, JtcK||CUT
produces a trace σ such that σ is also a
trace of TracesVUL(tc). If σ is a trace of
TracesVUL/FAIL(tc) then CUT does not also re-
spect the component normal functioning,

• CUT is not vulnerable to VP iff ∀tc ∈ TC,
JtcK||CUT produces a trace σ such that σ is also
a trace of TracesNVUL(tc). However, if σ is a
trace of TracesNVUL/FAIL(tc) then CUT does not
respect the component normal functioning.

Proof. Sketch of proof of 1: ∃tc ∈ TC such that
JtcK||CUT δ produces a trace σ ∈ TracesVUL(tc).
TracesVUL(tc)∩Traces(CUT δ) 6= /0 (Lemma 1)
(TracesVUL(VP||S1ct) ∪ TracesVUL(VP||S2ct)) ∩
Traces(CUT δ) 6= /0 (Proposition 10)
TracesVUL(VP||Sict) = TracesVul(VP) ∩



TracesLSict
(Sict) since Sict is compatible with

VP (Algorithm 1 and Lemma 1)
We have (TracesVul(VP) ∩ (TracesLS1ct

(S1ct) ∪
TracesLS1ct

(S2ct))) ∩ Traces(CUT δ) 6= /0.
Hence, TracesVul(VP) ∩ Traces(CUT δ) 6= /0

(a) and (TracesLS1ct
(S1ct) ∪ TracesLS1ct

(S2ct)) ∩
Traces(CUT δ) 6= /0 (b). From (a), we obtain
CUT 2 VP (Definition 7). Consequently, CUT is
vulnerable to VP.
If σ ∈ TracesVUL/FAIL(tc) then, from (b) we
have (TracesFail(S1ct) ∪ TracesFail(S2ct)) ∩
Traces(CUT δ) 6= /0. σ represents an incorrect be-
haviour of the partial specification Sct = (S1ct ,S2ct).

In practice, the parallel composition of a test case
tc with a component under test CUT is done with the
testing framework detailed in the next Section.

5 IMPLEMENTATION AND
EXPERIMENTATION

5.1 Implementation

The above security testing method has been imple-
mented in a prototype tool called APSET (Android
aPplications SEcurity Testing), publicly available in
a Github repository 1. It takes as inputs vulnerability
patterns written in dot format 2 and an Android ap-
plication project. Then, it generates JUNIT test cases
and executes them on Android emulators or devices.

The guard solving in Algorithm 2 is performed
by the SMT (Satisfiability Modulo Theories) solver
Z3 3 that we have chosen since it allows a direct use
of arithmetic formulae. However, it does not sup-
port String variables. So, we extended the Z3 ex-
pression language with new predicates, and in par-
ticular with String-based predicates (in, streq, con-
tains, etc.). A predicate stands for a function over
ioSTS internal variables and parameters which returns
a Boolean. Basically, our tool takes Z3 expressions
enriched with predicates, the latter are evaluated and
replaced with Boolean values. Then, a Z3 script, com-
posed of internal variables valuations, parameter valu-
ations and a guard, is dynamically written before call-
ing Z3. If the guard is satisfiable (not satisfiable),
Z3 returns sat (unsat respectively). Z3 returns un-
known when the guard satisfiability is undecidable.

1https://github.com/statops/apset.git
2http://www.graphviz.org/
3http://z3.codeplex.com/

For instance, the guard [a=VIEW ∧ c=DEFAULT∧
d=”../contact/people/1”∧ v={” ’ or 1=1 –”)}] of the
test case depicted in Figure 4 is written with (and
(streq(a,”VIEW”) true) (streq(c,”DEFAULT”) true )
(streq(d, ”../contact/people/1”) true ) streq(v,” ’ or
1=1 –”). This Solve procedure can be upgraded eas-
ily with any new predicate.

1 / / i n t e n t s e t t i n g
m I n t e n t . s e t A c t i o n ( a n d r o i d . i n t e n t . a c t i o n . VIEW) ;

3 m I n t e n t . addCa tego ry ( a n d r o i d . i n t e n t . c a t e g o r y .
DEFAULT) ;

m I n t e n t . s e t D a t a ( Ur i . p a r s e ( c o n t e n t : / / c o n t a c t s /
p e o p l e / 1 ) ) ;

5 m I n t e n t . p u t E x t r a ( s t r i n g k e y v a l u e 1 , ? ? ) ;
m I n t e n t . p u t E x t r a ( s t r i n g k e y v a l u e 2 , "’ or 1=1--" )

;
7 s e t A c t i v i t y I n t e n t ( m I n t e n t ) ; t r y {

/ / C a l l o f t h e A c t i v i t y wi th t h e d e f i n e d i n t e n t
9 m A c t i v i t y = g e t A c t i v i t y ( ) ;

/ / t e s t t h e o u t p u t q u i e s c e n c e
11 a s s e r t N o t N u l l (VULNERABLE, m A c t i v i t y ) ;

/ / t e s t i f t h e A c t i v i t y i s d i s p l a y e d
13 a s s e r t T r u e (VULNERABLE, D i s p l a y ( ) ) ;

/ / t e s t o f t h e r e s p o n s e
15 a s s e r t T r u e ( r e s p o n s e . g e t R e s u l t D a t a ( ) == n u l l ) ;

/ / Component e x c e p t i o n s .
17 } c a t c h ( E x c e p t i o n Ex ) {

a s s e r t T r u e ( t r u e ) ;
19 } }

Figure 5: A JUNIT test case

IoSTS test cases are converted into JUNIT test
cases in order to be executed with a test runner (set
of control methods to run tests). The test case ac-
tions are successively converted into Java code. As an
example, Figure 5 gives the JUNIT test case derived
from the ioSTS of Figure 4. This conversion can be
summarised by the following steps:

• a transition l
?intent(a,d,c,t,ed),G,A−−−−−−−−−−−−→ l2 is converted

into the sending of an intent composed of param-
eter values given by the guard G,

• the transitions carrying output actions which cor-
respond to both observations and verdicts are
translated into Java code and JUNIT assertions.
The VUL verdict is provided by the VULNERA-
BLE message in the assertion codes. The NVUL
verdict is implicitly obtained if no VULNERA-
BLE message is produced while testing. The Fail
verdict is obtained each time an assertion fails.
For an output action !a(p) which does not cor-
respond to the raise of an exception, we assume
having a corresponding function a() used to com-
plete the assertion. For instance, consider the

transition (B, l11)
!Display(Activity act)[ct.resp6=NULL]−−−−−−−−−−−−−−−−−−−−−→



Figure 6: Test case execution framework

(NVul,Fail) of the test case of Figure 4. The
action is translated by the two assertions in lines
(13,15). The first assertion fails with the VUL-
NERABLE message if Display() returns false.
The next assertion fails if a response is provided
whereas no response is expected. In this case, the
verdict becomes VUL/FAIL.
The output action !ComponentExp, is converted
into a try/catch statement. With our test case ex-
ample, the catch block is composed of an assertion
always true (line 17),

• the transitions l
!SystemExp−−−−−−→ l f , modelling an ex-

ception raised by the Android system are not con-
verted into JUNIT code but are managed directly
with the call of a test runner. If it catches an ex-
ception, the latter is converted into an assertion
composed of the message VULNERABLE if the
location l f is labelled by ”VUL”.
The test execution framework, depicted in Figure

6 is composed of the Android testing execution tool
provided by Google, enriched with the tool PolideaIn-
strumentation 4 to yield XML reports. Test cases are
executed on Android devices or emulators by an An-
droid Service component which returns an XML re-
port displayed directly on the device (external com-
puters are not required during this step). The test
runner starts the CUT and executes iteratively JU-
NIT test cases in separate processes. This procedure
is required to catch the exceptions raised by the An-
droid system when a component crashes. Once all
the test cases are executed, the XML report gathers
all the assertion results. In particular, the VULNERA-
BLE messages exhibit the detection of a vulnerability
issue. Table 2 depicts the number of occurrence of
these messages in XML reports. These results can
be also used with continuous integration servers like
Jenkins 5.

The following example illustrates a part of XML
report expressing the crash of a component. We ob-

4www.polidea.pl/
5http://jenkins-ci.org/

Applications Availability test results Integrity test results
App # com-

ponent
Time/
test

#vul/
#testcases

Time/
test

#vul/
#testcases

app 1 35 8s 861/969 0.7s 0/175
app 2 6 12s 95/147 0.25s 7/60
app 3 5 4s 0/117 - -
app 4 24 0.15s 52/545 - -
app 5 11 2s 3/33 0.175s 7/77
app 6 11 3s 11/120 - -
app 7 11 3s 20/110 - -
app 8 11 3s 20/110 - -
app 9 13 0.90s 19/80 - -
app 10 15 2.1s 15/105 1.6s 31/105

Table 2: Experimentation Results

tain a VULNERABLE message inside a failure XML
block. Hence, the verdict is VUL/FAIL.

Listing 1: An XML test report
1 < t e s t s u i t e e r r o r s ="0" f a i l u r e s ="1" name="

packagename.test.Intent.ContactActivityTest

" package ="packagename.test.Intent" t e s t s ="
1" t ime ="0.15" t imes t amp ="2013-02-13
T10:05:02">

< t e s t c a s e c l a s s n a m e ="packagename.test.Intent.
ContactActivityTest" name="test1" t ime ="
0.15">

3 < f a i l u r e> VULNERABLE
INSTRUMENTATION RESULT: shor tMsg = j a v a . l a n g

. N u l l P o i n t e r E x c e p t i o n
5 INSTRUMENTATION RESULT: longMsg= j a v a . l a n g .

N u l l P o i n t e r E x c e p t i o n
INSTRUMENTATION CODE: 0

7 </ f a i l u r e>
</ t e s t c a s e>

9 </ t e s t s u i t e>

5.2 Experimentation

We experimented several real Android applications
provided by the Openium company 6. Table 2 sum-
marises the results obtained on 10 applications with
two vulnerability patterns, the one of Figure 1 and a
vulnerability dedicated to integrity testing. Basically,
this one aims at checking whether stored data can
be modified with malicious intents: initially, a set of
structured data, managed by a Content provider com-
ponent, are stored. Then, all the components (Service
or Activity) composed with this Content provider, are
called with malicious intents composed of SQL and
XML injections. Finally, the Content provider state
is requested to check if it has been modified without
having any user or administrator credentials.

For each application and each vulnerability pat-
tern, we provide, the number of tested components,

6http://www.openium.fr/



the average test case execution time delay, and the
number of vulnerability issues detected over the test
case number.

With the availability pattern, all the tested applica-
tions revealed vulnerability issues. For instance, 969
test cases were generated by our tool for app 1 and
861 revealed issues. Obviously, several vulnerable
verdicts were obtained on account of the same vulner-
ability in the component code. All these issues were
essentially observed by component crashes when re-
ceiving malicious intents (receipt of exceptions such
as NullPointerException).

For the second vulnerability pattern, tests were ap-
plied only on the applications whose generated class
diagrams reveal at least one Content provider compo-
nent (applications 1, 2, 5 and 10). We detected data
Integrity issues with app 5 and app 10. In particu-
lar, test reports show that data modifications were de-
tected with app 5 and data deletion with app 10 with-
out providing login credentials with the intents.

Table 2 also gives the average test case execution
time measured with Mid 2011 computer with a CPU
2.1Ghz Core i5 and 4Gb of RAM. Each test case ex-
ecution took few seconds for most of them. Some
required longer time processing than others though
(some milliseconds up to 12s). This difference comes
from the application code. For instance, for app 1,
some Activities perform several successive tasks: the
receipt of an intent, the call of a Content provider to
insert data into database, the call of a remote Web Ser-
vice via a Service component and finally the display
of a screen. Testing these Activities requires a longer
execution time than testing other components such as
the Activities of app 4 which directly display a screen.

Nonetheless, the longer test case execution times
do not exceed few seconds. These results are coherent
with other Android application testing methods e.g.,
the tool introduced by (Benli et al., 2012).

6 RELATED WORK

Security testing and the improvement of Android se-
curity are not new trends. Below, we compare our
approach with some recent works from the literature.

Firstly, security testing, based upon formal mod-
els, has been studied in several works. (Le Traon
et al., 2007) proposed a test generation technique to
check whether security rules modelled with the Or-
BAC language hold on implementations under test.
A mutation testing technique is considered for test-
ing the access control policy robustness. (Marchand
et al., 2009) proposed a method where test cases
are generated from a specification and invariants or

rules describing security policies. The main differ-
ence with our work is that we do not assume having a
specification or a test case set. Instead, we propose
a specification generation for Android components.
(Mouelhi et al., 2008) introduced a test case gener-
ation for Java applications from security policies de-
scribed with logic-based languages e.g., OrBAC, to
describe access control properties. Policy enforce-
ment points are injected into the code which is later
tested with a mutation testing approach. Our work
is not dedicated to access control policy. We also do
not modify the original code. Furthermore, instead
of considering a mutation technique to concretise test
cases, we combine the use of SQL, XML injections,
values known for relieving bugs and random testing.

(Marback et al., 2013) proposed a threat mod-
elling based on trees. This method produces test cases
from threat trees and transforms them into executable
tests. Although the use of trees is intuitive for Indus-
try, formal models offer several other advantages such
as the description of the testing verdict without ambi-
guity. Furthermore, specifications are not considered
in this related work, so false positive or negative re-
sults may be discovered with a higher rate than with
our method.

Other works, dealing with Android security, have
been also proposed recently. Some works focused on
the definition of a more secure Android system. For
instance, (Ongtang et al., 2009) proposed a monitor-
ing technique to check the system integrity.

The analysis of the Android IPC mechanism were
also studied by (Chin et al., 2011b). They de-
scribed the permission system vulnerabilities that ap-
plications may exploit to perform unauthorised ac-
tions. Vulnerability patterns, that can be used with
our method, can be directly extracted from this work.
Other studies deal with the security of pre-installed
Android Applications and show that target applica-
tions receiving oriented intents can re-delegate wrong
permissions (Zhong et al., 2012; Grace et al., 2012).
Some tools have been developed to detect the receipt
of wrong permissions by means of malicious intents.
In our work, we consider vulnerability patterns to
model more general threats based on availability, in-
tegrity or authorisation, etc. (Jing et al., 2012) pro-
posed a model-based conformance testing framework
for the Android platform. Like in our approach, par-
tial specifications are constructed from Manifest files.
Nevertheless, the authors do not consider the An-
droid documentation to augment the expressiveness
of these specifications and consider implicit intents
only. Test cases are generated, from these specifica-
tions, to check whether intent-based properties hold.
This approach lacks of scalability though since the set



of properties, provided in the paper, is based on the
intent functioning and cannot be modified. Our work
can take as input any vulnerability pattern.

7 CONCLUSION

In this paper, we have presented a security testing
method of Android applications for testing whether
components are vulnerable to malicious intents. The
originality of this work resides in the intent mech-
anism security testing first, but also in the auto-
matic generation of partial specifications from An-
droid Manifest files. These specifications are used to
generate test cases composed of either implicit or ex-
plicit intents. They also contribute to complete the
test verdict with the specific verdicts NVUL/FAIL and
VUL/FAIL, pointing out that the component under
test does not meet the recommendations provided in
the Android documentation.

In future works, we intend to perform other exper-
imentations with further vulnerability patterns based
on the Authorisation concept. We also intend to ex-
tend the automatic test case generation from the par-
tial specifications of a component to automatically
test some security vulnerabilities without providing
patterns or to test other features such as robustness.
Furthermore, our method tests components one by
one without considering the underlying intents sent to
other components. It could be interesting to check if
these intents could be intercepted at runtime to inject
malicious data for eventually detecting further vulner-
abilities.
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