
Using Model Learning for the Generation of Mock Components

Sébastien Salva
LIMOS, Clermont Auvergne University, France

32nd IFIP International Conference on Testing
Software and Systems, dec. 2020

Who am I?

2/22

Public void setUp(){
Identity id=new Identity(‘’salva’’);}

Public void testid (){
assertEquals(id.surname, ’’sébastien’’);
assertEquals(id.name, ’’salva’’);
assertEquals(id.labo, ’’LIMOS’’);
assertEquals(id.univ ’’University Clermont Auvergne, France’’);

assertArrayEquals(i.recherche, new String[] {‘’testing’’, ‘’security’’, ’’model learning’’,
‘’services‘’});
}

ICTSS 2020 S. SALVA

Paper presentation

• Using Model Learning for the Generation of Mock Components
(in the context of IoT systems)

1. Overview
2. Model learning from logs of IOT systems
3. Choice of the components to mock
4. Mock generation/execution
5. (preliminary) Evaluation

ICTSS 2020 S. SALVA 3/22

Issues
IoT systems
• made up of heterogeneous components
• a lot of (complex) dependencies
=> Difficult to test, to write test cases

Uncontrollable components
=>prevent to cover all the behaviours

Simulating/replacing some components with mocks usually
helps
• must be manually developed
• Difficult to maintain mocks when system is updated

ICTSS 2020 S. SALVA 4/22

Approach Goals

• Generate Stubs/mocks allowing to simulate real IoT devices
• For replacing complex dependencies
• For replacing untestable devices (uncontrollable)

• Help choose the components to replace

Event Log Models Learning Choice of the devices
to simulate

Mock
generation

Testing
with mocksMonitoring

ICTSS 2020 S. SALVA 5/22

Big Picture

Event LOG

09:39:53.416
req1(from:=d1,to:=G,para
m:=udevice,nvalue:=64,sval
ue=TEMP)
09:39:53.848
resp1(from:=G,to:=d1,cont
ent:=ok)

09:39:54.216
req2(from:=G,to:=d2,type:
=command,nvalue:=64,sval
ue=TEMP)
09:39:55.429
resp2(from:=d2,to:=G,cont
ent:=received 64)
…

Quality
metric

evaluation
(testability,

dependability
, etc.)

Event Log Models Learning Choice of the devices
to simulate

Mock model
generation

Testing
with mocks

Mock
Runner

Choose

ICTSS 2020 S. SALVA 6/22

Model learning from logs of IOT systems

Assumptions :

1. Log with events, timestamps,

2. Component identified, recognise request/response, non communication event

3. (Session recognition)

I. Session id., or

II. requests processed on a first-come, first served basis, request-response exchange pattern (req-> 1 or
multiple resp)

ICTSS 2020 S. SALVA 7/22

Model learning from logs of IOT systems
CkTail (Comunicating system kTail) Algorithm :

ICTSS 2020 S. SALVA 8/22

Model learning from logs of IOT systems
Action seq.
09:39:53.416
req1(from:=d1,to:=G,param:=udevice,svalue:=open)
09:39:53.848
req2(from:=d3,to:=G,param:=udevice,svalue:=66)
09:39:55.416
req3(from:=G,to:=d2,param:=heating,cmd:=On)
09:39:55.429 resp3(from:=d2,to:=G,switchcmd:=done)
09:39:55.430
req4(from:=G,to:=d4,param:=heating,cmd:=On)
09:39:55.433
resp4(from:=d4,to:=G,switchcmd:=done)

09:39:55.567 resp1(from:=G,to:=d1,content:=req sent)
09:39:55.629 resp2(from:=G,to:=d3,content:=ok)
09:44:19.714
req6(from:=d3,to:=G,param:=udevice,svalue:=68)
09:44:19.727 resp2(from:=G,to:=d3,content:=ok)
09:44:19.727
req7(from:=G,to:=d2,param:=heating,cmd:=Off,svalue:=68
)
09:44:19.866 resp3(from:=d2,to:=G,switchcmd:=done)

ICTSS 2020 S. SALVA 9/22

Choice of the components to mock

• Could be manually performed but … seems difficult

• Evaluation of models with 6 quality metrics
• Understandability
• Accessibility
• Testability (obs, cont)
• Dependability (in-deps, out-deps)

ICTSS 2020 S. SALVA 10/22

Choice of the components to mock

• Metrics have to be interpreted for choosing the components to mock

• => proposition of a metric interpretation

• Classification of Components into categories
• Testable, Testable in isolation, mockable, untestable (code review)

• We propose 3 levels of interest

ICTSS 2020 S. SALVA 11/22

Choice of the components to mock

ICTSS 2020 S. SALVA 12/22

Choice of the components to mock

ICTSS 2020 S. SALVA 13/22

Mock generation/execution

Mock
GenerationIOLTS Mock model Mock

Runner

Engine that
executes a

mock model

Mock = Mock model, which is executed by a Mock Runner

IOLTS with
new specific
actions and
parameters

Mock model
• Written by hands from scratch (difficult)
• Transform the inferred IOLTSs

ICTSS 2020 S. SALVA 14/22

Mock generation/execution

Mock model
IOLTS with some specific parameters:

weight:

repetition:

delay:

ICTSS 2020 S. SALVA 15/22

Mock generation/execution

Mock model examples:

Original IOLTS Mock model
(repetition of req2, delay for ?resp6)

ICTSS 2020 S. SALVA 16/22

Mock generation/execution

Mock model examples:

Original IOLTS Mock model
(new action, delay for ?resp6)

ICTSS 2020 S. SALVA 17/22

Mock generation/execution

Mock Runner ~ Engine that executes a mock model

• Implemented as a Rest service

• Performs concrete executions by following the paths of a mock model
• Starts from q0 and either waits for an input or executes an ouput

• Builds and stores runs (alternate sequence of states and actions)

• If Mock runner receives an unexpected action, it returns an error in its log (can be
used by testers)

• Stops a current execution in an terminal or deadlock state

ICTSS 2020 S. SALVA 18/22

(preliminary) Evaluation

Perfomed from a real IoT system (20 devices, 2 gateways)
Conducted with 24 students (fourth-year in Computer Science)

• Measured the times required to code mocks from logs from scratch
and times for generating mocks
• Approach provides greater efficiency than building mocks by hands
• cuts the time by 75%

• Our mocks can replace reals devices if the inferred IOLTS are precise
enough precise (no over- or under-approximated)

ICTSS 2020 S. SALVA 19/22

Limitations

• Mock runner can be called from test cases but in a limited way at the
moment
• (start mock runner, give mock model, get runs and errors)
• -> could be extended (get number of inputs received?, outputs sent ?)

• Current Mock runner impl. requires some resources (mem, and cpu),
• ok if deployed on Web servers

• Choice of mockable devices made from the interpretation of metrics.
• depends on the systems ? Or the dev. Tools etc.

ICTSS 2020 S. SALVA 20/22

Perspectives

• Propose a better solution than a tabular of rules for choosing the
devices that can be replaced by mocks

• Executions with natural flows of parameter values (with maps instead
of values)

• Automatic generation of mock models from IOLTSs with different
strategies
• Strategy for robustness testing (!nject unexpected events, etc.)
• Strategy for security testing (inject malicisous behaviours, etc.)

ICTSS 2020 S. SALVA 21/22

Thanks

• Questions ?

ICTSS 2020 S. SALVA 22/22

Assumptions
A1 Event log: black-boxes The communications among the com- ponents can be monitored, Event logs are collected in a
synchronous environment made up of synchronous communications. Besides, these events are ordered by means of
timestamps given by a global clock.

A2 Event content: components produce communication events or non-communication events. iden- tify the source and
the destination of each event. a communication event can be iden- tified either as a request or a response;

A3 Device collaboration: components can run in par- allel and communicate with each other.
– A32: the events that belong to the same session are identified by a parameter assignment.

– A31: they cannot run multiple instances; requests are processed by a component on a first-come, first served basis.
Besides, components follow the request –response exchange pattern (a response is associated to one request, a request
is associated to one or more responses),

ICTSS 2020 S. SALVA 23

Mock generation/execution

A good mock should be compliant with :

component that mimics the behaviours of another real component (H1).
A mocks should be easily created, easily set up, and directly queriable (H2).
In the tests, the developer has to specify how the mock ought to be exercised (H3).
Besides, a mock can be handled by tests to verify that it runs as expected (H4).
If the mock is not exercised as expected, it should return an error so that tests fail (H5).

ICTSS 2020 S. SALVA 24

Mock generation/execution

Mock model example:

ICTSS 2020 S. SALVA 25

