
ha
l-

00
11

12
35

, v
er

si
on

 2
 -

 2
0

N
ov

 2
00

7

Algorithmic Aspects of a General Modular

Decomposition Theory

B.-M. Bui-Xuan a M. Habib b V. Limouzy b F. de Montgolfier b

aLIRMM, CNRS and University Montpellier II, 161 rue Ada, 34392 Montpellier
Cedex 5, France. buixuan@lirmm.fr

bLIAFA, CNRS and University Paris Diderot - Paris7, Case 7014, 75205 Paris
Cedex 13, France. {habib,limouzy,fm}@liafa.jussieu.fr

Abstract

A new general decomposition theory inspired from modular graph decomposition
is presented. This helps unifying modular decomposition on different structures,
including (but not restricted to) graphs. Moreover, even in the case of graphs,
this new notion called homogeneous modules not only captures the classical graph
modules but also allows to handle 2−connected components, star-cutsets, and other
vertex subsets.

The main result is that most of the nice algorithmic tools developed for modular
decomposition of graphs still apply efficiently on our generalisation of modules.
Besides, when an essential axiom is satisfied, almost all the important properties can
be retrieved. For this case, an algorithm given by Ehrenfeucht, Gabow, McConnell
and Sullivan [15] is generalised and yields a very efficient solution to the associated
decomposition problem.

1 Introduction

Modular decomposition has arisen in different contexts as a very natural opera-
tion on many discrete structures such as graphs, directed graphs, 2-structures,
automata, boolean functions, hypergraphs, and matroids. In graph theory,
modular decomposition plays a central role. Not only modular graph decom-
position yields a framework for the computation of all transitive orientations
of a given comparability graph [18,20,27], but it also highly relates to com-
mon intervals of a set of permutations [2,6,30] and therefore has applications
in bioinformatics. Besides, many graph classes such as cographs, P4-sparse or
P4-tidy graphs are characterised by properties of their modules (see e.g. [4]).
It is also worth noticing that well-known NP-hard problems such as colouring

Preprint submitted to Elsevier Science 20 November 2007

.

.

a c d e f ihgb

P

//

.

.

a

b
c

d

e

f

g

h

i

i ii

Fig. 1. Illustration of classical modular graph decomposition. i. In this undirected
graph, vertex c is a splitter of {a, b} (not linked the same way), whereas vertex b

is not a splitter of {a, c}. Vertex set {d, e, f, g}, as well as any of its subsets, is a
module of this undirected graph. ii. Modular decomposition tree of the graph.

can be solved in polynomial, and often linear, time when the graph is “suffi-
ciently” decomposable [29] using some application of the divide and conquer
paradigm. Finally, the decomposition is useful for graph drawing [32], compact
encoding (e.g. with cographs [10] and P4−sparse graphs [25]), and precom-
puting for graph problems including recognition, decision, and combinatorics
optimisations (see [29] or [4] for a survey). A central point of this theory re-
lies on the decomposition theorem which presents a tree, so-called modular
decomposition tree, as compact encoding of the family of modules of a graph.
Then, computing this tree efficiently given the graph has been an important
challenge of the past three decades [6,7,8,9,11,13,15,21,23,27,29,30].

On the other hand, several combinatorial algorithms are based on partition
refinement techniques [22,23,31]. Many graph algorithms make intensive use
of vertex splitting, the action of splitting parts according to the neighbourhood
of a vertex. For instance, all known linear-time modular decomposition algo-
rithms on graphs use this technique [6,8,11,13,15,22,23,27]. In bioinformatics
also, the distinction of a set by an element, so-called splitter, seems to play an
important role, e.g. in the efficient computation of the set of common intervals
of two permutations [6,33].

An abstract notion of splitter is studied here and a formalism based on the
concept of homogeneity is proposed. The resulting structures will be referred
to as homogeneous relations. Our aim is a better understanding of existing
modular decomposition algorithms by characterising the algebraic properties
on which they rely. As a natural consequence, the new formalism unifies modu-
lar decomposition on graphs and on their common generalisations to directed
graphs [26] and to 2−structures [16]. Of course, the theory still applies on
structures beyond the previous ones. Moreover, even in the case of graphs,
this new notion called homogeneous modules not only captures the classical
graph modules but also allows to handle other vertex subsets, e.g. those similar
to 2−connected components, or to star-cutsets.

2

Our main result is that most of the nice algorithmic tools developed to com-
pute the modular decomposition tree of a graph still apply efficiently in the
general theory. For graph modules, to design efficient algorithms there actu-
ally are three main approaches, distinguishable by the use of properties of:
the set of maximal modules excluding a vertex [15], a factoring permuta-
tion [6,8,21,23], or the visit order of some peculiar graph search such as the
so-called LexBFS lexicographic breadth-first search [5,14,24]. Because of its
specificity due to exotic graph searches, the use of the third approach in the
new theory is forfeit. Still, we extend the two first approaches, and retrieve
most of the common efficient computations.

However, as a consequence of their broadness, no obvious decomposition theo-
rem, to our knowledge, is available for arbitrary homogeneous relations, hence
no homogeneous modular decomposition tree necessarily is guaranteed. In-
deed, though the homogeneous modules inherit many interesting properties
from graph modules, they do not necessarily satisfy the following essential
one. One can shrink a whole graph module M into one single vertex m ∈M :
if some vertex of M distinguishes two exterior vertices, then so does every
vertex of M and so does m. Let us denote the property by the name of mod-
ular quotient. It actually is the basis of many divide-and-conquer paradigms
derived from the modular graph decomposition framework, such as the com-
putation of weighted maximal stable or clique set, and graph colouring [19,28].
This naturally motivates us to study homogeneous relations fulfilling the mod-
ular quotient property, hereafter denoted by good homogeneous relations. As
expected, almost all important properties of modular graph decomposition, in-
cluding the decomposition theorem, still hold for the latter relations. Eventu-
ally, we generalise an algorithm given by Ehrenfeucht et al. [15] to an O(|X|2)
algorithm computing the decomposition tree of a given good homogeneous
relation on X.

The paper is structured as follows. First the new combinatorial decomposi-
tion theory is detailed in Sections 2 and 3. Section 4 investigates the general
algorithmic framework on arbitrary homogeneous relations. The subsequent
Section 5 is devoted to good homogeneous relations. Finally, we close the paper
with noteworthy outcomes.

2 Homogeneity, an abstraction of Adjacency

Throughout this section X is a finite set, and P(X) denotes the family of all
subsets of X. A diverse triple is (x, y, z) ⊆ X3 with x 6= y and x 6= z. This
will be denoted by (x|yz) instead of (x, y, z) since the first element plays a
particular role. Let H be a relation over the diverse triples of X. Given x ∈ X,
we define Hx as the binary relation on X \{x} such that Hx(y, z)⇔ H(x|yz).

3

Fig. 2. The standard homogeneous relation H of this directed graph satisfies
H(x|uivi) for all i, and ¬H(x|uivj) for all i 6= j.

Definition 1 (Homogeneous Relation) H is a homogeneous relation on
X if, for all x ∈ X, Hx is an equivalence relation on X \ {x} (i.e. it fulfils the
symmetry, reflexivity and transitivity properties). Equivalently, such a relation
can be seen as a mapping from each x ∈ X to a partition of X \ {x}, namely
the equivalence classes of Hx.

Definition 2 (Homogeneous Module) Let H be a homogeneous relation
on X. A subset M ⊆ X is a homogeneous module of H if

∀m, m′ ∈M, ∀x ∈ X \M, H(x|mm′).

Remark: From the definition it is obvious that, given a homogeneous module
M , if ¬H(x|mm′) for some m, m′ ∈M then x ∈M .

If ¬H(x|mm′) we say that x distinguishes m from m′, or x is a splitter of
{m, m′}. A homogeneous module M is trivial if |M | ≤ 1 or M = X. The family
of homogeneous modules of H is denoted by MH , and M when no confusion
occurs. H is modular prime if MH is reduced to the trivial homogeneous
modules. For convenience, such a relation is also called prime when it clearly
appears in the context that modules are involved. Homogeneity and distinction
can be applied to graphs. Indeed, there is a natural homogeneous relation
associated to graphs as follow.

Definition 3 (Standard Homogeneous Relation) The standard homoge-
neous relation H(G) of a directed graph G = (X, A) is defined such that, for
all x, u, v ∈ X, H(G)(x|uv) is true if and only if the two following conditions
hold:
1. either both u and v or none of them are in-neighbours of x, and
2. either both u and v or none of them are out-neighbours of x.

4

Roughly, H(x|uv) tells if x “sees” u and v the same way. Of course the above
definition also holds for undirected graphs, tournaments, oriented graphs, and
can also be extended to 2−structures (which roughly are edge-coloured com-
plete directed graphs G = (X, X2), see e.g. [16] for further information). It
follows straight from definition that

Proposition 1 Let G be a graph, resp. tournament, oriented graph, directed
graph, 2−structure. Homogeneous modules of its standard homogeneous rela-
tion H(G) are modules of G in the usual sense [16,18,29].

Standard homogeneous relations are closely related to the notion of adjacency
in graph theory. Notice that there are other homogeneous relations bound to
a graph or to a 2−structure (e.g. in Section 6). Let us now give some first
structural properties of homogeneous relations. Given A ⊆ X one can define
the induced relation H [A] as H restricted to diverse triples of A3. If A is a
homogeneous module we have the following nice property:

Proposition 2 (Restriction) Let H be a homogeneous relation, M a homo-
geneous module of H, and N ⊆M . Then, N ∈MH[M] ⇔ N ∈MH .

Proof: That a homogeneous module of H is a homogeneous module of H [M] is
straight from definition. Conversely, if N ⊆M is not a homogeneous module of
H , then there is a splitter s ∈ X \N such that ∃x, y ∈ N,¬H(s|xy). However,
s cannot belong to X \M since this would imply s is a splitter w.r.t. H of M .
Therefore, s ∈ M \N , and is a splitter w.r.t. H [M] of N . Hence, N is not a
homogeneous module of H [M]. 2

2.1 Lattice Structure

Let H be an arbitrary homogeneous relation over a finite set X. Let M denote
the family of its homogeneous modules. Two sets A and B overlap if A ∩ B,
A \B and B \ A all are non-empty. It is denoted by A©©B.

Proposition 3 ∀A, B ∈M, if A©©B, then (A ∩ B) ∈M and (A ∪ B) ∈M.

Proof: the fact that A ∩ B is a homogeneous module is obvious. We use the
transitivity of Hx for all x /∈ A ∪B to prove (A ∪ B) ∈M. 2

Proposition 4 If M denotes the family of homogeneous modules of a homo-
geneous relation, and M′ = M ∪ {∅}, then (M′,⊆) is a lattice.

Proof: Since ∅ ∈ M′, and thanks to Proposition 3, the intersection of two
members A and B belonging to M′ belongs to M′. It is the infimum of A and
B, since any member of M′ that is a subset of both A and B is a subset of

5

A ∩ B. Let N be the family of all members of M′ containing both A and B.
It is non-empty for X is a member. Since M′ is closed under intersection, N

admits a unique smallest member (w.r.t. inclusion), which is the intersection
of all its members, and is the supremum of A and B. 2

This lattice is a sublattice of the boolean lattice (hypercube) on X. Moreover,
if we consider A ∈M such that |A| ≥ 1, and M(A) = {M ∈MH and M ⊇ A},
then (M(A),⊆) is a distributive lattice.

2.2 Homogeneous Modules as Roots of a Submodular Function

Submodular functions are combinatorial objects with powerful potential (see
e.g. [17]). Theorem 1 below enables the application of this theory to homoge-
neous relations: the homogenenous modules of any such relation coincide with
the roots of a function which satisfies the submodular inequality on intersect-
ing subsets.

Definition 4 A set function µ : P(X) → R is submodular if, for all sets
A, B ∈ P(X), µ(A) + µ(B) ≥ µ(A ∪ B) + µ(A ∩ B) (see e.g. [17]).

Theorem 1 Let H be a homogeneous relation on X. Let s(A) be the function
counting the number of splitters of a non-empty subset A ⊆ X. Then, s follows
the submodular inequality on intersecting subsets:

s(A) + s(B) ≥ s(A ∪ B) + s(A ∩ B) for all A ∩B 6= ∅.

Proof: If A ⊆ B or B ⊆ A, the inequality is trivial. If A©©B then A 6= ∅ and
B 6= ∅. Let SA denote the set of splitters of A. If {X1, . . . , Xk} is a partition of
X, we note X = {X1, . . . , Xk}. Obviously, SA∩B = {SA∩B \B, SA∩B ∩ B}. As
SA ∩ A = ∅, the partition SA∪B = {SA∪B \ SA, SA∪B ∩ SA} can be reduced to
SA∪B = {SA∪B \ SA, SA \ (A ∪ B)}. Similarly, SB = {SB \ SA∩B, SA∩B \B} .
Finally, SA = {SA \B, (SA ∩B) \ SA∩B, (SA ∩B) ∩ SA∩B} can be reduced to
SA = {SA \ (A ∪ B), (SA ∩ B) \ SA∩B, SA∩B ∩B}. Hence,

|SA|+ |SB| − |SA∪B| − |SA∩B| = |(SA ∩B) \ SA∩B|+ |SB \ SA∩B| − |SA∪B \ SA|.

To achieve proving the theorem, we prove that SA∪B \SA ⊆ SB \SA∩B. Indeed,
let s ∈ SA∪B \SA. Then, s /∈ A∪B and H(s|xy) for all x, y ∈ A. Now, suppose
that s /∈ SB. Since s does not belong to B, we deduce H(s|xy) for all x, y ∈ B.
Furthermore, as A and B overlap and thanks to the transitivity of H , we
deduce H(s|xy) for all x, y ∈ A ∪ B and s /∈ A ∪ B, which is by definition
s /∈ SA∪B. Contradiction. Finally, supposing s ∈ SA∩B would imply s ∈ SA. 2

In [33] a (restricted) version of this theorem is proved, and this submodularity
property is used to propose a very nice algorithm which computes the set

6

C1 C3

C4

C2

A1
A2

A3

A8

A9
A5

A6

A7

4A

Fig. 3. The atoms A1, . . . , A9 of the overlap class C = {C1, C2, C3, C4}.

of common intervals of a set of permutations. This approach was generalised
for modules of standard homogeneous relations of undirected graphs in [6]. It
would be interesting to consider this idea on arbitrary homogeneous relations.

2.3 Strong Homogeneous Modules and Primality

In an arbitrary family F of subsets of X, a member A ∈ F is strong if it does
not overlap any other member B ∈ F. Those which are not strong are weak. If
they belong to the family, X and the singletons {x} (x ∈ X) form the trivial
strong members of F. Otherwise we extend F with the trivial strong members.

The set inclusion orders the strong members of F into a tree, hereafter denoted
by the generalised decomposition tree of F. This could be seen as a quick proof
that, in F, there are at most 2|X| − 1 strong members, and at most |X| − 2
non-trivial ones, since the tree has |X| leaves and no degree 2 internal nodes,
except for possibly the root. When F is weakly partitive (see definition in
Section 3), this tree plays an important role since it is an exact coding in
O(|X|) space of the possibly 2|X| members of the family. It is then called the
decomposition tree of F.

The parent of a (possibly weak) member M ∈ F is the smallest strong member
MP properly containing M , and M is said to be a child of MP . For instance,
if M is strong then MP is its parent in the generalised decomposition tree. A
strong member is prime if all its children are strong, and brittle otherwise.

An overlap class of F is an equivalence class of the transitive closure of the
overlap relation ©© on F. Such a class is trivial if it contains only one member
A ∈ F. Then A is by definition a strong member of F. The support of an
overlap class C = {C1, . . . , Ck} is defined as S(C) = C1 ∪ · · · ∪ Ck. An atom
of the overlap class C is a maximal subset of S(C) that does not overlap any
Ci (1 ≤ i ≤ k) (an illustration is given in Fig. 3). Notice that the atoms form
a partition of S(C). Besides, an atom of an overlap class belongs to the class

7

if and only if this class is trivial. Furthermore, the support, resp. an atom, of
an overlap class belongs to the family F if and only if it is a strong member
of F. Of course, a support, resp. an atom, does not necessarily belong to F.
However, in a weakly partitive family (see Section 3), all atoms and supports
of overlap classes will belong by definition of partitivity to F, hence are strong
members of the family. It is an elementary result of finite set theory that

Proposition 5 The following holds for any family F of subsets of a finite set
X satisfying the closure under union of overlapping members.
1. A ⊆ X is a prime strong member of F if and only if {A} is a trivial overlap
class of F.
2. A ⊆ X is a brittle strong member of F if and only if it is the support of some
non-trivial overlap class CA of F. In this case, weak children of A coincide with
members of CA.

Of course we apply all these notions to the family of homogeneous modules
of a homogeneous relation H . Let Z(x, y) be the largest homogeneous module
of H containing x but not y. Z(x, y) is well defined since it is the union of
all homogeneous modules containing x but not y, which is a homogeneous
module thanks to Proposition 3. Moreover, Z(x, y) is not empty because {x}
is a member. Let Z(H) be the family

Z(H) = {Z(x, y) | x, y ∈ X ∧ x 6= y}.

Notice that Z(H) is not necessarily closed under union of overlapping mem-
bers. An example of such Z(H) is as follows. If X = {a, b, c}, H(a|bc), H(b|ac),
and H(c|ab), then {a, b} ∈ Z(H), {a, c} ∈ Z(H), however X /∈ Z(H).

Theorem 2 All support and atoms of Z(H) that are homogeneous modules of
H are strong homogeneous modules. A non-trivial strong homogenous module
of H is either the support or an atom of some overlap class of Z(H).

Proof: Let us prove the first claim of the theorem.

(1) The support of an overlap class of Z(H) is a homogeneous module, since
the family of homogenous modules is closed under the union of overlap-
ping members (Proposition 3). If the support S of a given overlap class
C is overlapped by another homogenous module, then it is overlapped by
a homogenous module A /∈ Z(H). Let x be an element of A \ S and y
an element of S \ A. Z(x, y) contains A but not {y} and thus overlaps
S, so it must overlap at least one member of C and thus Z(x, y) ∈ C, a
contradiction since x /∈ S. So the support of an overlap class is a strong
homogenous module.

(2) Let A be an atom of a given overlap class C of Z(H). If A is included
in at least two members of C, then A is exactly the intersection of all

8

members of C which include A. Since the family of homogenous modules
is closed under intersection of overlapping members (Proposition 3), A is
a homogenous module. Notice that if A is included in only one member
of C, it may fail to be a homogenous module. Let us suppose that A is
a homogenous module, and that it is overlapped by another homogenous
module. Then it is overlapped by a homogenous module B /∈ Z(H). Let
x be an element of B \ A and y an element of A \B. Z(x, y) contains B
but not {y} and thus overlaps A, so it overlaps all elements of C which
include A and thus Z(x, y) ∈ C, a contradiction since no atom may be
overlapped by a member of the overlap class. So the atoms of an overlap
class which are homogenous modules are strong.

Now, let us prove that if M is a non-trivial strong homogenous module then
it is the support or an atom of some overlap class. We shall distinguish three
cases. Let MP be the strong parent of M (which exists since M 6= X).

(1) M is prime and MP is prime. Then for all x ∈ M and all y ∈ MP \M ,
M = Z(x, y). As M is a strong homogenous module, it alone forms a
trivial overlap class of Z(H) and is equal to its support and to its unique
atom.

(2) M is prime and MP is brittle. Then for all x ∈M and all y ∈MP \M , M is
included in Z(x, y). Notice that these Z(x, y) belong all to a same overlap
class C of Z(H). Since M is a strong homogenous module of H , M ⊆ S(C)
cannot overlap any member of C. Moreover, for all M (N ⊆ S(C), N
would overlap Z(x, y) with x ∈ M and y ∈ N \ M . Hence, M is by
definition an atom of C.

(3) M is brittle. It is easy to notice that M has k ≥ 3 strong children
M1, . . . , Mk. Let us pick an element xi in each Mi. Then for all i and
j we consider Z(xi, xj). Not all of them are strong homogeneous mod-
ules (otherwise, M would be prime). Let us consider the overlap graph of
these homogeneous modules (the vertices are the homogeneous modules,
and there is an edge between overlapping homogeneous modules). Each
connected component of this graph is an overlap class. According to the
first sentence of the theorem, the support of each overlap class is a strong
homogeneous module. If there are two overlap classes, the support of at
least one is a strong homogeneous module that is strictly between M and
its sons Mi in the inclusion tree, since the overlap graph has at least one
edge, a contradiction. So there must be only one overlap class, whose
support is exactly M .

2

For an arbitrary homogeneous relation, Theorem 2 gives the basis for an
O(|X|3) time enumeration of all strong homogeneous modules, which is de-
picted in Section 4.5.

9

2.4 Particular Homogeneous Relations

We now survey some classes of homogeneous relations defined by added ax-
ioms, which, in practice, frequently occurs. For instance, the class of standard
homogeneous relations (see Definition 3) has very specific properties, leading
to efficient decomposition algorithms (see Section 5).

Definition 5 A homogeneous relation H is said to be

• weakly graphic if H(y|xz) ∧ H(z|xy) ⇒ H(x|yz) for all x, y, z ∈ X;
• weakly digraphic if H(s|xy) ∧ H(t|xy) ∧ H(y|sx) ∧ H(y|tx) ⇒ H(x|st)

for all x, y, s, t ∈ X;
• modular quotient if H(x|st) ⇔ H(y|st) for all homogeneous modules

M of H, for all x, y ∈M , and s, t /∈M .

Proposition 6 A weakly graphic homogeneous relation is weakly digraphic.
There are weakly graphic homogeneous relations that are not modular quo-
tient. There are modular quotient homogeneous relations that are not weakly
digraphic, hence not weakly graphic.

Proof: If H is weakly graphic, H(s|xy) and H(y|sx) imply H(x|sy). Like-
wise, H(t|xy) and H(y|tx) imply H(x|ty). Then, H(x|st) by transitivity of
Hx. Hence, H is weakly digraphic. Besides, let K be defined over XK =
{x, y, s, t} as Kx = {{y}, {s}, {t}}, Ky = {{x}, {s, t}}, Ks = {{x, y}, {t}},
and Kt = {{x, y}, {s}}. Then, K is weakly graphic (exhaustive checking on
all triplets) but not modular quotient (¬H(x|st) and H(y|st) for the homo-
geneous module {x, y}). Finally, let L be defined over XL = {x, y, s, t, z}
as Kx = {{s}, {t, y, z}}, Ky = {{s, t, x}, {z}}, Ks = {{x, y}, {t, z}}, Kt =
{{x, y}, {s, z}}. and Kz = {{x}, {s, t, y}}. Then, L vacuously is modular quo-
tient as having no homogeneous module, but not weakly digraphic (x, y, s, t
form a counterexample). 2

The modular quotient property plays an important role in modular decomposi-
tion algorithmics. Indeed, if H is modular quotient, elements in a homogeneous
module M of H uniformly perceive a set A not intersecting M : if one element
of M distinguishes A then so do all. This, combined with the definition of a
homogeneous module, allows to shrink M into a single element, the quotient
by M , or to pick a representative element from the homogeneous module. Re-
cursion can therefore be used when dealing with homogeneous modules. The
modular quotient and restriction (Proposition 2) properties were first used
in modular decomposition of graphs and are useful for algorithmics [29]. In
this paper, these relations will be qualified as good homogeneous relations, and
Section 5 is devoted to their study.

10

Let the congruence w.r.t. H of an element x ∈ X stand for the number
of equivalence classes of the relation Hx. Then, the local congruence of H
is the maximum congruence of all elements of X. Homogeneous relations of
congruence 2 plays a special role in graph theory as they include the class of
standard homogeneous relations of undirected graphs and tournaments (see
next section). Furthermore, those relations satisfy the following nice property.

Proposition 7 Any weakly graphic homogeneous relation H of local congru-
ence 2 is modular quotient.

Proof: Suppose H weakly graphic and not modular quotient. Then, there
exist x, y, s, t pairwise distinct elements such that {x, y} is a homogeneous
module, H(x|st), and ¬H(y|st). Let us prove that we have both ¬H(y|xs)
and ¬H(y|xt). Indeed, suppose w.l.o.g. that H(y|xs). Then, the transitivity of
Hy implies ¬H(y|xt) (for we already have ¬H(y|st)). Besides, since {x, y} is a
homogeneous module, H(s|xy). The weakly graphic property implies H(x|sy),
and the transitivity of Hx yields H(x|ty). But then we would have H(x|ty),
H(t|xy) ({x, y} homogeneous module), and ¬H(y|xt), which is a contradiction
with being weakly graphic. Hence, ¬H(y|st), ¬H(y|xs), ¬H(y|xt), and the
congruence of y is at least 3. 2

2.5 Standard Homogeneous Relations

Given a (directed) graph, and more generally a 2−structure, the associated
standard homogeneous relation is defined in Definition 3. Such relations are
peculiar and satisfy the following fundamental property.

Proposition 8 The standard homogeneous relation of a 2−structure is mod-
ular quotient. In particular, this result holds for graphs, tournaments, oriented
graphs, and directed graphs.

Proposition 8 has important algorithmic implications that will be detailed in
Section 5. Now, the name of weakly graphic and weakly digraphic homogeneous
relations used in the previous section is motivated by Proposition 9 below. A
symmetric 2−structure refers to an edge-coloured clique (the clique is seen as
an undirected graph, see e.g. [16] for further information).

Proposition 9 The standard homogeneous relation of a directed graph, resp.
a 2−structure, is weakly digraphic. The standard homogeneous relation of an
undirected graph, resp. a symmetric 2−structure, is weakly graphic.

We now investigate a converse question: given a homogeneous relation H over a
finite set X, does there exist an undirected graph, or a tournament, admitting

11

H as standard homogeneous relation? H is defined as a graphic homogeneous
relation if its local congruence is at most 2 and if H [{a, b, c}] has exactly 0 or
2 elements of congruence 2 for every triple {a, b, c}. H is tournamental if
its local congruence is at most 2 and if H [{a, b, c}] has exactly 1 or 3 elements
of congruence 2 for every triple {a, b, c}.

Theorem 3 H is the standard homogeneous relation of an undirected graph
if and only if it is graphic. H is the standard homogeneous relation of a tour-
nament if and only if it is tournamental.

Proof: It is straightforward to check that the standard homogeneous relation
of any graph, resp. tournament, is graphic, resp. tournamental. The converse
for graphs can be proved as follows. Let H be a graphic homogeneous relation
over a finite set X, and x ∈ X. Let Cx be one of the possibly two equivalence
classes of Hx (there always is at least one such class). We define the matrix M
as: M(x, y) = 1 if y ∈ Cx and M(x, y) = 0 otherwise; for all x′ 6= x, M(x′, y) =
1 if y ∈ Cx′ and M(x, y) = 0 otherwise, where Cx′ is the equivalence class of Hx′

containing x. Suppose M not symmetric. Then, there exists y 6= z both distinct
to x such that M(y, z) = 1 and M(z, y) = 0. But then H [{x, y, z}] would have
exactly 1 or 3 elements of congruence 2. Therefore, M is a {0, 1} symmetric
matrix and can be seen as the adjacency matrix of some undirected graph G. It
is then straightforward to verify that H is the standard homogeneous relation
of G. The proof for tournaments is similar. We use the characterisation that
the adjacency matrix of a tournament is a {−1, 1} anti-symmetric matrix since
there are no non-edges and no double arcs. 2

Corollary 1 It can be tested in O(|X|3) time if a homogeneous relation H
admits a graph G or a tournament T such that H(G) = H or H(T) = H.

Proof: First check if all element x has congruence at most 2. Then check for
all triples the corresponding property of the restricted relation. 2

Notice that, if a graphic, resp. tournamental, relation H is given as |X| sets
of equivalence classes of Hx (cf Section 4.1), then, the adjacency list represen-
tation of the corresponding graph, resp. tournament, can be built in O(|X|2)
time. Indeed, for graphs one just has to decide which class of the first vertex
v ∈ X represents its neighbourhood. Then, for any other vertex u, the class
containing v will be its neighbourhood if u is a neighbour of v, and its non-
neighbourhood otherwise. Simply remove the “non-neighbourhood” classes (in
O(|X|) time each): the other class in each case is the vertex’s adjacency list.
A similar construction can be performed for tournaments in the same O(|X|2)
worst case time.

Remark: Extending Theorem 3 to symmetric 2−structures is quite straight-
forward. It would be interesting to characterise the standard homogeneous
relations of directed graphs, and 2−structures.

12

3 Partitivity and Decomposition Theorem

A generalisation of modular decomposition, known from [9], less general than
homogeneous relations but more powerful, is the partitive families. The sym-
metric difference of two sets A and B, denoted by A∆B, is (A \B)∪ (B \A).

Definition 6 A family F ⊆ P(X) is weakly partitive if it contains X and
the singletons {x} for all x ∈ X, and is closed under union, intersection and
difference of overlapping members, i.e.

A ∈ F ∧ B ∈ F ∧ A©©B ⇒ A ∩ B ∈ F ∧ A ∪B ∈ F ∧ A \B ∈ F.
Furthermore a weakly partitive family F is partitive if it is also closed under
symmetric difference of overlapping members:

A ∈ F ∧ B ∈ F ∧ A©©B ⇒ A∆B ∈ F.

Let F be a weakly partitive family over X. As mentioned before, strong mem-
bers of F can be ordered by inclusion into a tree, so-called generalised decom-
position tree (see Section 2.3). In this tree, the child, under the usual parental
notion in trees, of an internal node M is by definition a strong member of
F, which is also a strong child of the strong member M ∈ F, in the sense of
Section 2.3. Besides, a weak child of the node M will refer to the definition of
Section 2.3. Let us define three types of strong members of F, namely three
types of nodes of the tree:

• prime nodes which have no weak children,
• degenerate nodes: any union of strong children of the node belongs to F,
• linear nodes: there is an ordering of the strong children of the node such

that a union of them belongs to F if and only if they follow consecutively
in this ordering.

Theorem 4 [9] In a partitive family, there are only prime and degenerate
nodes. In a weakly partitive family, there are only prime, degenerate, and linear
nodes.

The generalised decomposition tree hence is an O(|X|) space coding of the
family: it is sufficient to type the nodes into complete, linear or prime, and
to order the children of the linear nodes. It is then called the decomposition
tree of the family. From this tree, all weak members of F can be outputted by
making simple combinations of the strong children of brittle (degenerate or
linear) nodes. Now, the following property states that homogeneous modules
of some homogeneous relations are proper generalisations of (weakly) partitive
families.

Proposition 10 The homogeneous modules of a weakly graphic, resp. weakly
digraphic, homogeneous relation H form a partitive, resp. weakly partitive,

13

family.

Proof: Proposition 3 gives the closure by intersection and union of overlap-
ping members. Let A ∈ MH and B ∈ MH be two overlapping homogeneous
modules of H . Suppose that there is a splitter s of A\B: there are x, y ∈ A\B
such that ¬H(s|xy). Moreover, s ∈ A ∩ B otherwise it would be a splitter of
A. Finally, since A©©B, there exists an element t ∈ B \ A. We have: H(x|st)
and H(y|st) and H(t|sx) and H(t|sy) and H(t|xy). In other words, H is not
weakly digraphic. Hence, the family of homogeneous modules of a weakly di-
graphic homogeneous relation is weakly partitive. Besides, suppose that z is a
splitter of A∆B. Then, z ∈ A∩B and there exists x ∈ A and y ∈ B such that
¬H(s|xy). Since H(x|yz) and H(y|xz), H is not weakly graphic. Hence, the
family of homogeneous modules of a weakly graphic homogeneous relation is
partitive. 2

As a result, the homogeneous modules of a standard homogeneous relation
form a weakly partitive family because such a relation always is weakly di-
graphic (cf Section 2.5). More generally, we will prove in Proposition 15 that
the homogeneous modules of any homogeneous relation that satisfies the mod-
ular quotient property (cf Section 2.4), so-called good homogeneous relation,
form a weakly partitive family. Recall that a weakly digraphic homogeneous
relation is not necessarily modular quotient (cf Proposition 6).

4 Algorithms for Arbitrary Homogeneous Relations

This section considers a given homogeneous relation H over a ground set X,
and builds tools for computing the generalised modular decomposition tree of
H . The best performance to compute this tree in the general case will be given
in O(|X|3) time in Section 4.5. Notice that the decomposition Theorem 4 does
not necessarily hold in this section.

4.1 Data Structures

According to Definition 1, a homogeneous relation H can be represented in
O(|X|2) space by an n × n matrix A of values in J1, nK as follows. If X =
{x1, . . . , xn}, each equivalence class of the relation Hxi

will be assigned a
distinct number from 1 to n. Then, the cell Ai,j has value k if and only if xj

belongs to the equivalence class of Hxi
having the value k. This representation

allows to test in O(1) time whether H(xi|xpxq) by checking if Ai,p = Ai,q.
However, retrieving an equivalence class requires an O(|X|) worst case time.

14

Another alternative is to use the list representation: each element x ∈ X
will be associated to a list of equivalence classes of the relation Hx. This list
is allowed to ignore one class Cx among the equivalence classes of Hx, for
instance the largest one. Thus, the total used space is O(n+m), with n = |X|
and m =

∑
x∈X(n−|Cx|). Though this representation allows access in O(1) to

an equivalence class of Hx for any element x, testing if H(x|yz) would require
O(n− |Cx|).

Notice that for a homogeneous relation, it is straightforward to construct
in O(|X|2) time a list representation given any matrix representation, and
conversely.

N.B. Without further specification, all algorithms presented in this paper take
matrix representations as input.

4.2 Smallest Homogeneous Module Containing a Subset

Let S be a non-empty subset of X. As MH is closed under intersection, there is
a unique smallest homogeneous module containing S, namely the intersection
of all homogeneous modules containing S, denoted henceforth by SM(S).

Algorithm 1: Smallest homogeneous module containing S

Let x be an element of S, M := {x} and F := S \ {x}
while F is not empty do

pick an element y in F ; F := F \ {y} ; M := M ∪ {y}
for every element z /∈ (M ∪ F) do

if ¬H(z|xy) then F := F ∪ {z}

output M (now equals to SM(S))

Theorem 5 Algorithm 1 computes SM(S) in O(|X|.|SM(S)|) = O(|X|2)
time.

Proof: Time complexity is obvious as the while loop runs |M | − 1 times
and the for loop |X| times. The algorithm maintains the invariant that every
splitter of M is in F . When M is replaced by M∪{y}, using transitivity of the
relation Hx, every splitter for M∪{y} either distinguishes x from y, or already
is in F . The algorithm ends therefore on a homogeneous module that contains
S, and thus we have SM(S) ⊆M . If M 6= SM(S) let s be the first element of
M\SM(S) added to F (eventually added to M). It distinguished two elements
x and y from SM(S), contradicting its homogeneity. So SM(S) = M . 2

15

4.3 Maximal Homogeneous Modules Excluding an Element

Proposition 11 Let x be an element of X. As MH is closed under union of
intersecting subsets, there is a unique partition of X \{x} into S1, . . . , Sk such
that every Si is a homogeneous module of H and is maximal w.r.t. inclusion
in MH .

We call MaxM(x) this partition of maximal homogeneous modules excluding
x, and propose a partition refining algorithm for its computation. It is straight
from definition that

Lemma 1 Every homogeneous module excluding x (especially the maximal
ones) is included in some equivalence class of Hx.

Therefore our algorithm starts with the partition P = {H1
x, . . . , H

k
x} of equiv-

alence classes of Hx. Then the partition is refined (parts are split) using the
following rule. Let y be an element, called the pivot, and Y the part of P
containing y.

Rule 1 split every part A of P , except for Y , into A ∩H1
y ,. . . ,A ∩Hk

y

Notice that a part is broken if and only if its splitters include y.

Lemma 2 Starting from the partition P0 = {H1
x..Hk

x}, the application of
Rule 1 (for any pivot in any order) until no part can be actually split, produces
MaxM(x).

Proof: The refining process ends when no pivot can split a part, i.e when
every part is a homogeneous module. Let us suppose one of these homogeneous
modules M is not maximal w.r.t. inclusion: it is included in a homogeneous
module M ′, itself included in an equivalence class of Hx. Let us consider the
pivot y that first broke M ′. It cannot be out of M ′, as M ′ is homogeneous
module, nor within M ′, as a pivot does not break its own part. But M ′ was
broken, contradiction. 2

Let us now implement this lemma into an efficient algorithm. Let Pi be the
partition after the ith application of Rule 1, y be a given vertex used as pivot,
and Yi the part of Pi containing y. We say that a part B of Pj descends from
a part A of Pi if i < j and A ⊂ B. Clearly, after y is chosen as pivot at step
i, y does not distinguish any part of Pi excepted Yi. If y is chosen as pivot
after, at step j > i, y may only split the parts of Pj−1 that descend from Yi.
Only these parts have to be examined for implementing Rule 1. But Yj itself
has not to be examined.

16

Let us suppose that, for a part A, we can split it in O(|A|) time when applying
Rule 1 with pivot y. Then the time spent at step j is O(|Yi| − |Yj|), the sum
of the size of the parts that descend from Yi save Yj. The time of all splittings
with y as pivot is O(|X|), leading to an O(|X|2) time complexity. This is
implemented in Algorithm 2.

Algorithm 2: Maximal Homogeneous Modules excluding x

for every group G do
for every part C of G do

Compute the set Z of elements in G but not in C
for every element y of C do

Partition Z according to the equivalence classes of Hy

Add each partition set to the refining set pool

Set the group boundaries to the parts boundaries (from Pi−1 to Pi)
for each refining set R of the pool do

Remove R from the pool and then refine Pi using R

Let us suppose that the parts are implemented as a linked list [23], and the
new parts created after splitting an old one replace it and follow consecutively
in the list. Then for each pivot y two pointers, one on the first part that
descends from Yi and the second to the last part, are enough to tell the parts
to be examined. A simple sweep between the pointers, omitting Yj, gives them.
We call all classes descending from a previous one a group.

Now let us show how a part A can be split in O(|A|) time. It is a classical trick
of partition refining [22,23,31]. If the equivalence classes of Hy are numbered
from 1 to k, then A can be bucket sorted in O(|A|+k) time, then each bucket
gives a new part that descends from A. If |A| < k, we have to renumber
the used equivalence class of Hy from 1 to k′ ≤ |A| before bucket sorting. A
first sweep on A marks the used equivalence class numbers. A second sweep
unmarks an used number the first time it is seen, and replaces it by the
new number (an incremented counter) which is less than |A|. The vector of
equivalence class numbers is initialised once in O(k) time.

The last point is the ordering in which pivots are taken. Using all elements as
pivots, and repeating this |X| times, i.e. |X|2 applications of Rule 1, is enough.
A clever choice is to use y only if Yi has been split, keeping a queue of “active”
pivots. Let us define a measure that will be used later for complexity analysis.

Definition 7 Let P be a partition of X. Q(P) be the number of pairs {x, y}
such that x and y are not in the same part of P.

17

Q(P) is between 1 (for the trivial partition {X}) and |X|(|X|−1)
2

(for the trivial
partition into singletons).

Theorem 6 MaxM(x) can be computed in Θ(Q(MaxM(x))) = O(|X|2)
time.

Proof: For the correctness proof, one just has to check that the above algo-
rithm implements correctly Lemma 2. For time complexity issues, notice that,
for each pivot y, an element z is placed in Z only once. But it is placed in Z
only if y and z are not in the same part. At each step, refining Z according to
the equivalence classes of Hy, and then refining using all sets generated by y,
takes O(|Z|) time. Hence the algorithm takes Θ(Q(MaxM(x)) time. 2

4.4 Modular Primality test

We recall that H is modular prime if all its homogeneous modules are trivial
(see Section 2).

Theorem 7 One can test in O(|X|2) time if H is modular prime.

Proof: If |X| ≤ 2 the answer is yes. Otherwise let x and y be two elements
of X. In O(|X|2) time, the algorithm of Section 4.3 can output the maximal
homogeneous modules excluding x. If one of them is non-trivial then the an-
swer is no. Otherwise all non-trivial homogeneous modules will contain x. In
O(|X|2) time, the algorithm of Section 4.3 can output the maximal homoge-
neous modules excluding y. If one of them is non-trivial then the answer is no.
Otherwise all non-trivial homogeneous modules will contain x and y. Then,
Algorithm 1 can be used with S = {x, y}, in O(|X|2) time. The answer is yes
if and only if SM({x, y}) = X. 2

4.5 Strong Homogeneous Modules Enumeration

Theorem 2 straightforwardly leads to an algorithm:

Theorem 8 The strong homogeneous modules of a homogeneous relation H
on X can be enumerated in O(|X|3) time.

Proof: First compute MaxM(x) for all x ∈ X. All these sets together form
exactly the family Z(H) defined in Theorem 2. It can be done in O(|X|3) time
using the algorithm of Section 4.3 |X| times. The size of this family (sum of
the cardinals of every subset) is O(|X|2) since they form |X| partitions. Using
Dahlhaus’s algorithm [12] the overlap components can be found in time linear

18

on the size of the family, namely O(|X|2). According to Proposition 5 there
are at most |X| non-trivial overlap classes.

For each class it is easy to compute its support, and in O(|X|2) time easy to
compute all its atoms. For instance, consider the vector of parts of the overlap
class containing a given element: the atoms are the elements with the same
vector. Sorting the list of elements of the supports O(|X|) times, one time per
part, gives the elements with the same vector, thus the atoms.

Then the O(|X|2) supports and atoms must be sorted by inclusion order
into the inclusion tree of the strong homogeneous modules. It can be done
in O(|X|3) time using the same sorting technique.

Eventually, “bad” atoms – those that are not strong homogeneous modules –
must be removed from the tree. According to the first statement of Theorem 2,
the atoms which are homogeneous modules are strong. We just have to perform
O(|X|) tests on all nodes of the tree to test which of them are homogeneous
modules, which can be done in O(|X|2) time for each. 2

4.6 Computation of the Generalised Decomposition Tree given a Factoring
Permutation

The notion of a factoring permutation in the case of graphs [7] was introduced
to give an alternative for computing the modular decomposition tree of a
graph without the precomputing of maximal modules excluding some vertex
x [6,8,21,23]. It can be extended to homogeneous relation as follows.

Definition 8 (Factoring Permutation) A factoring permutation of a ho-
mogeneous relation refers to a depth-first search’s visit order of the leaves of
the generalised decomposition tree of the relation.

We here address the problem of, given a homogeneous relation H over a finite
set X and a factoring permutation σ, computing the generalised modular
decomposition tree of H . Of course the algorithm of Section 4.5 answers to this
question. However, this section will depict a more efficient O(|X|2) solution,
which relates to Uno and Yagiura’s iterative idea [6,33].

Actually, the name of factoring permutations is mainly motivated by the fol-
lowing characterisation. Without loss of generality, we denote the elements of
X by X = {1, 2, . . . , n}.

Proposition 12 If σ is a factoring permutation of a homogeneous relation H
over a finite set X, then every strong homogeneous module of H is an interval
of σ, namely it is of the form {σ(i), σ(i + 1), . . . , σ(j)}.

19

Roughly, to enumerate the strong homogeneous modules of H , it suffices to
find among the intervals of σ those that are strong homogeneous modules. Let
Iij denote the σ−interval Iij = {σ(i), σ(i + 1), . . . , σ(j)}, and Sij the splitter
set of Iij .

Proposition 13 Sij = S(i+1)j ∪ Si(i+1) \ {σ(i)}.

Proof: that S(i+1)j ∪ Si(i+1) \ {σ(i)} ⊆ Sij is straight from definition of a
splitter. Conversely, let x /∈ Iij be such that x /∈ S(i+1)j ∪ Si(i+1). Then, by the
transitivity property of Hx, we obtain H(x|yz) for all y, z ∈ Iij, or in other
words x /∈ Sij . Hence, Sij ⊆ S(i+1)j ∪ Si(i+1). We use the fact that σ(i) /∈ Sij to
conclude. 2

This leads to a naive O(|X|3) solution to this section’s question: for all in-
terval Iij , compute Si(i+1), then Sij using the previously computed S(i+1)j and
Proposition 13, eventually test if Sij is empty. Let us now improve this idea.
The interval Iij is said to be right-free if it does not have a splitter on the right
in the order σ, namely for all k > j, σ(k) does not belong to Sij . Obviously, if
Iij is a strong homogeneous module, Iij is right-free. However, a much more
interesting viewpoint is as follows. If Iij is not right-free, then there will be no
i′ ≤ i such that Ii′j is a strong homogeneous module. Furthermore,

Proposition 14 If j1 < · · · < jk are such that any Iijq
(1 ≤ q ≤ k) is

right-free, then Sij1 ⊆ · · · ⊆ Sijk
.

Proof: All splitters of these intervals stand on the left of σ(i) in the order σ.
Hence, a splitter s of Iijq

can not belong to Iijq+1
, and will belong to Sijq+1

. 2

Roughly, if in some iteration step 1 ≤ i ≤ n, we only store some right-free
intervals in a list RF = (Iij1, . . . , Iijk

), then all their corresponding splitters
can easily be stored by differences in a list ∆S = (∆j1 , . . . , ∆jk

), where ∆j1 =
Sij1 and ∆jq

= Sijq
\ Sijq−1

(q ≥ 2). Under this convention, an interval Iijq
of

the collection is a homogeneous module if and only if all the qth first members
of ∆S are empty: ∆j1 = · · · = ∆jq

= ∅.

From iteration step i to (i − 1), the collection of intervals will extend from
RF = (Iij1, . . . , Iijk

) to RF = (I(i−1)(i−1), I(i−1)j1 , . . . , I(i−1)jk
), and the list ∆S

will be updated accordingly using Proposition 13. Also, if for some jq, the
extension of Iijq

to I(i−1)jq
introduces a splitter σ(k) such that k > jq, then we

remove this interval from RF for it no more is right-free and jq will have no
chance to be the right boundary of an unvisited strong homogeneous module.
We come to Algorithm 3. For convenience, each interval Iijq

will be represented
by its right boundary: we shall use RF = (j1, . . . , jk).

Remark: Basically, the first step i = n of the main loop still is an initialisation
step: at the end of the loop, we always have RF = (n), ∆S = (∅), and

20

Algorithm 3: Generalised modular decomposition tree computation from a
factoring permutation

Input: a homogeneous relation H over a finite set X, and a factoring
permutation σ of H

Output: the generalised modular decomposition tree T of H
RF ← () and ∆S ← () and M ← ∅
Create a dummy y = σ(n + 1) such that H(s|xy) for all s ∈ X and x = σ(n)
for i = n downto 1 do

x← σ(i) and y ← σ(i + 1)
if x belongs to some member of ∆S then remove x from that member
for every s = σ(l) with l < i and ¬H(s|xy) do

Add s to the first member of ∆S
Find s = σ(r) such that ¬H(s|xy) and r maximum, otherwise r ← 0
while the first member j of RF satisfies j < r do

Remove j from RF
Let Fst and Snd be the first and second members of ∆S
Snd← Snd ∪ Fst and remove Fst from ∆S

RF ← (i, RF) and ∆S ← (∅, ∆S)
Let S, resp. j, be the first member of ∆S, resp. RF
while S = ∅ do

M ← {Iij} ∪M
Let S, resp. j, be its next member in ∆S, resp. RF

Remove the weak members of M
Construct T , the inclusion order of members of M
Output T

M = {n}. The real computation starts at step i = n− 1.

Invariant 1 For all 1 ≤ i ≤ n, let RFi = (j1, . . . , jk) and ∆Si = (∆1, . . . , ∆k)
be the values of RF and ∆S, at the end of the first loop “for” in Algorithm 3.
Then,

• for all member j of RFi, the interval Iij is right-free;
• for all 1 ≤ q ≤ k, Sijq

= ∆1 ∪ · · · ∪∆q.

Algorithm 3 correctness directly follows from Invariant 1. As for complexity
issues, it is quite straightforward to check that the computing time of all loops
is in O(n2). After those loops, removing weak members of the list M can be
done in linear time on |M | using the lexical member ordering of M : Iij is before
Ii′j′ in M if and only if i ≤ i′ or (i = i′)∧ (j ≤ j′). Notice that |M | is less than
the number of intervals of σ, which is in O(n2). Likewise, the time spent for
ordering by inclusion the remaining members of M is linear on their number
using the lexical property. Whence, the global computing time of Algorithm 3
is O(n2).

21

Theorem 9 Given a factoring permutation σ of a homogeneous relation H
over a finite set X, one can compute the generalised modular decomposition
tree of H in O(|X|2) time.

Factoring permutations can be get in O(|X|2) time in many cases, especially
with standard homogeneous relations of

• inheritance graphs: a linear extension gives a factoring permutation [14];
• chordal graphs: the cardinality lexicographic breadth first search of the

graph yields a factoring permutation [24];
• tournaments: a very simple partition refining algorithm (greedily choose x

and partition the class containing x into N−(x), {x}, N+(x)) computes a
factoring permutation [26];
• undirected graphs: more sophisticated algorithms run in O(m log n) time

[23] or O(n + m) time [21].

5 Good Homogeneous Relation Decomposition Algorithm

The good homogeneous relations refer to homogeneous relations fulfilling the
modular quotient property (cf Section 2.4). For instance, standard homoge-
neous relations are good (Proposition 8). Their study is motivated by, among
others, the following essential property.

Proposition 15 The homogeneous modules of a good homogeneous relation
form a weakly partitive family.

Proof: Proposition 3 gives the closure under intersection and union of over-
lapping members. We just have to check that, for two homogeneous modules
A and B of H , if A©©B then A \B is a homogeneous module. Let us suppose
A \ B has a splitter s. As A is a homogeneous module, s ∈ A ∩ B. Let x
and y be two elements of A \ B such that ¬H(s|xy). As A©©B there exists
t ∈ B \ A. Since B is a homogeneous module, the modular quotient property
gives ¬H(t|xy). But then A no more is a homogeneous module. 2

Let H be a good homogeneous relation over a finite set X. We address the
problem of computing the modular decomposition tree of H , namely the in-
clusion order of strong homogeneous modules of H . Here again, the algorithm
of Section 4.5 can be used to give a solution to this question in O(|X|3) time.
However, this section will give a more efficient O(|X|2) time solution, which
is inspired from Ehrenfeucht et al. works [15].

Definition 9 A super-modular-decomposition-tree (SMDT for short) of a
good relation H on X is a tree

22

• where the leaf-set is X
• such that each node of the tree is a homogeneous module of H
• such that each strong homogeneous module of H is a node of the tree.

The idea of the algorithm is to compute the left branch (“caterpillar”) of a
super modular decomposition tree of H , going from the root X to an arbitrary
element x (see Fig. 4). Then, the algorithm recurses to compute the “legs”
of the caterpillar, and appends them to the caterpillar. Algorithm 4 captures
this idea. Eventually, the SMDT is cast into the modular decomposition tree.

Proposition 16 Algorithm 4 computes a super modular decomposition tree

Proof: Obviously all outputted nodes are homogeneous modules. We just
have to check that the tree contains all strong homogeneous modules. This is
true indeed, because, for a strong homogeneous module M , the first element
x ∈ M taken for the x−branch (see the definition below) at some recursive
step outputs M ∈ B(x). The goodness of the the relation gives that, when the
algorithm is applied recursively on H [N] and when N is a homogeneous mod-
ule, the homogeneous module M of H [N] output is exactly the homogeneous
module M of H . 2

Algorithm 4: Super Modular Decomposition Tree of a Good Homogeneous
Relation
Input: a good homogeneous relation H over a finite set X
Output: a super modular decomposition tree T of H
Let x be an element of X
Compute MaxM(x), the maximal homogeneous modules not containing x
Order MaxM(x) = M1..Mk such that for each Bj ∈ B, 1 ≤ j ≤ l, there
exists f(j) such that Bj = {x} ⊎M1 ⊎M2... ⊎Mf(j)

Initialise T to be the x−branch
for every Mi (1 ≤ i < k) do

Compute recursively the modular decomposition tree Ti of H [Mi]
Append Ti to the node Bj of T such that j ≤ i < f(j)

Output T

We are now to give a solution to each step of Algorithm 4, and prove their
correctness.

X

x

x−branch
recurse here

Fig. 4. A recursive approach to compute a super modular decomposition tree.

23

5.1 Strong homogeneous modules containing x

Definition 10 (x−branch) The x−branch of a good homogeneous relation
H over X is the set B(x) of all strong homogeneous modules containing the
element x ∈ X, ordered by inclusion. In other words, it is the path from the
root to leaf x of the modular decomposition tree of the relation.

The tool to construct the strong homogeneous modules containing x is the
construction of the maximal homogeneous modules excluding x. Section 4.3
defined the set MaxM(x) = {M1, . . . , Mk} of maximal homogeneous modules
excluding x, which is a partition of X \{x} by Proposition 11. Let us examine
the relationship between MaxM(x) and B(x)

Proposition 17 The homogeneous modules of MaxM(x) = {M1, . . . , Mk}
can be ordered from 1 to k in such a way that

for each B ∈ B(x), there exists f such that B = {x} ⊎M1 ⊎M2... ⊎Mf .

Proof: For a homogeneous module B ∈ B(x), the maximal homogeneous
modules not containing B form a partition of X. Of course each homogeneous
module of MaxM(x) is included (or equal to) one of the homogeneous modules
of this partition. So a homogeneous module of MaxM(x) can not overlap
a homogeneous module B ∈ B(x), and the proposition follows. Indeed, to
construct the ordering, just number the homogeneous modules of B(x) from
B0 = {x} to Bl = X using inclusion order. Then number the homogeneous
modules of MaxM(x) included in B1 from 1 to f(1), the homogeneous modules
of MaxM(x) included in B2 but not in B1 from f(1)+1 to f(2), and generally
the homogeneous modules included in Bi but not in Bi−1 from f(i− 1) + 1 to
f(i). 2

A consequence is that, if we order the elements of the x−branch from B0 = {x}
to Bl = X in increasing inclusion order, then for all 1 ≤ i < l Bi+1 \ Bi is
equal to some elements of MaxM(x) that follow consecutively in the above
ordering. The following fact is obvious.

Proposition 18 Let Bi ∈ B(x) be a non-leaf strong homogeneous module

containing x, C1
i ...C

g(i)
i be its children in the modular decomposition tree and

j such that Cj
i = Bi+1 is the child containing x. If Bi is linear we suppose the

children are ordered according to the linear ordering.

• If Bi is prime then for all k 6= j Ck
i ∈MaxM(x)

• If Bi is linear then
⋃k=j−1

k=1 Ck
i ∈MaxM(x) and

⋃k=g(i)
k=j+1 Ck

i ∈MaxM(x)
• If Bi is complete then

⋃
k 6=j Ck

i ∈MaxM(x)

There are no more elements in MaxM(x) than those described above.

24

5.2 Quotient relation

Now let us construct a quotient relation. For all Mi ∈ MaxM(x) let ei ∈ Mi

be a representative element of Mi (an arbitrary element). The quotient relation
of H by MaxM(x), denoted H(x), is the relation

H(x) = H [{x, e1, . . . , ek}].

Proposition 19 The quotient relation of H by MaxM(x) does not depend
on the choice of the representative elements for each Mi.

Proof: This is because the relation H is good. 2

Proposition 20 Every non-trivial homogeneous module of H(x) contains x.

Proof: Suppose there is a non-trivial homogeneous module ∪i∈I{ei} of H(x)
that excludes x. Then, |I| ≥ 2, and ∪i∈IMi is a homogeneous module of H
that excludes x, larger than an element of MaxM(x), a contradiction. 2

For Mi ∈ MaxM(x), let S(Mi) ∈ B(x) be the smallest homogeneous module
of B(x) containing Mi. Using the notations of Proposition 17 if S(Mi) = Bj

then i ≤ j < j(i). Proposition 18 gives the relationship between Mi and S(Mi)
with respect to S(Mi) type (complete, linear or prime). We say that ei ∈ Mi

is a P-element (resp. L-element, C-element) if S(Mi) is prime (resp. linear,
complete). Two elements ei ∈ Mi and ej ∈ Mj are companion one of each
other if S(Mi) = S(Mj). Proposition 18 tells that ei has zero companion if
S(Mi) is complete, zero or one if S(Mi) is linear and at least one if S(Mi) is
prime.

5.3 Forcing graph

Definition 11 (Forcing Graph) Keeping the above notations, the directed
forcing graph G(x) = (V, A) is defined as V = {e1, . . . , ek}; and an arc
(ei, ej) ∈ A exists if and only if ¬H(ej |x, ei).

Proposition 21 Let y be a vertex of G(x) and N∗(y) the descendants of y in
G(x) (including y itself). N∗(y)∪ {x} is the smallest homogeneous module of
H(x) containing y.

Proof: First notice that all nontrivial homogeneous modules of H(x) contain
x. Then, if the forcing graph has an edge (ei, ej) then any nontrivial homoge-
neous module of H(x) containing ei also contains ej. All descendants of y in

25

G(x) are thus in any homogeneous module containing y (and x).

Now we shall prove that for any set A of vertices of G(x) with no outgoing
arc, A ∪ {x} is a homogeneous module of H(x). Indeed, for all u ∈ A and all
v /∈ A we have H(v|x, u). As H is a transitive relation, then for all u, u′ ∈ A
H(v|u, u′) and thus A ∪ {x} is a homogeneous module. So N∗(y) ∪ {x} is a
homogeneous module of H(x). 2

Let C be a strongly connected component (SCC for short) of G(x). The above
proposition gives that all vertices of C are companions. Furthermore we have:

Proposition 22 A non-trivial strongly connected components of G(x) is
formed by companion P-elements. Conversely a maximal set of companion
P-elements is strongly connected.

Proof: According to Proposition 18 there are no companion C-elements and
at most two companion L-elements. But clearly there is no arc between them.
So a SCC with at least two vertices contains companion P -elements. Accord-
ing to Proposition 21 if companion P -elements were split into two (or more)
SCC C and D, then there would be either a homogeneous module of H(x)
containing C but not D, or a homogeneous module of H(x) containing D but
not C. In both case, the smallest homogeneous module of H(x) containing
C ∪D can not be prime. 2

Proposition 23 Two companion L-elements are false twins (they share the
same neighbourhood and there is no arc between them). Conversely the pairs
of false twins are exactly the companion L-elements.

Proof: Let e and e′ be two companion L-elements. The smallest homogeneous
module M of H(x) containing {e, e′} is thus a linear homogeneous module
{e} ∪M ′ ∪ {e′} where M ′ is the strong homogeneous module son of M in the
modular decomposition tree of H(x). Of course x ∈ M ′. Both {e} ∪M ′ and
M ′ ∪{e′} are homogeneous modules, and the descendants of e are exactly the
descendants of e′ and are M ′, according to Proposition 21. Furthermore since
H is good, e and e′ are twins. 2

According to the Propositions 21, 22 and 23 we have:

Proposition 24 Any linear extension (topological sort) of G(x) will order
MaxM(x) into the ordering of Proposition 17.

Proposition 25 The x−branch of H can be computed in O(Q(MaxM(x)))
time

Proof: Remind that Q(P) is the number of pairs {x, y} whose vertices are not

26

in the same part of a partition P (Definition 7). Let k be the number of parts of
MaxM(x). obviously k2 = O(Q(MaxM(x))) and Q(MaxM(x)) = O(|X|2).
The algorithm is

• The maximal homogeneous modules MaxM(x) excluding x can be com-
puted in time O(Q(MaxM(x))), according to Theorem 6, using the algo-
rithm of Section 4.3.
• Then, the vertices of the forcing graph are determined arbitrarily: for all

1 ≤ i ≤ k let ei ∈Mi.
• Then, constructing the forcing graph G(x) in O(k2) time is obvious
• Then, the topological sort G(x) in O(k2) time is also easy.
• Lastly Proposition 17 tells how the ordering of MaxM(x) allow to con-

struct B(x). Notice that all companion vertices appear consecutively in the
topological sort and are all regrouped to form Bi+1 \Bi.

2

We thus have:

Theorem 10 Algorithm 4 computes a super homogeneous modular decompo-
sition tree in O(|X|2) time.

Proof: This is a direct application of Propositions 16 and 25. We just have
to show that the sum of all O(Q(MaxM(x))) time computations is O(|X|2).
This is true because Q(MaxM(x)) is the number of pairs {x, y} belonging
to two elements of MaxM(x). As the algorithm is recursively launched on a
homogeneous module of MaxM(x), each pair {x, y} is counted once, in the
recursive call of its least common ancestor of the SMDT finally output. 2

5.4 Testing for weak homogeneous modules and typing the nodes

Now, by constructing recursively x−branches, we can build a super homo-
geneous modular decomposition tree. This tree however is not the modular
decomposition tree of H since:

• Its nodes are not typed complete, linear or prime,
• It contains all strong homogeneous modules but may also contain weak

homogeneous modules.

Definition 12 Let N be a node of a SMDT of H, with sons S1, . . . , Sk, and
ei ∈ Si be an arbitrary element. The quotient of H by N is H [{e1, ..., ek}].

Proposition 26 The quotient relation of a node N of a SMDT is either

27

• type P : with no non-trivial homogeneous module,
• type L: the elements can be linearly ordered in such a way that the homo-

geneous modules of the quotient relations are exactly the intervals of the
relation,

• type C: every subset is a homogeneous module.

If N has k sons, a trivial O(k2) time algorithm can test the type and order
the elements if needed. A classical (and easy to prove) result is that

Proposition 27 Let T be a tree with n leaves and no node with only one
child. Then ∑

N node of T

degree(N)2 = O(n2).

We can therefore perform quadratic-time computations on each node of a
SMDT. A first application of Proposition 27 is

Proposition 28 Let H be a good relation on X. It take O(|X|2) time to
compute the quotient relations for all nodes of a SMDT of H.

Proof: A bottom-up sweep, keeping one representative per child, builds the
representatives. Each quotient relation can then be computed in time linear
on its size, i.e. O(k2). 2

A second application of Proposition 27 together with Proposition 26 gives
that the typing of the nodes of a SMDT takes O(|X|2) time. Note that we
abusively consider that weak homogeneous modules have a type. Then we can
look for the weak homogeneous modules, and cast the SMDT into the genuine
modular decomposition tree, using:

Proposition 29 Let H be a good relation on X, and N be a node of a SMDT,
and F be its father in the SMDT. F has another son A. If F is linear then
take A that immediately precedes or follow N in the linear ordering. Take an
element a ∈ A. If N is non-trivial it has at least two sons B and C. If N is
linear then take B its first child and C its last child. Finally take b ∈ B and
c ∈ C. Then

N is a weak homogeneous module if and only if
{a, b} or {a, c} is a homogeneous module of H [{a, b, c}].

Proof: If {a, b} or {a, c} is a homogeneous module N is obviously weak. Con-
versely if N is weak then it is overlapped by a homogeneous module N ′. N
and N ′ have thus the same father F in the modular decomposition tree. If F
is complete, any union of a son of F included in N plus one not included N ′

overlaps N . As b ∈ N and a ∈ (F \ N) we get the result. And if F is linear
(any other arc is excluded), then either the first son of F included in N plus

28

the preceding one in the linear order, overlaps N , and {a, b} is a homogeneous
module; or the last son of F included in N plus the following one in the linear
order, overlap N , and {a, c} is a homogeneous module. 2

This proposition, together with a third application of Proposition 27, gives
that the weak homogeneous modules can be removed from a SMDT in O(|X|2)
time. We finally have

Proposition 30 A Super Modular Decomposition Tree of H can be cast into
the modular decomposition tree of H in O(|X|2) time.

And, together with Theorem 10 we have:

Theorem 11 The modular decomposition tree of a good relation H over X
can be built in O(|X|2) time.

Conjecture: When the homogeneous relation is given by list representation
(see Section 4.1), the decomposition tree can be built in O(n + m log n) time,
where n = |X| and m the total length of the lists in this representation.

6 Outcomes

Let us examine in the sequel some of the applications of this homogeneity
theory to modular decomposition of graphs and 2-structures, and to other
graph relations.

From Proposition 9 and Section 3, the modules of an undirected graph and
of a symmetric 2-structure form a partitive family, while the modules of a
directed graph just form a weakly partitive family. All know properties of
modular decomposition [29] can be derived from this result. An O(n2) modular
decomposition algorithm can also be derived from Section 5 algorithm. It runs
in optimal time for relations given as matrices (like an adjacency matrix), but
it is less efficient than the existing algorithms for graphs stored using adjacency
lists [6,8,11,13,15,22,23,27].

In a graph we can consider different homogeneous relations, for instance the
relation “there exists a path from vertex x to vertex y avoiding the vertex s”,
or a more general relation “there exists a path from x to y avoiding the neigh-
bourhood of s”. It is easy to see that these two relations fulfil the basic axioms
(symmetry, reflexivity and transitivity). In the first case, the strong hommo-
geneous modules form a partition (into the 2-vertex-connected components,
minus the articulation points). The second relation is related to decomposition
into star cutsets.

29

Another interesting relation is Dk(s|xy) if d(s, x) ≤ k and d(s, y) ≤ k, where
d(x, y) denotes the distance between x and y. The case k = 1 corresponds to
modular decomposition. It is worth investigating the general case.

7 Conclusion

We hope that this homogeneity theory will have many other applications and
will be useful to decompose automata [1] and boolean functions [3]. Obvi-
ously, the algorithmic framework presented here can be optimised in each
particular application, as it has been done for modular graph decomposition
[6,8,11,13,15,22,23,27].

Acknowledgements: We are grateful to J. Gustedt for a helpful discussion
and his interesting remarks. We would like to thank the anonymous referees
for their suggestions, which greatly improve the paper.

References

[1] C. Allauzen and M. Mohri. Efficient algorithms for testing the twins property.
Journal of Automata, Languages and Combinatorics, 8(2):117–144, 2003.

[2] Anne Bergeron, Cedric Chauve, Fabien de Montgolfier, and Mathieu Raffinot.
Computing common intervals of permutations, with applications to modular
decomposition of graphs. In 13th Annual European Symposium on Algorithms
(ESA’05), volume 3669 of LNCS, pages 779–790, 2005.

[3] J. Bioch. The complexity of modular decomposition of boolean functions.
Discrete Applied Mathematics, 149(1-3):1–13, 2005.

[4] A. Brandstadt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM
Monographs on Discrete Mathematics and Applications. Society for Industrial
and Applied Mathematics, 1999.

[5] A. Bretscher, D. G. Corneil, M. Habib, and C.Paul. A Simple linear time
LexBFS cograph recognition algorithm. In 29th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG’03), volume 2880 of
LNCS, pages 119–130, 2003.

[6] B.-M. Bui Xuan, M. Habib, and C. Paul. Revisiting T. Uno and M. Yagiura’s
Algorithm. In 16th International Symposium of Algorithms and Computation
(ISAAC’05), volume 3827 of LNCS, pages 146–155, 2005.

[7] C. Capelle. Décomposition de Graphes et Permutations Factorisantes. PhD
thesis, Université Montpellier II, 1997.

30

[8] C. Capelle, M. Habib, and F. de Montgolfier. Graph decomposition and
factorizing permutations. Discrete Mathematics and Theoretical Computer
Science, 5(1):55–70, 2002.

[9] M. Chein, M. Habib, and M.C. Maurer. Partitive hypergraphs. Discrete
Mathematics, 37(1):35–50, 1981.

[10] D. G. Corneil, H. Lerchs, and L. K. Stewart. Complement reducible graphs.
Discrete Applied Mathematics, 3:163–174, 1981.

[11] A. Cournier and M. Habib. A new linear algorithm for modular decomposition.
In Trees in algebra and programming (CAAP’94), volume 787 of LNCS, 1994.

[12] E. Dahlhaus. Parallel algorithms for hierarchical clustering, and applications
to split decomposition and parity graph recognition. Journal of Algorithms,
36(2):205–240, 2000.

[13] E. Dahlhaus, J. Gustedt, and R.M. McConnell. Efficient and practical
algorithms for sequential modular decomposition. Journal of Algorithms,
41(2):360–387, 2001.

[14] R. Ducournau and M. Habib. La multiplicité de l’héritage dans les langages à
objects. Technique et Science Informatique, 8(1):41–62, 1989.

[15] A. Ehrenfeucht, H. Gabow, R. McConnell, and S. Sullivan. An O(n2) Divide-
and-Conquer Algorithm for the Prime Tree Decomposition of Two-Structures
and Modular Decomposition of Graphs. Journal of Algorithms, 16:283–294,
1994.

[16] A. Ehrenfeucht and G. Rozenberg. Theory of 2-structures. Theoretical
Computer Science, 3(70):277–342, 1990.

[17] S. Fujishige. Submodular Functions and Optimization. North-Holland, 1991.

[18] Tibor Gallai. Transitiv orientierbare Graphen. Acta Mathematica Academiae
Scientiarum Hungaricae, 18:25–66, 1967.

[19] V. Giakoumakis and I. Rusu. Weighted parameters in (P5, P5)-free graphs.
Discrete Applied Mathematics, 80:255–261, 1997.

[20] M.C. Golumbic. Algorithmic graph theory and perfect graphs. In Annals of
Discrete Mathematics, volume 57. Elsevier, second edition, 2004.

[21] M. Habib, F. de Montgolfier, and C. Paul. A simple linear-time modular
decomposition algorithm. In 9th Scandinavian Workshop on Algorithm Theory
(SWAT’04), volume 3111 of LNCS, pages 187–198, 2004.

[22] M. Habib, R. McConnell, C. Paul, and L. Viennot. Lex-BFS and
partition refinement, with applications to transitive orientation, interval graph
recognition and consecutive ones testing. Theoretical Computer Science, 234:59–
84, 2000.

31

[23] M. Habib, C. Paul, and L. Viennot. Partition refinement techniques: An
interesting algorithmic tool kit. International Journal of Foundations of
Computer Science, 10(2):147–170, 1999.

[24] W.-L. Hsu and T.-M. Ma. Substitution decomposition on chordal graphs and
applications. In 2nd International Symposium on Algorithms (ISA’91), volume
557 of LNCS, pages 52–60, 1991.

[25] B. Jamison and S. Olariu. A unique tree representation for P4-sparse graphs.
Discrete Applied Mathematics, 35:115–129, 1992.

[26] R.M. McConnell and F. de Montgolfier. Linear-time modular decomposition of
directed graphs. Discrete Applied Mathematics, 145(2):189–209, 2005.

[27] R.M. McConnell and J.P. Spinrad. Modular decomposition and transitive
orientation. Discrete Mathematics, 201:189–241, 1999. Extended abstract at
SODA’94.

[28] R. H. Möhring. Algorithmic aspects of the substitution decomposition in
optimization over relations, set systems and boolean functions. Annals of
Operations Research, 6:195–225, 1985.

[29] R.H. Möhring and F.J. Radermacher. Substitution decomposition for discrete
structures and connections with combinatorial optimization. Annals of Discrete
Mathematics, 19:257–356, 1984.

[30] F. de Montgolfier. Décomposition modulaire des graphes. Théorie, extensions
et algorithmes. PhD thesis, Université Montpellier II, 2003.

[31] Robert Paige and Robert E. Tarjan. Three partition refinement algorithms.
SIAM Journal on Computing, 16(6):973–989, 1987.

[32] Fwu-Shan Shieh and Carolyn L. McCreary. Directed graphs drawing by clan-
based decomposition. In Franz-Josef Brandenburg, editor, Graph Drawing,
LNCS, pages 472–482, 1995.

[33] T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of
two permutations. Algorithmica, 26(2):290–309, 2000.

32

