Sur quelques généralisations polynomiales de la décomposition modulaire.

Vincent Limouzy

LIAFA – Université Paris Diderot

December 3, 2008

Part I. Generalizations of Modular Decomposition

- Homogeneous relations and modular decomposition.
- Umodular decomposition: a new point of view.

Part II. Efficient Algorithms

- Overlap Components.
- NLC-2 graphs recognition algorithm.

Outline

1 A brief Introduction to Homogeneous Relations

First encounter Modular decomposition Results

2 Umodules

Arbitrary relations Local congruence 2 Self complemented families Undirected graphs Tournaments

3 Overlap components

Perspectives

Homogeneous relations Overlap components NLC-width

Basic definitions

Modules and Modular decomposition

Basic definitions

Modules and Modular decomposition

Basic definitions

Modules and Modular decomposition

Substitution / Contraction

Modular decomposition

- Social sciences,
- Bioinformatics,
- Computer science
- ...

Desired properties of the generalizations

- Polynomial computation
- Good structural properties
- Decomposition tree

Known generalizations Role coloring:Everett & Borgatti'91 proven NP-complete by Fiala & Paulusma'05 that this problem

• Compact encoding of the family

• ...

Module

A *module* is a set of vertices which have the same neighborhood outside.

Module

A *module* is a set of vertices which have the same neighborhood outside.

Role

A *"role"* in a graph is a set of vertices which plays the same role.

Module

A *module* is a set of vertices which have the same neighborhood outside.

Homogeneous Relations Homogeneous relation is something in between...

Role A *"role*" in a graph is a set of vertices which plays the same role.

Homogeneous Relations

Definition

Let X be a finite set. A Homogeneous Relation is a collection of triples on X, noted H(a|b,c) fullfiling the following properties:

- **7 Reflexivity**: H(a|x, x),
- ${\ensuremath{ @ {\scriptsize \emph{O} } }}$ Symmetry: $H(a|x,y)\equiv H(a|y,x)$ and
- **§** Transitivity: H(a|x, y) and $H(a|y, z) \Rightarrow H(a|x, z)$

Definition

Let X be a finite set. A Homogeneous Relation is a collection of triples on X, noted H(a|b,c) fullfiling the following properties:

- **7 Reflexivity**: H(a|x, x),
- **§** Symmetry: $H(a|x, y) \equiv H(a|y, x)$ and
- **3** Transitivity: H(a|x, y) and $H(a|y, z) \Rightarrow H(a|x, z)$

H(a|b,c)

 \boldsymbol{a} is said to be homogeneous with respect to \boldsymbol{b} and $\boldsymbol{c},$ or

a does not distinguish b from c.

$X = \{a, b, c, d\}$

Let H be defined as follows:

```
\begin{array}{l} H(a|c, d), H(a|b, b), \\ H(b|a, c), H(b|c, d), H(b|a, d), \\ H(c|a, a), H(c|b, b), H(c|d, d), \\ H(d|b, c), H(d|a, a). \end{array}
```

$Homogeneous\ relation \sim Equivalence\ relations$

To each element x of X, thanks to the transitivity property we can associate an equivalence relation H_x defined on $X\setminus\{x\}$

Equivalence relation

$$\begin{array}{rcl} H_{a} & = & \{b\}, \{c, d\} \\ H_{b} & = & \{a, c, d\} \\ H_{c} & = & \{a\}, \{b\}, \{d\} \\ H_{d} & = & \{a\}, \{b, c\} \end{array}$$

$Matrix\ representation$

	a	b		
a	/0	1	2	2
a b	$\begin{vmatrix} 1\\ 1\\ 1 \end{vmatrix}$	0	1	$\begin{bmatrix} 1\\ 3 \end{bmatrix}$
с	1	2	0	3
d	$\backslash 1$	1 0 2 2	2	0/

Graphic Homogeneous Relations

Graphic

A homogeneous relations H is graphic if there exists a graph G s.t.

$$\forall v \text{ of } V(G), \ H_{v} = N(v), \overline{N(v)}$$

Theorem

A homogeneous relation H is graphic iff $\forall \ x,y,z \in X, \ H$ does not contain:

- $\textcircled{0} \overline{\mathsf{H}(\mathsf{x}|\mathsf{y},z)} \land \overline{\mathsf{H}(\mathsf{y}|\mathsf{x},z)} \land \overline{\mathsf{H}(z|\mathsf{x},\mathsf{y})}$

Graphic Homogeneous Relations

Graphic

A homogeneous relations H is graphic if there exists a graph G s.t.

$$\forall v \text{ of } V(G), \ H_v = N(v), \overline{N(v)}$$

Theorem

A homogeneous relation H is graphic iff $\forall \ x,y,z \in X, \ H$ does not contain:

Local Congruence

Maximum number of classes associated to an element.

Example

$$\begin{array}{rcl} H_{a} & = & \{b\}, \{c, d\} \\ H_{b} & = & \{a, c, d\} \\ H_{c} & = & \{a\}, \{b\}, \{c\} \\ H_{d} & = & \{a\}, \{b, c\} \end{array}$$

Definition

A Module in a Homogeneous relation H is a set M such that:

```
\forall m, m' \in M \text{ and } \forall x \in X \ \setminus M \text{ we have:}
```

$H(x|\mathfrak{m}\mathfrak{m}')$

Family of modules \mathcal{M}_{H} : family of modules.

Example

 $H_{a} = \{b\}, \{c, d\}; H_{b} = \{a, c, d\}; H_{c} = \{a\}, \{b\}, \{d\}; H_{d} = \{a\}, \{b, c\}.$

The modules are $\{a\}, \{b\}, \{c\}, \{d\}, \{a, b, c, d\}$ and $\{c, d\}$.

Definition (Overlap)

Let A and B be subsets of X. A overlaps B if:

 $\mathbf{A}^{\textcircled{0}}\mathbf{B} \ \equiv \mathbf{A} \setminus \mathbf{B} \neq \varnothing \ \mathbf{and} \ \mathbf{B} \setminus \mathbf{A} \neq \varnothing \ \mathbf{and} \ \mathbf{A} \cap \mathbf{B} \neq \varnothing$

Proposition (Intersecting family)

Let H be a homogeneous relation on X, and let M and M' modules of H s.t. $M^{\textcircled{O}}M'$ then:

 $M \cap M' \in \mathscr{M}_H$ and $M \cup M' \in \mathscr{M}_H$

Theorem (Gabow'95) \mathcal{M}_{H} can be stored in space $O(n^2)$

Modular Decomposition

On Arbitrary Homogeneous relations:			
Primality	$O(n^2)$		
Decomposition algorithm:	$O(n^3)$		
On good Homogeneous relations			
Primality	$O(n^2)$		
Decomposition algorithm:	$O(n^2)$		
Where \mathbf{n} is the cardinality of the ground set X.			

Good Homogeneous Relations

The modules family on good homogeneous relations forms a weakly partitive family.

Umodules

Definition

Let H be a homogeneous relation defined on X, a Umodule U is a set such that:

```
\forall \mathfrak{u},\mathfrak{u}'\in U \text{ and } \forall x,x'\in X\setminus U:
```

 $\mathsf{H}(\mathfrak{u}|xx') \Longleftrightarrow \mathsf{H}(\mathfrak{u}'|xx')$

Definition

Let H be a homogeneous relation defined on X, a Umodule U is a set such that:

```
\forall u, u' \in U \text{ and } \forall x, x' \in X \setminus U:
```

 $\mathsf{H}(\mathfrak{u}|xx') \Longleftrightarrow \mathsf{H}(\mathfrak{u}'|xx')$

\mathscr{U}_{H} is the family of umodules.

 $\begin{array}{l} \textit{Proposition (Union closed)} \\ \textit{Let } U \textit{ and } U' \textit{ be two umodules of } H \textit{ such that } U^{\infty}U' \textit{ then:} \end{array}$

$U\cup U'\in \mathscr{U}_H$

Definition (Cross)

Let A and B be two subsets of X. A crosses B if:

$$A \stackrel{\bullet}{\odot} B \equiv A \odot B \text{ and } A \cup B \neq X$$

Definition (Crossing family)

Let X be a finite set and $\mathscr F$ be a family of subset. $\mathscr F$ is said to be crossing if:

 $\forall A, B \in \mathscr{F} \text{ such that } A \overset{\bullet}{\odot} B \\ A \cup B \text{ and } A \cap B \text{ belong to } \mathscr{F}.$

Homogeneous relations of Local Congruence 2 (LC2)

Proposition

Let H be a homogeneous relation of Local Congruence 2 (LC2)and : \mathscr{U}_H is a crossing family.

Homogeneous relations of Local Congruence 2 (LC2)

Proposition

Let H be a homogeneous relation of Local Congruence 2 (LC2)and : \mathscr{U}_H is a crossing family.

Sketch of Proof

- \cup : from the previous proposition.
- \cap : Let A and B be two umodules. By hypothesis we have:

$$\begin{array}{l} \mathsf{H}(a|\mathbf{x},b) \iff \mathsf{H}(y|\mathbf{x},b) \iff \mathsf{H}(z|\mathbf{x},b) \\ \\ \mathsf{H}(b|\mathbf{x},a) \iff \mathsf{H}(y|\mathbf{x},a) \iff \mathsf{H}(z|\mathbf{x},a) \end{array}$$

we obtain:

$$H(y|a, b) \iff H(z|a, b)$$

x

Homogeneous relations of Local Congruence 2 (LC2)

Proposition

Let H be a homogeneous relation of Local Congruence 2 (LC2)and : \mathscr{U}_H is a crossing family.

Sketch of Proof

- \cup : from the previous proposition.
- \cap : Let A and B be two umodules. By hypothesis we have:

$$\begin{array}{l} \mathsf{H}(a|\mathbf{x},b) \iff \mathsf{H}(y|\mathbf{x},b) \iff \mathsf{H}(z|\mathbf{x},b) \\ \\ \mathsf{H}(b|\mathbf{x},a) \iff \mathsf{H}(y|\mathbf{x},a) \iff \mathsf{H}(z|\mathbf{x},a) \end{array}$$

we obtain:

$$H(y|a,b) \iff H(z|a,b)$$

Theorem (Gabow'95 & Bernath'04)

Crossing families defined on a ground set X can be stored in $O(n^2)$ space.

В

ο ν

x

Bipartitive families

Let X be a finite set, and let $\mathscr{B} = \{\{B_1^1, B_1^2\}, \dots, \{B_l^1, B_l^2\}\}$ be a set of bipartitions of X.

Definition (Bipartitive families – Cunningham & Edmonds'80) \mathscr{B} is a **bipartitive family** if for all overlapping bipartitions $\{B_k^1, B_k^2\}$ and $\{B_j^1, B_j^2\}$ we have:

Theorem (Cunningham & Edmonds'80)

Let \mathscr{B} be a bipartitive family defined on X There exists a unique unrooted tree encoding \mathscr{B} . Its size is O(n).

Definition

Let H be a Homogeneous Relation defined on X. H is said to be self-complemented iff:

 $\forall U \in \mathscr{U}_H, \ X \setminus U \text{ belongs to } \ \mathscr{U}_H$

Theorem

Let \mathscr{U}_{H} be self-complemented then \mathscr{U}_{H} form a bipartitive family.

4 Points condition

Let H be a homogeneous relation on X. For all x,x^\prime,m,m^\prime of X we have:

- $H(\mathfrak{m}|xx') \wedge H(\mathfrak{m}'|xx') \wedge H(x|\mathfrak{m}\mathfrak{m}') \Rightarrow H(x'|\mathfrak{m}\mathfrak{m}')$
- $\overline{\mathrm{H}(\mathrm{m}|\mathrm{x}\mathrm{x}')} \wedge \overline{\mathrm{H}(\mathrm{m}'|\mathrm{x}\mathrm{x}')} \wedge \overline{\mathrm{H}(\mathrm{x}|\mathrm{m}\mathrm{m}')} \Rightarrow \overline{\mathrm{H}(\mathrm{x}'|\mathrm{m}\mathrm{m}')}$

Proposition

Let H be a Homogeneous relation fullfiling the **4** points condition then \mathscr{U}_H is self-complemented.

Definition (Seidel switch)

Let G = (V, E) be a undirected loopless graph, and $S \subseteq V$, A Seidel switch on G is the graph obtained by removing all the edges between S and \overline{S} , and adding all the missing edges.

Definition (Seidel switch)

Let G = (V, E) be a undirected loopless graph, and $S \subseteq V$, A Seidel switch on G is the graph obtained by removing all the edges between S and \overline{S} , and adding all the missing edges.

Definition (Seidel switch)

Let G = (V, E) be a undirected loopless graph, and $S \subseteq V$, A Seidel switch on G is the graph obtained by removing all the edges between S and \overline{S} , and adding all the missing edges.

Definition (Pointed Seidel switch) The pointed Seidel switch: S = N(v)

Schema

Definition (Seidel switch)

Let G = (V, E) be a undirected loopless graph, and $S \subseteq V$, A Seidel switch on G is the graph obtained by removing all the edges between S and \overline{S} , and adding all the missing edges.

Definition (Pointed Seidel switch) The pointed Seidel switch: S = N(v)

Schema

... on Homogeneous Relations

Definition (Seidel switch on Homogeneous Relations)

Let H be a Homogeneous relation of local congruence 2 defined on X, the Seidel switch at an element s is defined in the following way:

$$\forall x \in X \setminus \{s\}, \ H(s) = \begin{cases} H(s)_x^1 = (H_x^1 \Delta H_s^j) \setminus \{s\} \\ \\ H(s)_x^2 = (H_x^2 \Delta H_s^j) \setminus \{s\} \end{cases}$$

Definition (Seidel switch on Homogeneous Relations)

Let H be a Homogeneous relation of local congruence 2 defined on X, the Seidel switch at an element s is defined in the following way:

$$\forall x \in X \setminus \{s\}, \ H(s) = \begin{cases} H(s)_x^1 = (H_x^1 \Delta H_s^j) \setminus \{s\} \\ \\ H(s)_x^2 = (H_x^2 \Delta H_s^j) \setminus \{s\} \end{cases}$$

Theorem

Let H be a LC2 Homogeneous relation s.t. \mathscr{U}_H is self-complemented. Let s an element of X, and let $U \subseteq X$ s.t. $s \in U$. Then

U is a umodule of H

\Leftrightarrow

 $M = \overline{U}$ is a module of H(s) (Homogeneous relation on X - s).

Theorem

Given a Self-complemented LC2 Homogeneous relation H on X, its decomposition tree can be obtained in linear time.

Theorem

Given a Self-complemented LC2 Homogeneous relation H on X, its decomposition tree can be obtained in linear time.

Sketch of Proof

- Pick an element s of X.
- Seidel switch at x.
- Compute modular decomposition of H(x).
- Add x carefully.

Definition (Bi-Joins de Montgolfier & Rao'05)

Let G = (V, E) a graph, a bi-join in G is a bipartition V_1, V_2 of V, s.t. $V_1 = \{V_{1,1}, V_{1,2}\}$ and $V_2 = \{V_{2,1}, V_{2,2}\}$ and $V_{1,i}$ is completely connected to $V_{2,i}$ and $V_{1,i}$ is completely disconnected from $V_{2,j}$.

Self complement

The bi-joins of a graph are self-complemented.

Schema

Bipartitivity

Bi-joins of a graph form a bipartitive family. There is a unique decomposition tree.

Theorem (de Montgolfier & Rao'05)

The graphs completely decomposable w.r.t. Bi-join decomposition are the graphs without C_5 , Bull, Gemma and co-Gemma as induced subgraphs.

Forbidden Subgraphs

Decomposition Algorithm

(1) Choose a vertex v, proceed to a Seidel switch G * v

(2) Compute modular decomposition of $(G * v) \setminus v$

(3) Turn the modular decomposition tree of $(G * v) \setminus v$ into the bi-join decomposition tree of G

ComplexityO(n + m)O(n + m)O(n + m)

Decomposition Algorithm

(1) Choose a vertex v, proceed to a Seidel switch G * v

(2) Compute modular decomposition of $(G * v) \setminus v$

(3) Turn the modular decomposition tree of $(G * v) \setminus v$ into the bi-join decomposition tree of G

the bi-join decomposition tree of G

Completely Decomposable graph Recognition

(1) Choose a vertex v, proceed to a Seidel switch G * v(2) Check if $(G * v) \setminus v$ is a cograph

ComplexityO(n + m)O(n + m)O(n + m)

Umodules in tournaments

Locally transitive tournaments

A tournament T=(V,A) is locally locally if for each vertex ν $T[N^+(\nu)]$ and $T[N^-(\nu)]$ are transitive tournaments.

$Completely \ decomposable \ tournaments$

Completely decomposable tournaments are exactly locally transitive tournaments.

Completely decomposable tournaments

Forbidden characterization

A tournament $\mathsf{T}=(\mathsf{V},\mathsf{A})$ is completely decomposable w.r.t. umodular decomposition

Sketch of Proof

A tournament is completely decomposable w.r.t. modular decomposition iff it is a transitive tournament. i.e. does not contain a $\overrightarrow{C_3}$

We then check that only these graphs can produce a $\overrightarrow{C_3}$, after a Seidel switch

$Naive \ approach$

- To check in O(n⁴) time if T contains for for as induced sub-tournaments.
- To check for each vertex ν if $T[N^+(\nu)]$ and $T[N^-(\nu)]$ are transitive tournaments. We obtain a $O(n^3)$ time algorithm.

Naive approach

- To check in O(n⁴) time if T contains for for as induced sub-tournaments.
- To check for each vertex v if $T[N^+(v)]$ and $T[N^-(v)]$ are transitive tournaments. We obtain a $O(n^3)$ time algorithm.

Linear time algorithm

- ${\it (I)}$ Pick a vertex ν and check $T[N^+(\nu)]$ (A) and $T[N^-(\nu)]$ (B) are transitive tournaments
- Other that the edges between A and B do not contain a forbidden configuration.

A Simple Recognition Algorithm

Proposition (Locally Transitive Tournament) Let T = (V, A) a tournament, T is locally transitive iff:

(i) $T[N^+(v)]$ and $T[N^-(v)]$ are transitive tournaments,

- (ii) If a vertex $a \in T[N^+(v)]$ has an outgoing neighbor $b \in T[N^-(v)]$ and an ingoing neighbor $c \in T[N^-(v)]$ then $(b, c) \in A$.
- (iii) If a vertex $a \in T[N^{-}(v)]$ has an outgoing neighbor $b \in T[N^{+}(v)]$ and an ingoing neighbor $c \in T[N^{+}(v)]$ then $(b, c) \in A$.

The second step of the algorithm is equivalent to check the previous proposition.

A Simple Recognition Algorithm

Proposition (Locally Transitive Tournament) Let T = (V, A) a tournament, T is locally transitive iff:

(i) $T[N^+(v)]$ and $T[N^-(v)]$ are transitive tournaments,

- (ii) If a vertex $a \in T[N^+(v)]$ has an outgoing neighbor $b \in T[N^-(v)]$ and an ingoing neighbor $c \in T[N^-(v)]$ then $(b, c) \in A$.
- (iii) If a vertex $a \in T[N^{-}(v)]$ has an outgoing neighbor $b \in T[N^{+}(v)]$ and an ingoing neighbor $c \in T[N^{+}(v)]$ then $(b, c) \in A$.

The second step of the algorithm is equivalent to check the previous proposition.

Complexity

- **1** The first step is done in linear time.
- It he second step is done O(1) per edge between A and B. Every edge is considered only once. Thus overall complexity is O(n²).

Isomorphism

Thanks to the unicity of the structure obtained, we are able to decide in linear time if two completely decomposable tournaments are isomorph.

Feedback Vertex Set

The Feedback Vertex Set problem is polynomial on completely decomposable tournaments.

Primality testing : $O(n^3)$

Umodular decomposition : $O(n^5)$

Overlap Components

The problem

Let X be a finite set, and let $\mathscr{F} = \{X_1, \ldots, X_t\}$ be a family of subsets of X input: \mathscr{F} output: Overlap Components of \mathscr{F} .

$$\begin{array}{l} \text{Size of the data is } |X| + \sum_{i=1}^t |X_i|, \\ \mathfrak{n} = |X| \text{ and } f = \sum_{i=1}^t |X_i|. \end{array}$$

Overlap graph

Let $OG = (\mathscr{F}, \mathsf{E})$ be the overlap graph of \mathscr{F} . $uv \in \mathsf{E}$ iff $u^{\odot}v$.

$Overlap \ component$

The overlap components of \mathscr{F} are the connected components of OG.

 $A \ pathologic \ example$

Naive approach

First compute OG and then output the connected components. But OG is not necessarily linear in the size of \mathscr{F} .

Dahlhaus's algorithm

Linear time and space algorithm to find overlap components of ${\mathscr F}$ in O(n+f)

Our result

A drastic simplification of Dahlhaus's algorithm.

Output a spanning subgraph of OG in time O(n + f).

() A brief Introduction to Homogeneous Relations

First encounter Modular decomposition Results

2 Umodules

Arbitrary relations Local congruence 2 Self complemented families Undirected graphs Tournaments

3 Overlap components

Perspectives

Homogeneous relations Overlap components NLC-width

$Homogeneous\ relations$

- Characterize "digraphic" and "oriented" homogeneous relations.
- Improve modular decomposition algorithm:
 - () Conjecture: a O(n+m) algorithm
 - ${\ensuremath{ @ o \ }}$ a $O(n^2)$ algorithm for arbitrary Homogeneous relations.

Homogeneous relations

- Characterize "digraphic" and "oriented" homogeneous relations.
- Improve modular decomposition algorithm:
 - () Conjecture: a O(n+m) algorithm
 - ${\ensuremath{ @ o \ }}$ a $O(n^2)$ algorithm for arbitrary Homogeneous relations.

$Umodular \ decomposition$

- Improve the $O(n^5)$ decomposition algorithm.
- Corresponding decomposition for directed and oriented graphs.
- Necessary and sufficient condition to characterize self-complemented families.
- Investigate Seidel minor properties.

Overlap Component and related problems

Overlap component

- Overlap-k component.
- recognition specific properties of the overlap graph in linear time:
 - Bipartite,
 Chain, tree
 - 3 ...

Overlap Component and related problems

$Overlap \ component$

- Overlap-k component.
- recognition specific properties of the overlap graph in linear time:
 - Bipartite,
 Chain, tree
 ...

Partition refinement

- To "implement" *Least Common Ancestor* (LCA) with partition refinement techniques.
- Dynamic partition refinement.

NLC-width

- Improve recognition algorithm to O(n.m).
- What about NLC-3 graphs ?
- Is NLC-k a FPT problem ?

NLC -width

- Improve recognition algorithm to O(n.m).
- What about NLC-3 graphs ?
- Is NLC-k a FPT problem ?

Clique-width

- Clique-width \geq 4 ?
- Is clique-width FPT ?

Sagolun תודה Takk

Merci Thank you