
Sébastien Salva, LIMOS, UDA
12th TAROT Summer School 2016

1

2

Who am I?

3

Public void setUp(){
Identity id=new Identity(‘’salva’’);}

Public void testid (){
assertEquals(id.surname, ’’sébastien’’);
assertEquals(id.name, ’’salva’’);
assertEquals(id.labo, ’’LIMOS’’);
assertEquals(id.city ’’Clermont-Ferrand’’);

assertArrayEquals(id.recherche, new String[] {‘’Model-based Testing’’, ‘’model
inference‘’, ‘’passive testing‘’, ‘’security‘’});
}

Outline
� Cloud computing ?
� Testing in clouds
� Model-based testing example

4

A	Short	comment	on	Apps
� In this talk, apps deployed in clouds are Web services

� Why? most of the Apps deployed in Clouds (PaaS) are Web services
� A lot of works about Web service testing, Web service composition, etc.

� SOAP, REST ?
� Composite Web service ? Orchestration, choregraphy ?

BD

BD

HTTP

5

A	Short	comment	on	Apps
� Some WS standards

6

7

Cloud	computing definition ?

“… the market seems to have come to the conclusion
that cloud computing has a lot in common with
obscenity--you may not be able to define it, but you’ll
know it when you see it”

James Urquhart – The Wisdom of Clouds

8

Cloud	origin
� Cloud computing, introduced by

� Amazon (2002), suite of cloud-based services including storage,
computation and even human intelligence through the Amazon
Mechanical Turk.

� 2006, Amazon launched its Elastic Compute cloud (EC2)
� was announced as "Azure" in October 2008 and was released on 1

February 2010 as Windows Azure, before being renamed to Microsoft
Azure on 25 March 2014. Google App Engine (often referred to as GAE or
simply App Engine)

9

Cloud	origin
� Now: GAE, Azure EC2, IBM SmartCloud, Oracle Cloud, Heroku, etc.

� Dockers, micro-services

Cloud features :
� new API,
� storage,
� compute,
� Scalability (long term),
� Elasticity (short term),
� etc.

10

Structuration	d’un	Cloud	?Architecture

11

Architecture

12

Architecture

• PaaS : platform as a service
• Deployment of apps (web services, etc.) in extensible env.
• OS+ App server (glassfish, jboss, etc.) + persistance layer + API
• Ex: GAE, Windows Azure, openshift, etc.

• SaaS : software as a service
• Service proposed to Customers (Dropbox, ?)

Architecture

13

Deployment models
• Public Cloud: solutions open for public use with access over a network (Internet)

• ex: Amazon, Microsoft, Google

• Private Cloud: private infrastructure available to a unique organisation.

• Hardware, software have to be managed by the organisation.

• Need of re-evaluating the required resources periodicallyand the Security issues after
every modification

• Loss of several advantagesof Clouds: f lexibility, scalability

14

Deployment models
� Hybrid Cloud :

• Composed of 2 or more private, public clouds bound together(several providers)

• Support several deployment models

• Share the same advantages as public and private clouds (flexibility, scalability)

• Sensitive data can be stored into the private part

15

Year sponsors Languages

2011 VMware Spring,Rails,
sinatra, node.js

2011 Red hat Express-ruby, PHP,
python, flex, jboss,
java EE6

2009 WS02 Tomcat, jboss, java
EE6

2012 HP Java, Ruby, Perl,
Java, etc

platform: Openstack

Some Open	source	PaaS

16

Windows Azure insight

17

PaaS Windows	Azure
� IaaS and SaaS layers not seen here

� Services of the PaaS layer :

� Langages:
� C# VB, Python, Java, PHP, Ruby, etc.

� Type of Apps :
� Web Services SOAP, REST, plain/text,
� Web sites

� Admin, performance analysis, interfaces, etc.

18

� 1er découpage architectural

PaaS Windows	Azure

VMs

serveurs

Service Bus: message queuing platform build by Azure that provides Relay and Brokered messaging capabilities

Identity/Acces control: manages access to service bus, supports protocols like OAuth v1 v2, Simple Web Tokens
(SWT) for REST services, or SAML, WS-Federation et WS-Trust for SOAP services

Cloud services : SOAP Rest web services, web role, workerroles

19

� 1er découpage architectural

PaaS Windows	Azure

VMs

serveurs

Blobs: blob files allowing to store files or meta-data
Table: non relational tables, fulfilled with entities,
Queue asynchronous FIFO between apps
Drive manage and configure vituel disks

20

PaaS Windows	Azure
� Web and worker roles:

� Web Role:
� Apps called with HTTP Requests / responses (Web pages, WCF Web services, etc.)

� Worker role:
� Service running in the background. Cannot be called via HTTP

� Web services and workers can interact through Queues:
� workers yield Data, Web services read it and answer

21

PaaS Windows	Azure
Web and worker roles
� Web service can change of state
� Web and worker roles can be put in different VMs (manual distribution)

22

PaaS Windows	Azure
� Example with ServiceBus:

� Relay messaging: Relay betweenentitites:
� Build hybid apps partly deployed in Azure,
� The whole app is secured by the Relay

� https://www.windowsazure.com/en-us/develop/net/how-to-guides/service-bus-relay/

23

Azure	Management Console	

24

Azure	Management Console	

25

Apps	localisation

Where is my Mind ? ?

26

27

3	2		1	Fight
[CHN15]

� Testing Clouds vs.
� Testing cloud architectures (VM, network, load, etc.) => perf, cloud properties [D-

Cloud]
� Cloud simulators (Cloudsim, Greencloud, etc.)

� Testing with Clouds vs.
� Use of clouds for testing
� Testing as a service (a lot of commercial solutions available: Xamarin Test Cloud,

pCloudy)

� Testing in Clouds
� Testing Apps, web services, deployed in clouds

28

Testing in	Clouds
� Conformance testing of Apps

� Regression testing

� Security testing
� Availability
� Checking privacy, secret, authorization, integrity

� Interoperability testing (betwen 2 services in different clouds, etc.)

� Third-party dependencies

29

Models
High level languages (ws-BPEL, BPMN, etc.)

WS-BPEL BPMN

30

Formal Model	based on	transition	systems
=>Formal models encoding the functionnal behaviours of WS, of composite
WS

� Transition systems
� Transition labels: ! stands for emission and ? stands for reception

� Supported by many tools

LTS

Model name ?

31

Formal Model	based on	transition	systems
� Symbolic models:

� Modelisation of parameters, data constraints
STG, IOSTS, EFSM

� Timed models:
Add the modelisation of time constraints (delays between two calls, etc.)
TA, TEFSM

32

IOSTS
� IOSTS (IOLTS) considered here
Why ?

� IOSTS (and IOLTS) can be represented with graphs and with process-
algebraic behaviour expression [Tre96]

� ?req1;!resp1 | ?req2; !resp2

� Advantage: model transformations, modifications can be given with
inference rules

If condition

Then action
33

IOSTS

34

1

4

3

2

?itemsearch(
AWAccessID, SearchIndex,
keyword)
id:= AWAccessID

!itemsearchResp(Errors,
isvalid)
[valid(id)=false ∧
isvalid = false]

!itemsearchResp(items[], isvalid,
requestid)
[valid(id)=true ∧ isvalid = false]
Req:=requestid

?itemLookup(item,
reqid)
[reqid=req]

?itemLookupResp(
Details[], isvalid)
[isvalid=true]

δ

δ

δ
[isvalid=false]

id=‘’
req=‘’

Communicatio
n parameters

Internal
variables

Initial condition

Quiescence=> IOSTS
suspension

Example:
Amazon Web service

IOSTS->IOLTS
� Express behaviours that may be infinite
→ underlying (valued) model : IOLTS semantic

35

S = L,l0,V ,V0, I ,Λ,→

IOSTS->IOLTS
1

Req=
‘’

δ

?itemsearch(‘1234’, book, potter)

2
Req=

‘’
3

Req=
‘3’

3
Req=

‘4’

3
Req=

‘2’

3
Req=

‘1’…

…
?itemsearch(
‘1234’, car,
2CV)

4
Req=

‘1’

4
Req=

‘2’

4
Req=

‘2’

4
Req=

‘2’

…

δ δ δ δ

1

4

3

2

?itemsearch(
AWAccessID, SearchIndex,
keyword)
id:= AWAccessID

!itemsearchResp(items[], isvalid,
requestid)
[valid(id)=true ∧ isvalid = false]
Req:=requestid

?itemLookup(item,
reqid)
[reqid=req]

?itemLookupResp(
Details[], isvalid)
[isvalid=true]

δ

δ

δ
[isvalid=false]

id=‘’
req=‘’

36

Web	service	composition	modelisation
� Desc. of the services, parameters, correlations, etc.

� Example:

S A

37

Web	service	composition	modelisation
?Creq

!CartcReq

!CartcResp

!CartcRes
p

!CResp2

!CResp

38

Model-based testing in	clouds
� Type of testing

� active
� passive, Runtime Verification

� Security, robustness, conformance etc.

39

Active	testing
Spec

WS impl S

Test case
gen.

Test
cases execution Verdict

Σ?

Σ!

Σ?

Σ!

WS

I « passes » test
cases
ó I impl Spec ?

Observation here

From web service composition model -> test case gen. -> test case exec. -> verdict

40

Passive	testing of	Web	services
Σ?

Σ!
Client traffic

Specif.
Or properties
(invariants)

WS

Ws impl S

Verdict Monitor

Monitoring of web service compositions
No direct interaction with WS

[ACN10][BDANG7][BP09], etc.

no faulty
behaviour
ó I impl Spec ?

Client traffic

41

Passive	testers
• Offline modes

• Trace collection

• Trace of WS belongs to traces of S?
• Or property traces ?

� Online mode

Online Tester based on a « checker state algorithm »

• Simplified algo:
• Stores the specification states reached in L

• Message observed m =>

• Covers specification (or derived model) from states of L
with m -> set of states S’

• Check whether the states of S’ are « bad » states => fail
• Check whether the states of S’ are « good » states =>

invariant holds
• L = L’
• And so forth

42

Runtime verification of	Web	services
� Comes from verification
� Verification of prop. at runtime (during execution)

� Prop. in logics (LTL, CTL, nomad, etc.), automata, etc.

� Check whether prop. hold at runtime (passively)

� Generation of a Monitor model from properties
� Monitor + passive tester -> verdicts: violation of prop, etc.

� [CPFC10][RPG06] [SC14], etc.

43

Observations,		testing architectures

� Collect of the WS requests, responses in Clouds

� With network sniffers? (when VM are available)
� By modifying cloud engines ?

⇒ Difficult

� By instrumentation of the WS codes
� With Agents: SNMP agent, mobile agents

44

Observations,		testing architectures

� [BDSG09] [SP15]

teste
r

teste
r

45

Observations,		testing architectures

� [BDSG09] [SP15]

tester

tester

tester

tester

tester

tester

46

Observations,		testing architectures

� [BDSG09] [SP15]

w
s1

w
s2

w
s3

Obs
+

tester

teste
r

47

Testing in	Clouds issues
1. Web service composition level of abstraction ?

� Test the composite Service
� Test of all the components?

2. Controllability
� Can all the service be requested ? (workers: no)

3. Observability of the messages in Clouds ?
� -> need of specific observers
� Sniffers cannot be added to PaaS
� -> code instrumentation, Cloud instrumentation, agents, etc.

48

Testing in	Clouds issues
4. Message receipt modes

� Synchronous mode ? No
� Clouds => delays => asynchronous mode is closer to reality [NKRW11]
� “Asynchronous communication delays obscure the observation of the tester”
� Loss of messages, interleaving, delays (HTTP timeouts, etc.)-> see [PYL03] [NKRW11] , etc.

=> Different implementation relations
� Preorder
� ioco -> iocoU (under-specified models) [VRT03], etc.

=> Show that you have Finite test case number / sound test algorithms
� WS methods composed of parameters -> difficult to build exhaustive test suite
� -> need of test assumptions

49

Passive testing with proxy-tester

50

Passive	testing with proxy-testers
[S11d] [SP15]

� Proxy-testing principle

� Assumptions: message redirection to proxy (possible in practice), message
synchronisation (light protocol to order messages, network latency <<
quiescence obs.)

Proxy
tester

client

client

client

client

client WS1

WS3

WS2

obs

51

Passive	testing with proxy-testers
[S11d] [SP15]

� Proxy-testing principle

� Assumptions: message redirection to proxy (possible in practice), message
synchronisation (light protocol to order messages, network latency <<
quiescence obs.)

Proxy
tester

client

client

client

client

client WS1

WS3

WS2

obs

obs

obs

52

Passive	testing with proxy-testers
[S11d] [SP15]

� Passive testing with proxy concept ? =>
1. passive tester algorithm
2. + automaticgen. of proxy-tester models for checking whether ioco holds

� Proxy-tester model to express message exchanged
� between client <-> Web services
� among Web service

� Proxy-tester model generated from specification

53

IOSTS	canonical	tester

54

IOSTS	canonical	tester

Caonical
tester

55

IOSTS	canonical	tester

Caonical
tester

56

Proxy-tester	model	gen.

CLient to WS

WS to Any

Wrong behaviour

57

Proxy-tester	model	gen.
� Illustration:

Property on traces: 𝑇𝑟𝑎𝑐𝑒𝑠*+,-./0(𝑃	(𝑆)) = 𝑇𝑟𝑎𝑐𝑒𝑠*+,-(𝐶𝐴𝑁(𝑆))

58

Proxy-tester	model	gen.
� Illustration:

Property on traces: 𝑇𝑟𝑎𝑐𝑒𝑠*+,-./0(𝑃	(𝑆)) = 𝑇𝑟𝑎𝑐𝑒𝑠*+,-(𝐶𝐴𝑁(𝑆))

59

What to	do	with proxy-tester	model	?
� Ioco implementation relation
𝐼	𝑖𝑜𝑐𝑜	𝑆 %&𝑇𝑟𝑎𝑐𝑒𝑠 ' 𝑆 . (>) ! 𝛿 *𝑇𝑟𝑎𝑐𝑒𝑠 ' 𝐼 %+𝑇𝑟𝑎𝑐𝑒𝑠 ' 𝑆 (RUSU05a)
𝐼	𝑖𝑜𝑐𝑜	𝑆 %&𝑇𝑟𝑎𝑐𝑒𝑠 ' 𝐼 *𝑁𝐶𝑇𝑟𝑎𝑐𝑒𝑠 '(𝑆)) = Ø

𝐼	𝑖𝑜𝑐𝑜	𝑆 %&𝑇𝑟𝑎𝑐𝑒𝑠 ' 𝐼 *𝑇𝑟𝑎𝑐𝑒𝑠*+,-./0 𝑃 𝑆 = Ø

𝐼	𝑖𝑜𝑐𝑜	𝑆 %&𝑇𝑟𝑎𝑐𝑒𝑠*+,- ||(Env, P, I) = Ø

60

Prop. on traces
𝑁𝐶𝑇𝑟𝑎𝑐𝑒𝑠 ' 𝑆
= 𝑇𝑟𝑎𝑐𝑒𝑠*+,-H+I 𝐶𝐴𝑁 𝑆

Def.	Parallel execution
||(Env,P, I) = IOLTS

⇒ Proxy tester + passive tester Algo:
Builds traces
If a trace -> Fail => error

Passive	tester	algorithm

Observer

Separates flow of
request / Client

Launch a tester /
client

Analyser

Checkerstate based
algorithm

Build traces on proxy
models
If new state = Fail =>
error

Analyser

Checkerstate based
algorithm

Build traces on proxy
models
If new state = Fail =>
error

Analyser

Checkerstate based
algorithm

Build traces on proxy
models
If new state = Fail =>
error

Analyser

Checkerstate based
algorithm

Build traces on proxy
models
If new state = Fail =>
error

Tester

Checkerstate based
algorithm

Build traces on proxy-
tester models
If new state = Fail =>
error

messages
Solver to

check whether
guards hold

61

Passive	testing with proxy-tester
� Implementation on 2 Clouds

� Windows Azure and Google AppEngine

62

Tester
instances

Tester
instances

observer
observer

Runtime verification with proxy-testers
� Completion of Proxy-tester models with

� Safety properties ‘’nothing bad ever happens’’
� “A language L is a safety language if every word not in L has a finite bad

prefix”

� Safety property modeled with ioSTSs J
IOSTS expresses behaviours that violates property with a Violate state

63

Runtime verification with proxy-testers
safety property example

”the receipt of an order confirmation
(labelled by done) without requesting the
wholesaler is BAD”

64

safety property Monitor (canonical tester //
prop)

Proxy monitor

Runtime verification with proxy-testers

specification

65

Runtime verification with proxy-testers
� Algorithm soundness

� Trace -> Fail => ioco not safisfied

� Trace -> Violate => safety prop. Violated

� Trace -> Fail/Violate => both

66

Azure 1

Evaluation
Cloud = Azure
3 Web services
1-20 mocked clients in the same time doing
20 requests

Architecture :

In our laboratory

Offline

Online

ws1

Azure 2

ws2

ws3

Azure
observer

TesterTester

67

Limitations	?
� Bottlenecks on observer, Solver -> latencies issues

� The more clients, the more testers => requires more resources
>50 clients => online mode ko

But?
� We could benefit from the cloud features !
� Unlimited number of VMs and cpu => parallel observer, unlimited tester

instances

68

69

Conclusion
� What makes testing apps in clouds more difficult ?

� Dynamic nature of clouds
� difficulty to observe outputs (asynchronous communication mode, hidden

messages in compositions)
� Protocols, APIs,

� Need of additional test hypotheses or to revisit Implementation relations

� But, testing in clouds can benefits from clouds
� Rely on the flexibility of clouds to implement testers

70

Some Perspectives
� Other kinds of observers for clouds ?

� Add Monitor services to Web service compositions
� Complete Web service codes with observers ?
� Build Docker containers for testing

�

� Model-based testing requires models
� Writing model is dificult and error-prone
� -> model inferenceof composite service ? (active, passive inference, etc.)

� Apps developped for clouds often associated with Big data
� Testing the «big data » side of these apps (robusteness)?

71

Thank you
� Questions ?

72

� [BDSG09]A. . Benharref, R. Dssouli, M. Serhani and R. Glitho, Efficient Traces Collection Mechanisms for Passive Testing of Web Services, Elsevier Information
and Software Technology 51 (2009), 362 – 374

� [VRT03] Bijl, Machiel van der and Rensink, Arend and Tretmans, Jan (2004) Compositional Testing with ioco. In: Third International Workshop on Formal
Approaches to Testing of Software, FATES 2003, October 6, 2003, Montreal, Quebec, Canada (pp. pp. 86-100).

� [NKRW11] Neda Noroozi , Ramtin Khosravi , Mohammad Reza Mousavi , Tim A. C. Willemse , Synchronizing Asynchronous Conformance Testing, In Proc. of
SEFM 2011, volume 7041 of LNCS

� [SC14] Sébastien Salva and Tien-Dung Cao, Proxy-Monitor: An integration of runtime verification with passive conformance testing., In International Journal of
Software Innovation (IJSI), vol. 2, nb. 3, p. 20--42, IGI Global, 2014

� [SP15] Sébastien Salva and Patrice Laurençot, Conformance Testing with ioco Proxy-Testers: Application to Web service compositions deployed in Clouds, In
International Journal of Computer Aided Engineering and Technology (IJCAET), vol. 7, nb. 3, p. 321--347, Inderscience, 2015

� [CHN15] Ana R. Cavalli, Teruo Higashino, Manuel Núñez, A survey on formal active and passive testing with applications to the cloud. Annales des
Télécommunications 70(3-4): 85-93 (2015)

� [PYL03]Testing Transition Systems with Input and Output Testers (2003), Alexandre Petrenko , Nina Yevtushenko , Jia Le Huo , PROC TESTCOM 2003, SOPHIA
ANTIPOLIS

� [ACN10] Passive Testing of Web Services César Andrés, M. Emilia Cambronero, Manuel Núñez ProceedingWS-FM'10 Proceedings of the 7th international
conference on Web services and formal methods

� [BBANG07] New Approach for EFSM-Based Passive Testing of Web Services Abdelghani Benharref, Rachida Dssouli, Mohamed Adel Serhani, Abdeslam En-
Nouaary, Roch Glitho, roceedingTestCom'07/FATES'07 Proceedings of the 19th IFIP TC6/WG6.1 international conference, and 7th international conference on
Testing of Software and Communicating Systems

� [BPZ09] A Formal Framework for Service Orchestration Testing Based on Symbolic Transition Systems Lina Bentakouk, Pascal Poizat, Fatiha Zaïdi, TESTCOM
'09/FATES '09 Proceedings of the 21st IFIP WG 6.1 International Conference on Testing of Software and Communication Systems and 9th International FATES
Workshop

� [RPG06] Retracted: Towards Formal Verification of Web Service Composition Mohsen Rouached, Olivier Perrin, Claude Godart, Business Process
ManagementVolume 4102 of the series Lecture Notes in Computer Science pp 257-273

� [CPFC10] Automated Runtime Verification for Web Services, Tien-Dung Cao 1 Trung-Tien Phan-Quang 1 Patrick Félix 1 Richard Castanet, IEEE international
Conference on Web Services, Jul 2010, Miami, United States. pp.76-8

73

74

75

Orchestration des services

•Lorsqu’un service web coordonne d’autres services

•Par des processus BPEL (processus écrit en XML qui décrit comment
interagissent les WS suivant des stimuli extérieurs)

•Besoin d’un serveur qui exécute les processus BPEL
la gestion des erreurs doit être gérée par le processus (mécanisme de
replis, re-exécution du processus)

•Langage de programmation de processus mais aussi interface graphique
(boites)

76

Chorégraphie de services

•Chaque service web mêlée dans la chorégraphie connaît exactement
quand ses opérations doivent être exécutées et avec qui l’interaction doit
avoir lieu.

•Description des interactions de service uniquement de pair à pair

•Pas de processus, chaque service connait les actions à effectuer par
rapport aux messages reçus

•Langage en XML WS-CL ou WSCI

77

•Definition des partenaires

•Utilisation de variables, assignation de valeurs (assign)

•Activités basiques (invoque, receive, reply, wait, throw)

•Activités structurés (while, switch, sequence,pick(temporisation)

•Correlation = session

•Scope découpage d’un processus en plusieurs parties

•Pl. handler possibles par scope (conpensation, fault, event)

78

Avec ActiveBPEL

79

Avec ActiveBPEL

80

