
Sébastien Salva, LIMOS, UDA

12th TAROT Summer School 2016

1

2

Who am I?

3

Public void setUp(){

Identity id=new Identity(‘’salva’’);}

Public void testid (){

assertEquals(id.surname, ’’sébastien’’);

assertEquals(id.name, ’’salva’’);

assertEquals(id.labo, ’’LIMOS’’);

assertEquals(id.city ’’Clermont-Ferrand’’);

assertArrayEquals(id.recherche, new String[] {‘’Model-based Testing’’, ‘’model
inference‘’, ‘’passive testing‘’, ‘’security‘’});

}

Outline
 Cloud computing ?

 Testing in clouds

 Model-based testing example

4

A Short comment on Apps
 In this talk, apps deployed in clouds are Web services

 Why? most of the Apps deployed in Clouds (PaaS) are Web services

 A lot of works about Web service testing, Web service composition, etc.

 SOAP, REST ?

 Composite Web service ? Orchestration, choregraphy ?

BD

BD

HTTP

5

A Short comment on Apps
 Some WS standards

6

7

Cloud computing definition ?

“… the market seems to have come to the conclusion
that cloud computing has a lot in common with
obscenity--you may not be able to define it, but you’ll
know it when you see it”

James Urquhart – The Wisdom of Clouds

8

Cloud origin
 Cloud computing, introduced by

 Amazon (2002), suite of cloud-based services including storage,
computation and even human intelligence through the Amazon
Mechanical Turk.

 2006, Amazon launched its Elastic Compute cloud (EC2)

 was announced as "Azure" in October 2008 and was released on 1
February 2010 as Windows Azure, before being renamed to Microsoft
Azure on 25 March 2014. Google App Engine (often referred to as GAE or
simply App Engine)

9

https://www.mturk.com/mturk/welcome

Cloud origin
 Now: GAE, Azure EC2, IBM SmartCloud, Oracle Cloud, Heroku, etc.

 Dockers, micro-services

Cloud features :
 new API,

 storage,

 compute,

 Scalability (long term),

 Elasticity (short term),

 etc.

10

https://en.wikipedia.org/wiki/IBM_cloud_computing#IBM_SmartCloud

Structuration d’un Cloud ?Architecture

11

Architecture

12

Architecture

• PaaS : platform as a service
• Deployment of apps (web services, etc.) in extensible env.
• OS+ App server (glassfish, jboss, etc.) + persistance layer + API
• Ex: GAE, Windows Azure, openshift, etc.

• SaaS : software as a service
• Service proposed to Customers (Dropbox, ?)

Architecture

13

Deployment models
• Public Cloud: solutions open for public use with access over a network (Internet)

• ex: Amazon, Microsoft, Google

• Private Cloud: private infrastructure available to a unique organisation.

• Hardware, software have to be managed by the organisation.

• Need of re-evaluating the required resources periodically and the Security issues after
every modification

• Loss of several advantages of Clouds: flexibility, scalability

14

Deployment models

 Hybrid Cloud :

• Composed of 2 or more private, public clouds bound together(several providers)

• Support several deployment models

• Share the same advantages as public and private clouds (flexibility, scalability)

• Sensitive data can be stored into the private part

15

Year sponsors Languages

2011 VMware Spring,Rails,
sinatra, node.js

2011 Red hat Express-ruby, PHP,
python, flex, jboss,
java EE6

2009 WS02 Tomcat, jboss, java
EE6

2012 HP Java, Ruby, Perl,
Java, etc

platform: Openstack

Some Open source PaaS

16

Windows Azure insight

17

PaaS Windows Azure
 IaaS and SaaS layers not seen here

 Services of the PaaS layer :

 Langages:
 C# VB, Python, Java, PHP, Ruby, etc.

 Type of Apps :
 Web Services SOAP, REST, plain/text,
 Web sites

 Admin, performance analysis, interfaces, etc.

18

 1er découpage architectural

PaaS Windows Azure

VMs

serveurs

Service Bus: message queuing platform build by Azure that provides Relay and Brokered messaging capabilities

Identity/Acces control: manages access to service bus, supports protocols like OAuth v1 v2, Simple Web Tokens
(SWT) for REST services, or SAML, WS-Federation et WS-Trust for SOAP services

Cloud services : SOAP Rest web services, web role, worker roles

19

 1er découpage architectural

PaaS Windows Azure

VMs

serveurs

Blobs: blob files allowing to store files or meta-data
Table: non relational tables, fulfilled with entities,
Queue asynchronous FIFO between apps
Drive manage and configure vituel disks

20

PaaS Windows Azure
 Web and worker roles:

 Web Role:

 Apps called with HTTP Requests / responses (Web pages, WCF Web services, etc.)

 Worker role:

 Service running in the background. Cannot be called via HTTP

 Web services and workers can interact through Queues:

 workers yield Data, Web services read it and answer

21

PaaS Windows Azure
Web and worker roles

 Web service can change of state

 Web and worker roles can be put in different VMs (manual distribution)

22

PaaS Windows Azure
 Example with ServiceBus:

 Relay messaging: Relay between entitites:
 Build hybid apps partly deployed in Azure,
 The whole app is secured by the Relay

 https://www.windowsazure.com/en-us/develop/net/how-to-guides/service-bus-relay/

23

Azure Management Console

24

Azure Management Console

25

Apps localisation

Where is my Mind ? ?

26

27

3 2 1 Fight
[CHN15]

 Testing Clouds vs.
 Testing cloud architectures (VM, network, load, etc.) => perf, cloud properties [D-

Cloud]
 Cloud simulators (Cloudsim, Greencloud, etc.)

 Testing with Clouds vs.
 Use of clouds for testing
 Testing as a service (a lot of commercial solutions available: Xamarin Test Cloud,

pCloudy)

 Testing in Clouds
 Testing Apps, web services, deployed in clouds

28

Testing in Clouds
 Conformance testing of Apps

 Regression testing

 Security testing

 Availability

 Checking privacy, secret, authorization, integrity

 Interoperability testing (betwen 2 services in different clouds, etc.)

 Third-party dependencies

29

Models
High level languages (ws-BPEL, BPMN, etc.)

WS-BPEL BPMN

30

Formal Model based on transition systems
=>Formal models encoding the functionnal behaviours of WS, of composite
WS

 Transition systems

 Transition labels: ! stands for emission and ? stands for reception

 Supported by many tools

LTS

Model name ?

31

Formal Model based on transition systems
 Symbolic models:

 Modelisation of parameters, data constraints

STG, IOSTS, EFSM

 Timed models:

Add the modelisation of time constraints (delays between two calls, etc.)

TA, TEFSM

32

IOSTS
 IOSTS (IOLTS) considered here

Why ?

 IOSTS (and IOLTS) can be represented with graphs and with process-
algebraic behaviour expression [Tre96]

 ?req1;!resp1 | ?req2; !resp2

 Advantage: model transformations, modifications can be given with
inference rules

If condition

Then action

33

IOSTS

34

1

4

3

2

?itemsearch(
AWAccessID, SearchIndex,
keyword)

id:= AWAccessID

!itemsearchResp(Errors,
isvalid)
[valid(id)=false
isvalid = false]

!itemsearchResp(items[], isvalid,
requestid)
[valid(id)=true isvalid = false]
Req:=requestid

?itemLookup(item,
reqid)
[reqid=req]

?itemLookupResp(
Details[], isvalid)
[isvalid=true]

[isvalid=false]

id=‘’
req=‘’

Communicatio
n parameters

Internal
variables

Initial condition

Quiescence=> IOSTS
suspension

Example:
Amazon Web service

IOSTS->IOLTS
 Express behaviours that may be infinite
 underlying (valued) model : IOLTS semantic

35

Definition (ioLTS semantics) The semantics of an ioSTS S= L,l0,V,V0, I ,L,®

is the ioLTS S = Q,q0,å,® where:

 Q = L ´ DV
is the set of states;

 q0 = (l0,V0)is the initial state;

 å = a(p),q a(p) ÎL,q ÎDp{ }is the set of valued symbols. å I is the set of input

actions and åO is the set of output ones,

 ® is the transition relation Q´ å´Q deduced by the following rule:

l1
a(p),G,A

¾ ®¾¾¾ l2,q ÎDp,vÎDV ,v'ÎDV ,vÈq =G,v' = A(vÈq)

(l1,v)
a(p),q

¾ ®¾¾ (l2,v')

IOSTS->IOLTS
1

Req=
‘’

?itemsearch(‘1234’, book, potter)

2
Req=

‘’
3

Req=
‘3’

3
Req=

‘4’

3
Req=

‘2’

3
Req=

‘1’…

…
?itemsearch(
‘1234’, car,
2CV)

4
Req=

‘1’

4
Req=

‘2’

4
Req=

‘2’

4
Req=

‘2’

…

1

4

3

2

?itemsearch(
AWAccessID, SearchIndex,
keyword)

id:= AWAccessID

!itemsearchResp(items[], isvalid,
requestid)
[valid(id)=true isvalid = false]
Req:=requestid

?itemLookup(item,
reqid)
[reqid=req]

?itemLookupResp(
Details[], isvalid)
[isvalid=true]

[isvalid=false]

id=‘’
req=‘’

36

Web service composition modelisation
 Desc. of the services, parameters, correlations, etc.

 Example:

S A

37

Web service composition modelisation

?Creq

!CartcReq

!CartcResp

!CartcRes
p

!CResp2

!CResp

38

Model-based testing in clouds
 Type of testing

 active

 passive, Runtime Verification

 Security, robustness, conformance etc.

39

Active testing
Spec

WS impl S

Test case
gen.

Test
cases

execution Verdict

Σ?

Σ!

Σ?

Σ!

WS

I « passes » test
cases
 I impl Spec ?

Observation here

From web service composition model -> test case gen. -> test case exec. -> verdict

40

Passive testing of Web services
Σ?

Σ!

Client traffic
Specif.

Or properties
(invariants)

WS

Ws impl S

Verdict Monitor

Monitoring of web service compositions
No direct interaction with WS

[ACN10][BDANG7][BP09], etc.

no faulty
behaviour
 I impl Spec ?

Client traffic

41

Passive testers
• Offline modes

• Trace collection

• Trace of WS belongs to traces of S?
• Or property traces ?

 Online mode

Online Tester based on a « checker state algorithm »

• Simplified algo:
• Stores the specification states reached in L

• Message observed m =>

• Covers specification (or derived model) from states of L
with m -> set of states S’

• Check whether the states of S’ are « bad » states => fail
• Check whether the states of S’ are « good » states =>

invariant holds
• L = L’
• And so forth

42

Runtime verification of Web services

 Comes from verification
 Verification of prop. at runtime (during execution)

 Prop. in logics (LTL, CTL, nomad, etc.), automata, etc.

 Check whether prop. hold at runtime (passively)

 Generation of a Monitor model from properties
 Monitor + passive tester -> verdicts: violation of prop, etc.

 [CPFC10][RPG06] [SC14], etc.

43

Observations, testing architectures

 Collect of the WS requests, responses in Clouds

 With network sniffers? (when VM are available)

 By modifying cloud engines ?

 Difficult

 By instrumentation of the WS codes

 With Agents: SNMP agent, mobile agents

44

Observations, testing architectures

 [BDSG09] [SP15]

teste
r

teste
r

45

Observations, testing architectures

 [BDSG09] [SP15]

tester

tester

tester

tester

tester

tester

46

Observations, testing architectures

 [BDSG09] [SP15]

w
s1

w
s2

w
s3

Obs
+

tester

teste
r

47

Testing in Clouds issues
1. Web service composition level of abstraction ?

 Test the composite Service

 Test of all the components?

2. Controllability
 Can all the service be requested ? (workers: no)

3. Observability of the messages in Clouds ?
 -> need of specific observers

 Sniffers cannot be added to PaaS

 -> code instrumentation, Cloud instrumentation, agents, etc.

48

Testing in Clouds issues
4. Message receipt modes

 Synchronous mode ? No
 Clouds => delays => asynchronous mode is closer to reality [NKRW11]
 “Asynchronous communication delays obscure the observation of the tester”
 Loss of messages, interleaving, delays (HTTP timeouts, etc.)-> see [PYL03] [NKRW11] , etc.

=> Different implementation relations
 Preorder
 ioco -> iocoU (under-specified models) [VRT03], etc.

=> Show that you have Finite test case number / sound test algorithms
 WS methods composed of parameters -> difficult to build exhaustive test suite
 -> need of test assumptions

49

Passive testing with proxy-tester

50

Passive testing with proxy-testers
[S11d] [SP15]

 Proxy-testing principle

 Assumptions: message redirection to proxy (possible in practice), message
synchronisation (light protocol to order messages, network latency <<
quiescence obs.)

Proxy
tester

client

client

client

client

client WS1

WS3

WS2

obs

51

Passive testing with proxy-testers
[S11d] [SP15]

 Proxy-testing principle

 Assumptions: message redirection to proxy (possible in practice), message
synchronisation (light protocol to order messages, network latency <<
quiescence obs.)

Proxy
tester

client

client

client

client

client WS1

WS3

WS2

obs

obs

obs

52

Passive testing with proxy-testers
[S11d] [SP15]

 Passive testing with proxy concept ? =>
1. passive tester algorithm
2. + automatic gen. of proxy-tester models for checking whether ioco holds

 Proxy-tester model to express message exchanged
 between client <-> Web services

 among Web service

 Proxy-tester model generated from specification

53

IOSTS canonical tester

54

IOSTS canonical tester

Caonical
tester

55

IOSTS canonical tester

Caonical
tester

56

Proxy-tester model gen.

CLient to WS

WS to Any

Wrong behaviour

57

Proxy-tester model gen.
 Illustration:

Property on traces: 𝑇𝑟𝑎𝑐𝑒𝑠𝐹𝑎𝑖𝑙
𝐶𝐴𝑁(𝑃 (𝑆)) = 𝑇𝑟𝑎𝑐𝑒𝑠𝐹𝑎𝑖𝑙(𝐶𝐴𝑁(𝑆))

58

Proxy-tester model gen.
 Illustration:

Property on traces: 𝑇𝑟𝑎𝑐𝑒𝑠𝐹𝑎𝑖𝑙
𝐶𝐴𝑁(𝑃 (𝑆)) = 𝑇𝑟𝑎𝑐𝑒𝑠𝐹𝑎𝑖𝑙(𝐶𝐴𝑁(𝑆))

59

What to do with proxy-tester model ?
 Ioco implementation relation
𝐼 𝑖𝑜𝑐𝑜 𝑆𝑇𝑟𝑎𝑐𝑒𝑠 𝑆 . 𝑂 ! 𝛿 𝑇𝑟𝑎𝑐𝑒𝑠 𝐼 𝑇𝑟𝑎𝑐𝑒𝑠 𝑆 (RUSU05a)

𝐼 𝑖𝑜𝑐𝑜 𝑆𝑇𝑟𝑎𝑐𝑒𝑠 𝐼 𝑁𝐶𝑇𝑟𝑎𝑐𝑒𝑠 (𝑆)) = Ø

𝐼 𝑖𝑜𝑐𝑜 𝑆𝑇𝑟𝑎𝑐𝑒𝑠 𝐼 𝑇𝑟𝑎𝑐𝑒𝑠𝐹𝑎𝑖𝑙
𝐶𝐴𝑁 𝑃 𝑆 = Ø

𝐼 𝑖𝑜𝑐𝑜 𝑆𝑇𝑟𝑎𝑐𝑒𝑠𝐹𝑎𝑖𝑙 ||(Env, P, I) = Ø

60

Prop. on traces
𝑁𝐶𝑇𝑟𝑎𝑐𝑒𝑠 𝑆

= 𝑇𝑟𝑎𝑐𝑒𝑠𝐹𝑎𝑖𝑙
𝑐𝑎𝑛 𝐶𝐴𝑁 𝑆

Def. Parallel execution
||(Env, P, I) = IOLTS

 Proxy tester + passive tester Algo:
Builds traces
If a trace -> Fail => error

Passive tester algorithm

Observer

Separates flow of
request / Client

Launch a tester /
client

Analyser

Checker state based
algorithm

Build traces on proxy
models
If new state = Fail =>
error

Analyser

Checker state based
algorithm

Build traces on proxy
models
If new state = Fail =>
error

Analyser

Checker state based
algorithm

Build traces on proxy
models
If new state = Fail =>
error

Analyser

Checker state based
algorithm

Build traces on proxy
models
If new state = Fail =>
error

Tester

Checker state based
algorithm

Build traces on proxy-
tester models
If new state = Fail =>
error

messages
Solver to

check whether
guards hold

61

Passive testing with proxy-tester
 Implementation on 2 Clouds

 Windows Azure and Google AppEngine

62

Tester
instances

Tester
instances

observer

observer

Runtime verification with proxy-testers
 Completion of Proxy-tester models with

 Safety properties ‘’nothing bad ever happens’’

 “A language L is a safety language if every word not in L has a finite bad
prefix”

 Safety property modeled with ioSTSs

IOSTS expresses behaviours that violates property with a Violate state

63

Runtime verification with proxy-testers
safety property example

”the receipt of an order confirmation
(labelled by done) without requesting the
wholesaler is BAD”

64

safety property Monitor (canonical tester //
prop)

Proxy monitor

Runtime verification with proxy-testers

specification

65

Runtime verification with proxy-testers
 Algorithm soundness

 Trace -> Fail => ioco not safisfied

 Trace -> Violate => safety prop. Violated

 Trace -> Fail/Violate => both

66

Azure 1

Evaluation
Cloud = Azure
3 Web services
1-20 mocked clients in the same time doing
20 requests

Architecture :

In our laboratory

Offline

Online

ws1

Azure 2

ws2

ws3

Azure
observer

Tester
Tester

67

Limitations ?
 Bottlenecks on observer, Solver -> latencies issues

 The more clients, the more testers => requires more resources

>50 clients => online mode ko

But?

 We could benefit from the cloud features !

 Unlimited number of VMs and cpu => parallel observer, unlimited tester
instances

68

69

Conclusion
 What makes testing apps in clouds more difficult ?

 Dynamic nature of clouds

 difficulty to observe outputs (asynchronous communication mode, hidden
messages in compositions)

 Protocols, APIs,

 Need of additional test hypotheses or to revisit Implementation relations

 But, testing in clouds can benefits from clouds
 Rely on the flexibility of clouds to implement testers

70

Some Perspectives
 Other kinds of observers for clouds ?

 Add Monitor services to Web service compositions

 Complete Web service codes with observers ?

 Build Docker containers for testing

 Model-based testing requires models
 Writing model is dificult and error-prone

 -> model inference of composite service ? (active, passive inference, etc.)

 Apps developped for clouds often associated with Big data
 Testing the «big data » side of these apps (robusteness)?

71

Thank you
 Questions ?

72

 [BDSG09]A. . Benharref, R. Dssouli, M. Serhani and R. Glitho, Efficient Traces Collection Mechanisms for Passive Testing of Web Services, Elsevier Information
and Software Technology 51 (2009), 362 – 374

 [VRT03] Bijl, Machiel van der and Rensink, Arend and Tretmans, Jan (2004) Compositional Testing with ioco. In: Third International Workshop on Formal
Approaches to Testing of Software, FATES 2003, October 6, 2003, Montreal, Quebec, Canada (pp. pp. 86-100).

 [NKRW11] Neda Noroozi , Ramtin Khosravi , Mohammad Reza Mousavi , Tim A. C. Willemse , Synchronizing Asynchronous Conformance Testing, In Proc. of
SEFM 2011, volume 7041 of LNCS

 [SC14] Sébastien Salva and Tien-Dung Cao, Proxy-Monitor: An integration of runtime verification with passive conformance testing., In International Journal of
Software Innovation (IJSI), vol. 2, nb. 3, p. 20--42, IGI Global, 2014

 [SP15] Sébastien Salva and Patrice Laurençot, Conformance Testing with ioco Proxy-Testers: Application to Web service compositions deployed in Clouds, In
International Journal of Computer Aided Engineering and Technology (IJCAET), vol. 7, nb. 3, p. 321--347, Inderscience, 2015

 [CHN15] Ana R. Cavalli, Teruo Higashino, Manuel Núñez, A survey on formal active and passive testing with applications to the cloud. Annales des
Télécommunications 70(3-4): 85-93 (2015)

 [PYL03]Testing Transition Systems with Input and Output Testers (2003), Alexandre Petrenko , Nina Yevtushenko , Jia Le Huo , PROC TESTCOM 2003, SOPHIA
ANTIPOLIS

 [ACN10] Passive Testing of Web Services César Andrés, M. Emilia Cambronero, Manuel Núñez ProceedingWS-FM'10 Proceedings of the 7th international
conference on Web services and formal methods

 [BBANG07] New Approach for EFSM-Based Passive Testing of Web Services Abdelghani Benharref, Rachida Dssouli, Mohamed Adel Serhani, Abdeslam En-
Nouaary, Roch Glitho, roceedingTestCom'07/FATES'07 Proceedings of the 19th IFIP TC6/WG6.1 international conference, and 7th international conference on
Testing of Software and Communicating Systems

 [BPZ09] A Formal Framework for Service Orchestration Testing Based on Symbolic Transition Systems Lina Bentakouk, Pascal Poizat, Fatiha Zaïdi, TESTCOM
'09/FATES '09 Proceedings of the 21st IFIP WG 6.1 International Conference on Testing of Software and Communication Systems and 9th International FATES
Workshop

 [RPG06] Retracted: Towards Formal Verification of Web Service Composition Mohsen Rouached, Olivier Perrin, Claude Godart, Business Process
ManagementVolume 4102 of the series Lecture Notes in Computer Science pp 257-273

 [CPFC10] Automated Runtime Verification for Web Services, Tien-Dung Cao 1 Trung-Tien Phan-Quang 1 Patrick Félix 1 Richard Castanet, IEEE international
Conference on Web Services, Jul 2010, Miami, United States. pp.76-8

73

74

75

Orchestration des services

•Lorsqu’un service web coordonne d’autres services

•Par des processus BPEL (processus écrit en XML qui décrit comment

interagissent les WS suivant des stimuli extérieurs)

•Besoin d’un serveur qui exécute les processus BPEL

la gestion des erreurs doit être gérée par le processus (mécanisme de

replis, re-exécution du processus)

•Langage de programmation de processus mais aussi interface graphique

(boites)

76

Chorégraphie de services

•Chaque service web mêlée dans la chorégraphie connaît exactement

quand ses opérations doivent être exécutées et avec qui l’interaction doit

avoir lieu.

•Description des interactions de service uniquement de pair à pair

•Pas de processus, chaque service connait les actions à effectuer par

rapport aux messages reçus

•Langage en XML WS-CL ou WSCI

77

•Definition des partenaires

•Utilisation de variables, assignation de valeurs (assign)

•Activités basiques (invoque, receive, reply, wait, throw)

•Activités structurés (while, switch, sequence,pick(temporisation)

•Correlation = session

•Scope découpage d’un processus en plusieurs parties

•Pl. handler possibles par scope (conpensation, fault, event)

78

Avec ActiveBPEL

79

Avec ActiveBPEL

80

