Sur quelques généralisations polynomiales de la décomposition modulaire.

December 3, 2008

Outline of the Thesis

Part I. Generalizations of Modular Decomposition

- Homogeneous relations and modular decomposition.
- Umodular decomposition: a new point of view.

Part II. Efficient Algorithms

- Overlap Components.
- NLC-2 graphs recognition algorithm.

Outline

(1) A brief Introduction to Homogeneous Relations

First encounter
Modular decomposition
Results
(2) Umodules

Arbitrary relations
Local congruence 2
Self complemented families
Undirected graphs
Tournaments
(3) Overlap components
(4) Perspectives

Homogeneous relations
Overlap components
NLC-width

Basic definitions

Modules and Modular decomposition

Basic definitions

Modules and Modular decomposition

Basic definitions

Modules and Modular decomposition

Substitution / Contraction

Contraction

Substitution

Generalizing

Why and How ?

Modular decomposition

- Social sciences,
- Bioinformatics,
- Computer science

Known generalizations
Role coloring:Everett \&
Borgatti'91
proven NP-complete by Fiala \&
Paulusma' 05 that this problem

- ...

Desired properties of the generalizations

- Polynomial computation
- Good structural properties
- Decomposition tree
- Compact encoding of the family
- ...

Summary

Module
A module is a set of vertices which have the same neighborhood outside.

Summary

Module

A module is a set of vertices which have the same neighborhood outside.

Role

A "role" in a graph is a set of vertices which plays the same role.

Summary

Module
A module is a set of vertices which have the same neighborhood outside.

Homogeneous Relations
Homogeneous relation is something in between...

Role
A "role" in a graph is a set of vertices which plays the same role.

Homogeneous Relations

Homogeneous Relations

Definition

Let X be a finite set. A Homogeneous Relation is a collection of triples on X , noted $\mathrm{H}(\mathrm{a} \mid \mathrm{b}, \mathrm{c})$ fullfiling the following properties:
(1) Reflexivity: $\mathrm{H}(\mathrm{a} \mid \mathrm{x}, \mathrm{x})$,
(2) Symmetry: $\mathrm{H}(\mathrm{a} \mid \mathrm{x}, \mathrm{y}) \equiv \mathrm{H}(\mathrm{a} \mid \mathrm{y}, \mathrm{x})$ and
(3) Transitivity: $\mathrm{H}(\mathrm{a} \mid \mathrm{x}, \mathrm{y})$ and $\mathrm{H}(\mathrm{a} \mid \mathrm{y}, \mathrm{z}) \Rightarrow \mathrm{H}(\mathrm{a} \mid \mathrm{x}, \mathrm{z})$

Homogeneous Relations

Definition

Let X be a finite set. A Homogeneous Relation is a collection of triples on X , noted $\mathrm{H}(\mathrm{a} \mid \mathrm{b}, \mathrm{c})$ fullfiling the following properties:
(1) Reflexivity: $\mathrm{H}(\mathrm{a} \mid \mathrm{x}, \mathrm{x})$,
(2) Symmetry: $\mathrm{H}(\mathrm{a} \mid \mathrm{x}, \mathrm{y}) \equiv \mathrm{H}(\mathrm{a} \mid \mathrm{y}, \mathrm{x})$ and
(3) Transitivity: $\mathrm{H}(\mathrm{a} \mid \mathrm{x}, \mathrm{y})$ and $\mathrm{H}(\mathrm{a} \mid \mathrm{y}, \mathrm{z}) \Rightarrow \mathrm{H}(\mathrm{a} \mid \mathrm{x}, \mathrm{z})$
$\mathrm{H}(\mathrm{a} \mid \mathrm{b}, \mathrm{c})$
a is said to be homogeneous with respect to b and c, or
a does not distinguish b from c .

An example

$X=\{a, b, c, d\}$
Let H be defined as follows:

$$
\begin{aligned}
& H(a \mid c, d), H(a \mid b, b), \\
& H(b \mid a, c), H(b \mid c, d), H(b \mid a, d), \\
& H(c \mid a, a), H(c \mid b, b), H(c \mid d, d), \\
& H(d \mid b, c), H(d \mid a, a) .
\end{aligned}
$$

Homogeneous relation ~ Equivalence relations
To each element x of X, thanks to the transitivity property we can associate an equivalence relation H_{x} defined on $\mathrm{X} \backslash\{x\}$

Homogeneous Relations: Representation

Equivalence relation

$$
\begin{aligned}
\mathrm{H}_{\mathrm{a}} & =\{\mathbf{b}\},\{\mathbf{c}, \mathrm{d}\} \\
\mathrm{H}_{\mathrm{b}} & =\{\mathbf{a}, \mathbf{c}, \mathrm{d}\} \\
\mathbf{H}_{\mathrm{c}} & =\{\mathbf{a}\},\{\mathbf{b}\},\{\mathrm{d}\} \\
\mathrm{H}_{\mathrm{d}} & =\{\mathbf{a}\},\{\mathbf{b}, \mathbf{c}\}
\end{aligned}
$$

Matrix representation
$\begin{array}{ccccc} & \begin{array}{cccc}a & b & c & d \\ \mathrm{a} \\ \mathrm{b} \\ \mathrm{c} \\ \mathrm{d}\end{array}\left(\begin{array}{llll}0 & 1 & 2 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 2 & 0 & 3 \\ 1 & 2 & 2 & 0\end{array}\right)\end{array}$

Graphic Homogeneous Relations

Graphic

A homogeneous relations H is graphic if there exists a graph G s.t.

$$
\forall v \text { of } \mathrm{V}(\mathrm{G}), \mathrm{H}_{v}=\mathrm{N}(v), \overline{\mathrm{N}(v)}
$$

Theorem

A homogeneous relation H is graphic iff $\forall x, y, z \in X, H$ does not contain:
(1) $\mathrm{H}(\mathrm{x} \mid \mathrm{y}, \mathrm{z}) \wedge \mathrm{H}(\mathrm{y} \mid \mathrm{x}, \mathrm{z}) \wedge \overline{\mathrm{H}(z \mid x, y)}$
(2) $\overline{\mathrm{H}(x \mid y, z)} \wedge \overline{\mathrm{H}(y \mid x, z)} \wedge \overline{\mathrm{H}(z \mid x, y)}$

Graphic Homogeneous Relations

Graphic

A homogeneous relations H is graphic if there exists a graph G s.t.

$$
\forall v \text { of } \mathrm{V}(\mathrm{G}), \mathrm{H}_{v}=\mathrm{N}(v), \overline{\mathrm{N}(v)}
$$

Theorem

A homogeneous relation H is graphic iff $\forall x, y, z \in X, H$ does not contain:
(1) $\mathrm{H}(x \mid y, z) \wedge \mathrm{H}(y \mid x, z) \wedge \overline{\mathrm{H}(z \mid x, y)}$
(2) $\overline{\mathrm{H}(x \mid y, z)} \wedge \overline{\mathrm{H}(y \mid x, z)} \wedge \overline{\mathrm{H}(z \mid x, y)}$

$$
\begin{aligned}
\mathrm{H}_{\mathrm{a}} & =\{\mathbf{b}, \mathbf{c}\},\{\mathrm{d}\} \\
\mathrm{H}_{\mathrm{b}} & =\{\mathbf{a}, \mathrm{c}\},\{\mathrm{d}\} \\
\mathrm{H}_{\mathrm{c}} & =\{\mathbf{a}, \mathrm{b}, \mathrm{~d}\} \\
\mathrm{H}_{\mathrm{d}} & =\{\mathbf{a}, \mathbf{b}\},\{\mathbf{c}\}
\end{aligned}
$$

Homogeneous Relations Properties

Local Congruence

Maximum number of classes associated to an element.
Example

$$
\begin{aligned}
\mathbf{H}_{\mathbf{a}} & =\{\mathbf{b}\},\{\mathbf{c}, \mathrm{d}\} \\
\mathbf{H}_{\mathbf{b}} & =\{\mathbf{a}, \mathbf{c}, \mathbf{d}\} \\
\mathbf{H}_{\mathbf{c}} & =\{\mathbf{a}\},\{\mathbf{b}\},\{\mathbf{c}\} \\
\mathbf{H}_{\mathbf{d}} & =\{\mathbf{a}\},\{\mathbf{b}, \mathbf{c}\}
\end{aligned}
$$

Modules

Definition

A Module in a Homogeneous relation H is a set M such that:

$$
\forall m, m^{\prime} \in M \text { and } \forall x \in X \backslash M \text { we have: }
$$

$\mathrm{H}\left(\mathrm{x} \mid \mathrm{mm}^{\prime}\right)$

Family of modules
\mathscr{M}_{H} : family of modules.
Example
$\mathrm{H}_{\mathrm{a}}=\{\mathrm{b}\},\{\mathrm{c}, \mathrm{d}\} ; \mathrm{H}_{\mathrm{b}}=\{\mathrm{a}, \mathrm{c}, \mathrm{d}\} ; \mathrm{H}_{\mathrm{c}}=\{\mathbf{a}\},\{\mathrm{b}\},\{\mathrm{d}\} ; \mathrm{H}_{\mathrm{d}}=\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}$.
The modules are $\{a\},\{b\},\{c\},\{d\},\{a, b, c, d\}$ and $\{c, d\}$.

Basic Properties

Definition (Overlap)
Let A and B be subsets of X. A overlaps B if:

$$
A \propto B \equiv A \backslash B \neq \varnothing \text { and } B \backslash A \neq \varnothing \text { and } A \cap B \neq \varnothing
$$

- A B

Proposition (Intersecting family)
Let H be a homogeneous relation on X , and let M and M^{\prime} modules of H s.t. $M \propto M^{\prime}$ then:

$$
M \cap M^{\prime} \in \mathscr{M}_{\mathrm{H}} \text { and } M \cup M^{\prime} \in \mathscr{M}_{\mathrm{H}}
$$

Theorem (Gabow'95)
\mathscr{M}_{H} can be stored in space $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Results on Homogeneous Relations

Modular Decomposition

On Arbitrary Homogeneous relations:
Primality
$\mathrm{O}\left(\mathrm{n}^{2}\right)$
Decomposition algorithm:
$\mathrm{O}\left(\mathrm{n}^{3}\right)$
On good Homogeneous relations
Primality
$O\left(n^{2}\right)$
Decomposition algorithm:
$\mathrm{O}\left(\mathrm{n}^{2}\right)$
Where n is the cardinality of the ground set X.
Good Homogeneous Relations
The modules family on good homogeneous relations forms a weakly partitive family.

Umodules

Umodules

Definition

Let H be a homogeneous relation defined on X , a Umodule U is a set such that:

$$
\begin{gathered}
\forall \mathfrak{u}, \mathfrak{u}^{\prime} \in \mathrm{U} \text { and } \forall x, x^{\prime} \in \mathrm{X} \backslash \mathrm{U}: \\
\mathrm{H}\left(\mathrm{u} \mid x x^{\prime}\right) \Longleftrightarrow \mathrm{H}\left(\mathfrak{u}^{\prime} \mid x x^{\prime}\right)
\end{gathered}
$$

Umodules

Definition

Let H be a homogeneous relation defined on X , a Umodule U is a set such that:

$$
\begin{gathered}
\forall u, u^{\prime} \in U \text { and } \forall x, x^{\prime} \in X \backslash U: \\
H\left(u \mid x x^{\prime}\right) \Longleftrightarrow H\left(u^{\prime} \mid x x^{\prime}\right)
\end{gathered}
$$

$$
\begin{aligned}
& H_{m}=\{x\},\left\{x^{\prime}\right\} \\
& H_{m}=\{x\},\left\{x^{\prime}\right\}
\end{aligned}
$$

We have $\bar{U} \overline{\mathrm{H}\left(\mathrm{m} \mid x x^{\prime}\right)}$ and $\frac{U}{\mathrm{H}\left(\mathrm{m}^{\prime} \mid x x^{\prime}\right)}$

Basic properties

\mathscr{U}_{H} is the family of umodules.
Proposition (Union closed)
Let U and U^{\prime} be two umodules of H such that $\mathrm{U} \propto \mathrm{U}^{\prime}$ then:

$$
\mathrm{U} \cup \mathrm{U}^{\prime} \in \mathscr{U}_{\mathrm{H}}
$$

Crossing families

Definition (Cross)
Let A and B be two subsets of X. A crosses B if:

$$
A \dot{\infty} B \equiv A \infty B \text { and } A \cup B \neq X
$$

Definition (Crossing family)
Let X be a finite set and \mathscr{F} be a family of subset. \mathscr{F} is said to be crossing if:

$$
\begin{aligned}
& \forall A, B \in \mathscr{F} \text { such that } A \dot{\infty} B \\
& A \cup B \text { and } A \cap B \text { belong to } \mathscr{F} .
\end{aligned}
$$

Homogeneous relations of Local Congruence 2 (LC2)

Proposition
Let H be a homogeneous relation of Local Congruence 2 (LC2)and: \mathscr{U}_{H} is a crossing family.

Homogeneous relations of Local Congruence 2 (LC2)

Proposition

Let H be a homogeneous relation of Local Congruence 2 (LC2) and : \mathscr{U}_{H} is a crossing family.

Sketch of Proof

\cup : from the previous proposition.
\cap : Let A and B be two umodules. By hypothesis we have:

$$
\begin{aligned}
& \mathrm{H}(\mathrm{a} \mid x, b) \Longleftrightarrow \mathrm{H}(y \mid x, b) \Longleftrightarrow \mathrm{H}(z \mid x, b) \\
& \mathrm{H}(\mathrm{~b} \mid x, \mathrm{a}) \Longleftrightarrow \mathrm{H}(y \mid x, a) \Longleftrightarrow \mathrm{H}(z \mid x, a)
\end{aligned}
$$

we obtain:

$$
\mathrm{H}(\mathrm{y} \mid \mathrm{a}, \mathrm{~b}) \Longleftrightarrow \mathrm{H}(z \mid \mathrm{a}, \mathrm{~b})
$$

Homogeneous relations of Local Congruence 2 (LC2)

Proposition

Let H be a homogeneous relation of Local Congruence 2 (LC2)and: \mathscr{U}_{H} is a crossing family.

Sketch of Proof

\cup : from the previous proposition.
\cap : Let A and B be two umodules. By hypothesis we have:

$$
\begin{aligned}
& \mathrm{H}(\mathrm{a} \mid x, \mathrm{~b}) \Longleftrightarrow \mathrm{H}(y \mid x, b) \Longleftrightarrow \mathrm{H}(z \mid x, b) \\
& \mathrm{H}(\mathrm{~b} \mid x, \mathrm{a}) \Longleftrightarrow \mathrm{H}(y \mid x, \mathrm{a}) \Longleftrightarrow \mathrm{H}(z \mid x, a)
\end{aligned}
$$

we obtain:

$$
\mathrm{H}(\mathrm{y} \mid \mathrm{a}, \mathrm{~b}) \Longleftrightarrow \mathrm{H}(z \mid \mathrm{a}, \mathrm{~b})
$$

Theorem (Gabow'95 \&3 Bernath'04)
Crossing families defined on a ground set X can be stored in $O\left(n^{2}\right)$ space.

Bipartitive families

Let X be a finite set, and let $\mathscr{B}=\left\{\left\{\mathrm{B}_{1}^{1}, \mathrm{~B}_{1}^{2}\right\}, \ldots,\left\{\mathrm{B}_{1}^{1}, \mathrm{~B}_{l}^{2}\right\}\right\}$ be a set of bipartitions of X.
Definition (Bipartitive families - Cunningham \& Edmonds'80) \mathscr{B} is a bipartitive family if for all overlapping bipartitions $\left\{\mathrm{B}_{\mathrm{k}}^{1}, \mathrm{~B}_{\mathrm{k}}^{2}\right\}$ and $\left\{\mathrm{B}_{\mathrm{j}}^{1}, \mathrm{~B}_{\mathrm{j}}^{2}\right\}$ we have:

Bipartitive families

Theorem (Cunningham \mathcal{E} Edmonds'80)
Let \mathscr{B} be a bipartitive family defined on X There exists a unique unrooted tree encoding \mathscr{B}. Its size is $\mathrm{O}(\mathrm{n})$.

Self complemented families

Definition

Let H be a Homogeneous Relation defined on X . H is said to be self-complemented iff:

$$
\forall \mathrm{U} \in \mathscr{U}_{\mathrm{H}}, \mathrm{X} \backslash \mathrm{U} \text { belongs to } \mathscr{U}_{\mathrm{H}}
$$

Theorem
Let \mathscr{U}_{H} be self-complemented then \mathscr{U}_{H} form a bipartitive family.

Self complemented families

4 Points condition
Let H be a homogeneous relation on X . For all $\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{m}, \mathrm{m}^{\prime}$ of X we have:

- $\mathrm{H}\left(\mathrm{m} \mid x x^{\prime}\right) \wedge \mathrm{H}\left(\mathrm{m}^{\prime} \mid \mathrm{x} x^{\prime}\right) \wedge \mathrm{H}\left(\mathrm{x} \mid \mathrm{mm}^{\prime}\right) \Rightarrow \mathrm{H}\left(\mathrm{x}^{\prime} \mid \mathrm{mm}^{\prime}\right)$
- $\overline{\mathrm{H}\left(\mathrm{m} \mid x x^{\prime}\right)} \wedge \overline{\mathrm{H}\left(\mathrm{m}^{\prime} \mid \mathrm{x} x^{\prime}\right)} \wedge \overline{\mathrm{H}\left(x \mid \mathrm{mm}^{\prime}\right)} \Rightarrow \overline{\mathrm{H}\left(\mathrm{x}^{\prime} \mid \mathrm{mm}^{\prime}\right)}$

Proposition
Let H be a Homogeneous relation fullfiling the 4 points condition then \mathscr{U}_{H} is self-complemented.

Seidel switch on graphs

Definition (Seidel switch)

Let $G=(\mathrm{V}, \mathrm{E})$ be a undirected loopless graph, and $S \subseteq V$, A Seidel switch on G is the graph obtained by removing all the edges between S and \bar{S}, and adding all the missing edges.

Seidel switch on graphs

Definition (Seidel switch)
Let $G=(\mathrm{V}, \mathrm{E})$ be a undirected loopless graph, and $\mathrm{S} \subseteq \mathrm{V}$, A Seidel switch on G is the graph obtained by removing all the edges between S and \bar{S}, and adding all the missing edges.

Seidel switch on graphs

Definition (Seidel switch)
Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a undirected loopless graph, and $S \subseteq V$, A Seidel switch on G is the graph obtained by removing all the edges between S and \bar{S}, and adding all the missing edges.

Schema

Schema

Seidel switch on graphs

Definition (Seidel switch)
Let $G=(\mathrm{V}, \mathrm{E})$ be a undirected loopless graph, and $S \subseteq V$, A Seidel switch on G is the graph obtained by removing all the edges between S and \bar{S}, and adding all the missing edges.

Schema

Definition (Pointed Seidel switch)
The pointed Seidel switch: $S=\mathrm{N}(v)$

... on Homogeneous Relations

Definition (Seidel switch on Homogeneous Relations)

Let H be a Homogeneous relation of local congruence 2 defined on X , the Seidel switch at an element s is defined in the following way:

$$
\forall x \in X \backslash\{s\}, H(s)=\left\{\begin{array}{l}
H(s)_{x}^{1}=\left(H_{x}^{1} \Delta H_{s}^{j}\right) \backslash\{s\} \\
H(s)_{x}^{2}=\left(H_{x}^{2} \Delta H_{s}^{j}\right) \backslash\{s\}
\end{array}\right.
$$

... on Homogeneous Relations

Definition (Seidel switch on Homogeneous Relations)

Let H be a Homogeneous relation of local congruence 2 defined on X , the Seidel switch at an element s is defined in the following way:

$$
\forall x \in X \backslash\{s\}, H(s)=\left\{\begin{array}{l}
H(s)_{x}^{1}=\left(H_{x}^{1} \Delta H_{s}^{j}\right) \backslash\{s\} \\
H(s)_{x}^{2}=\left(H_{x}^{2} \Delta H_{s}^{j}\right) \backslash\{s\}
\end{array}\right.
$$

Theorem

Let H be a LC2 Homogeneous relation s.t. \mathscr{U}_{H} is self-complemented. Let s an element of X , and let $\mathrm{U} \subseteq \mathrm{X}$ s.t. $\mathrm{s} \in \mathrm{U}$. Then

U is a umodule of H
$\mathrm{M}=\overline{\mathrm{U}}$ is a module of $\mathrm{H}(\mathrm{s})$ (Homogeneous relation on $\mathrm{X}-\mathrm{s}$).

Algorithmic consequences

Theorem
Given a Self-complemented LC2 Homogeneous relation H on X, its decomposition tree can be obtained in linear time.

Algorithmic consequences

Theorem

Given a Self-complemented LC2 Homogeneous relation H on X, its decomposition tree can be obtained in linear time.

Sketch of Proof

- Pick an element s of X.
- Seidel switch at x.
- Compute modular decomposition of $\mathrm{H}(\mathrm{x})$.
- Add x carefully.

Umodules \& Undirected graphs

Definition (Bi-Joins de Montgolfier E Rao'05)

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ a graph, a bi-join in G is a bipartition $\mathrm{V}_{1}, \mathrm{~V}_{2}$ of V , s.t. $\mathrm{V}_{1}=\left\{\mathrm{V}_{1,1}, \mathrm{~V}_{1,2}\right\}$ and $\mathrm{V}_{2}=\left\{\mathrm{V}_{2,1}, \mathrm{~V}_{2,2}\right\}$ and $\mathrm{V}_{1, i}$ is completely connected to $V_{2, i}$ and $V_{1, i}$ is completely disconnected from $V_{2, j}$.

Self complement

The bi-joins of a graph are self-complemented.
Schema

Bipartitivity

Bi-joins of a graph form a bipartitive family.
There is a unique decomposition tree.

Completely decomposable graphs

Theorem (de Montgolfier E Rao'05)
The graphs completely decomposable w.r.t. Bi-join decomposition are the graphs without C_{5}, Bull, Gemma and co-Gemma as induced subgraphs.

Forbidden Subgraphs

Computation - de Montgolfier \& Rao'05

Decomposition Algorithm
(1) Choose a vertex v, proceed to a Seidel switch $G * v$

Complexity
(2) Compute modular decomposition of $(\mathrm{G} * v) \backslash v$
$\mathrm{O}(\mathrm{n}+\mathrm{m})$
(3) Turn the modular decomposition tree of $(\mathrm{G} * v) \backslash v$ into
$\mathrm{O}(\mathrm{n}+\mathrm{m})$
the bi-join decomposition tree of G

Computation - de Montgolfier \& Rao'05

Decomposition Algorithm
(1) Choose a vertex v, proceed to a Seidel switch $G * v$

Complexity
(2) Compute modular decomposition of $(\mathrm{G} * v) \backslash v$
$\mathrm{O}(\mathrm{n}+\mathrm{m})$
(3) Turn the modular decomposition tree of $(\mathrm{G} * v) \backslash v$ into
$\mathrm{O}(\mathrm{n}+\mathrm{m})$
the bi-join decomposition tree of G
Completely Decomposable graph Recognition
(1) Choose a vertex v, proceed to a Seidel switch $G * v \quad O(n+m)$
(2) Check if $(\mathrm{G} * v) \backslash v$ is a cograph
$O(n+m)$

Tournaments

Umodules in tournaments

Locally transitive tournaments
A tournament $T=(V, A)$ is locally locally if for each vertex v $\mathrm{T}\left[\mathrm{N}^{+}(v)\right]$ and $\mathrm{T}\left[\mathrm{N}^{-}(v)\right]$ are transitive tournaments.

Completely decomposable tournaments
Completely decomposable tournaments are exactly locally transitive tournaments.

Completely decomposable tournaments

Forbidden characterization

A tournament $T=(V, A)$ is completely decomposable w.r.t. umodular decomposition

Sketch of Proof
A tournament is completely decomposable w.r.t. modular decomposition iff it is a transitive tournament. i.e. does not contain a $\overrightarrow{\mathrm{C}_{3}}$

We then check that only these graphs can produce a $\overrightarrow{\mathrm{C}_{3}}$, after a Seidel switch

Simple Recognition Algorithm

Naive approach

- To check in $\mathrm{O}\left(\mathrm{n}^{4}\right)$ time if T contains or as induced sub-tournaments.
- To check for each vertex v if $\mathrm{T}\left[\mathrm{N}^{+}(v)\right]$ and $\mathrm{T}\left[\mathrm{N}^{-}(v)\right]$ are transitive tournaments. We obtain a $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time algorithm.

Simple Recognition Algorithm

Naive approach

- To check in $\mathrm{O}\left(\mathrm{n}^{4}\right)$ time if T contains
 sub-tournaments.
- To check for each vertex v if $\mathrm{T}\left[\mathrm{N}^{+}(v)\right]$ and $\mathrm{T}\left[\mathrm{N}^{-}(v)\right]$ are transitive tournaments. We obtain a $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time algorithm.

Linear time algorithm
(1) Pick a vertex v and check $\mathrm{T}\left[\mathrm{N}^{+}(v)\right]$ (A) and $\mathrm{T}\left[\mathrm{N}^{-}(v)\right]$ (B) are transitive tournaments
(2) Check that the edges between A and B do not contain a forbidden configuration.

A Simple Recognition Algorithm

Proposition (Locally Transitive Tournament)

 Let $\mathrm{T}=(\mathrm{V}, \mathrm{A})$ a tournament, T is locally transitive iff:(i) $\mathrm{T}\left[\mathrm{N}^{+}(v)\right]$ and $\mathrm{T}\left[\mathrm{N}^{-}(v)\right]$ are transitive tournaments,
(ii) If a vertex $\mathrm{a} \in \mathrm{T}\left[\mathrm{N}^{+}(v)\right]$ has an outgoing neighbor $\mathrm{b} \in \mathrm{T}\left[\mathrm{N}^{-}(v)\right]$ and an ingoing neighbor $c \in T\left[N^{-}(v)\right]$ then $(b, c) \in A$.
(iii) If a vertex $\mathrm{a} \in \mathrm{T}\left[\mathrm{N}^{-}(\nu)\right]$ has an outgoing neighbor $\mathrm{b} \in \mathrm{T}\left[\mathrm{N}^{+}(v)\right]$ and an ingoing neighbor $c \in T\left[N^{+}(v)\right]$ then $(b, c) \in A$.

The second step of the algorithm is equivalent to check the previous proposition.

A Simple Recognition Algorithm

Proposition (Locally Transitive Tournament)

 Let $\mathrm{T}=(\mathrm{V}, \mathrm{A})$ a tournament, T is locally transitive iff:(i) $\mathrm{T}\left[\mathrm{N}^{+}(v)\right]$ and $\mathrm{T}\left[\mathrm{N}^{-}(v)\right]$ are transitive tournaments,
(ii) If a vertex $\mathrm{a} \in \mathrm{T}\left[\mathrm{N}^{+}(v)\right]$ has an outgoing neighbor $\mathrm{b} \in \mathrm{T}\left[\mathrm{N}^{-}(v)\right]$ and an ingoing neighbor $c \in T\left[N^{-}(v)\right]$ then $(b, c) \in A$.
(iii) If a vertex $\mathrm{a} \in \mathrm{T}\left[\mathrm{N}^{-}(v)\right]$ has an outgoing neighbor $\mathrm{b} \in \mathrm{T}\left[\mathrm{N}^{+}(v)\right]$ and an ingoing neighbor $c \in T\left[N^{+}(v)\right]$ then $(b, c) \in A$.

The second step of the algorithm is equivalent to check the previous proposition.

Complexity

(1) The first step is done in linear time.
(2) the second step is done $\mathrm{O}(1)$ per edge between A and B. Every edge is considered only once. Thus overall complexity is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Isomorphism testing \& Feedback Vertex Set

Isomorphism

Thanks to the unicity of the structure obtained, we are able to decide in linear time if two completely decomposable tournaments are isomorph.

Feedback Vertex Set
The Feedback Vertex Set problem is polynomial on completely decomposable tournaments.

Algorithmic results

Primality testing: $\mathrm{O}\left(\mathrm{n}^{3}\right)$

Umodular decomposition: $\mathrm{O}\left(\mathrm{n}^{5}\right)$

Overlap Components

Overlap components

The problem
Let X be a finite set, and let $\mathscr{F}=\left\{X_{1}, \ldots, X_{t}\right\}$ be a family of subsets of X input: \mathscr{F}
output: Overlap Components of \mathscr{F}.
Size of the data is $|X|+\sum_{i=1}^{t}\left|X_{i}\right|$, $n=|X|$ and $\mathrm{f}=\sum_{\mathrm{i}=1}^{\mathrm{t}}\left|\mathrm{X}_{\mathrm{i}}\right|$.

Overlap graph
Let $\mathrm{OG}=(\mathscr{F}, \mathrm{E})$ be the overlap graph of $\mathscr{F} . \mathfrak{u} v \in \mathrm{E}$ iff $\mathfrak{u} \propto v$.
Overlap component
The overlap components of \mathscr{F} are the connected components of OG.

Examples

$$
\begin{aligned}
& \mathcal{F}=\quad \text { A } \quad \text { B } \quad \text { C } D_{E} F
\end{aligned}
$$

A pathologic example

A first idea

Naive approach

First compute OG and then output the connected components.
But OG is not necessarily linear in the size of \mathscr{F}.
Dahlhaus's algorithm
Linear time and space algorithm to find overlap components of \mathscr{F} in $\mathrm{O}(\mathrm{n}+\mathrm{f})$

Our result
A drastic simplification of Dahlhaus's algorithm.
Output a spanning subgraph of $O G$ in time $O(n+f)$.
(1) A brief Introduction to Homogeneous Relations

First encounter

Modular decomposition

Results

(2) Umodules

Arbitrary relations
 Local congruence 2
 Self complemented families
 Undirected graphs
 Tournaments

(3) Overlap components
(4) Perspectives

Homogeneous relations
Overlap components
NLC-width

Homogeneous Relations

Homogeneous relations

- Characterize "digraphic" and "oriented" homogeneous relations.
- Improve modular decomposition algorithm:
(1) Conjecture: a $\mathrm{O}(\mathrm{n}+\mathrm{m})$ algorithm
(2) a $\mathrm{O}\left(\mathrm{n}^{2}\right)$ algorithm for arbitrary Homogeneous relations.

Homogeneous Relations

Homogeneous relations

- Characterize "digraphic" and "oriented" homogeneous relations.
- Improve modular decomposition algorithm:
(1) Conjecture: a $\mathrm{O}(\mathrm{n}+\mathrm{m})$ algorithm
(2) a $\mathrm{O}\left(\mathrm{n}^{2}\right)$ algorithm for arbitrary Homogeneous relations.

Umodular decomposition

- Improve the $\mathrm{O}\left(\mathrm{n}^{5}\right)$ decomposition algorithm.
- Corresponding decomposition for directed and oriented graphs.
- Necessary and sufficient condition to characterize self-complemented families.
- Investigate Seidel minor properties.

Overlap Component and related problems

Overlap component

- Overlap-k component.
- recognition specific properties of the overlap graph in linear time:
(1) Bipartite,
(2) Chain, tree
(3) ...

Overlap Component and related problems

Overlap component

- Overlap-k component.
- recognition specific properties of the overlap graph in linear time:
(1) Bipartite,
(2) Chain, tree
(3) ...

Partition refinement

- To "implement" Least Common Ancestor (LCA) with partition refinement techniques.
- Dynamic partition refinement.

NLC-2 Graphs

NLC-width

- Improve recognition algorithm to $\mathrm{O}(\mathrm{n} . \mathrm{m})$.
- What about NLC-3 graphs ?
- Is NLC-k a FPT problem ?

NLC-2 Graphs

NLC-width

- Improve recognition algorithm to $\mathrm{O}(\mathrm{n} . \mathrm{m})$.
- What about NLC-3 graphs ?
- Is NLC-k a FPT problem ?

Clique-width

- Clique-width $\geqslant 4$?
- Is clique-width FPT ?

Sagolun

תודה
 Takk

Merci
Thank you

